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«  Introduction

- Transistors

+  The CMOS inverter
- Technology

- Scaling

+  Gates

* | Sequential circuits
- Time in logic circuits
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- Interconnects | ( 0

- Clock distribution '

- Storage elements

Many slides are a courtesy of
Paulo Moreira
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"Time also counts”

Combinational

Logic
) Circuit

output = F(input)

out

Sequential

in out

{ Logic
N Circuit

State :|
—

(memory)

output = F(state, input)
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D Flip-Flop
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Positive edge-triggered flip-flop

(sensing) (storing)
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D Flip-Flop
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State machine timing
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Flip-Flop timing
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Data changing
inside the
hold/setup
window causes
metastability



State machine timing

Maximum clock frequency

N . out
—11 Logic
N Circuit

—

_clock

Tmin > tCK->Q+ t +1

p,comb setup

fmax = 1T 1:CK—>Q + 1:p,comb > 1:hold

min
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Interconnects

The previous result assumes that signals
can propagate instantaneously across
Interconnects

In reality interconnects are metal or polysilicon
structures with associated resistance and
capacitance.

That, introduces signal propagation delay
that has to be taken into account for reliable
operation of the circuit
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Interconnects

nitride, oxide, nitride, oxide, nitride, polyimide
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Minimum Pitch: 0.2 um
Minimum Width 0.2 um

Capacitance to substrate becomes irrelevant
Capacitance to neighboring signal becomes
dominating

Noise to neighboring signal also not negligible

Extraction for Timing simulation horribly
complicated: tools absolutely mandatory
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Interconnects
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Figure 3.10: Interconnect capacitance including wire-to-wire capacitance
[Schaper83]. (© 1983 IEEE)
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Interconnects

Conductor
L _ L
R = RDW
—f
<>
W
Film Sheeft resistance (Q2/square)
n-well 310
p+, n+ diffusion (salicided) 4
polysilicon (salicided) 4
Metal 1 0.12
Metal 2, 3 and 4 0.09
Metal B 0.05

(Typical values for an advanced process)
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Interconnects

Metal 1

\
|/ * /lj‘//Via /Metalz L
. /

via

Via or contact resistance

depends on:

Via/contact

Resistance (Q2)

- The contacted materials M1 to n+ or p+

- The contact area
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M1 to Polysilicon
V1,2,3and 4
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S
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Interconnects

Routing capacitance

Cross coupling capacitance

e Ouide C=Co2l*CoWL
X & & substrate C,=Cy,lL

Fringing field capacitance

Parallel-plate capacitance
Interconnect layer Parallel-plate (fF/um?) Fringing (fF/um)
Polysilicon to sub. 0.058 0.043
Metal 1 to sub. 0.031 0.044
Metal 2 to sub. 0.015 0.035
Metal 3 to sub. 0.010 0.033
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Interconnects

Multiple conductor capacitances

M3 \
1 1
_I_ —

M2 — — —
1 1
1 I

M1

*  Three dimensional field simulators are required to
accurately compute the capacitance of a multi-wire
structure
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Interconnects

Interconnect

Delay depends on:

- Impedance of the driving source

- Distributed resistance/capacitance of the wire (transmission line)
- Load impedance
Distributed RC delay:

- Can be dominant in long wires

- Important in polysilicon wires (relatively high resistance)

- Important in salicided diffusions

- Important in heavily loaded wires
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Interconnects

Delay optimization

1<
LN

L/2

Sandro Bonacini

Sequential circuits 15




Clock distribution

» Clock signals are "special signals”

- Every data movement in a synchronous system is
referenced to the clock signal
» Clock signals:

- Are typically loaded with high fanout
- Travel over the longest distances in the IC
- Operate at the highest frequencies

Sandro Bonacini Sequential circuits

16



Clock distribution

Data Path
in D Q Logic D Q Logic D Q| out
— — ] —
> > >
CLK; CLK, CLK.,;

“Equipotential” clocking:
- Ina synchronous system all clock signals are derived from a
single clock source ("clock reference")

- Ideadlly: clocking events should occur at all registers
simultaneously ... = T(clk;_;) = t(clk;) = t(clkq) = ...

- Inpractice: clocking events will occur at slightly different
instants among the different registers in the data path
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Clock distribution

Clock skew >ty ae it ae
f F
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Clock distribution

Skew: difference between the clocking instants of
two "sequential” registers:

Skew = T(CLKJ" T(CLKH.I)

Maximum operation frequency:

1 '
T . == - tCK—)Q + t + tp’comb + tlnt + tSEtUp + tSkEW

min Int
fmax

Skew > 0, decreases the operation frequency

Skew < O, can be used to compensate a critical
data path BUT this results in more positive skew
for the next data path!
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Clock distribution

Different clock paths can have different delays due to:
- Differences in line lengths from clock source to the clocked
registers

- Differences in passive interconnect parameters (line
resistance/capacitance, line dimensions, ...)

- Differences in delays in the active buffers within the clock
distribution network:
- Differences in active device parameters (threshold voltages,
channel mobility)
In a well designed and balanced clock distribution network,
the distributed clock buffers should be the principal source
of clock skew
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Clock distribution

] Clock
source
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Clock buffers:

- Amplify the clock signal degraded by the interconnect impedance

- Isolate the local clock lines from upstream load impedances
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Clock distribution

Balanced clock tree
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