Large Scale Parallelism

Carlo Cavazzoni, HPC department, CINECA

www.cineca.it

Parallel Architectures

Two basic architectural scheme:
Distributed Memory
Shared Memory
Now most computers have a mixed architecture

+ accelerators -> hybrid architectures

node

A

CPU

node

A

CPU

node

A

CPU

Distributed Memory

A

CPU

node

A

CPU

node

4

A

node

CPU

CPU

Shared Memory

memory

CPU

CPU

CPU

CPU

Mixed Architectures

e
CPU CPU

I I i i

d
CPU || CPU oo cpu | [cpU

node node

univer, or of .
d .
. N r \
3 - , . E ~ l

4

Most Commmon Networks

switched Cube, hypercube, n-cube
LTI
switch
Torus in 1,2,...,N Dim Fat Tree

/Q\
H BB d

Roadmap to Exascale

(architectural trends)

Systems

System Peak Flops/s

System Memory

Node Performance

Node Memory BW

Node Concurrency

Interconnect BW

System Size (Nodes)

Total Concurrency

Storage

1/0

MTTI

Power

www.cineca.it

node

Main memory

CPU CPU 04
core | core core | core
core | core core | core

GPU GPU 07
GPU memory GPU memory :

ESGRR FLSEERE

CPU ~ 16 cores / 16 threads
Co-processor ~ 128 cores / 512 threads 0

GPU ~ 1024 cores / 1074 threads

new VLSI gen.

old VLSI gen.
L' =

2
@ do not hold anymore!

LW,

—L/2

F=n$*2

D L12=4*D
=49

The power crisis!

The core figquency

and perforgnance do not
grow following the .
Moore’s law any longer

f 4

Increase the number of cores

to maintain the

architectures evolution
on the Moore’s law

Programming crisis!

MPI on Multi core CPU 1 MPI proces / core

Stress network

node

node

B Stress OS
q Many MPI codes (QE) based on
\ MPI_BCAST ALLTOALL
\\ Messages = processes * processes
AN

e

/
HHHN

node We need to exploit the hierarchy

H Re-design Mix message passing

network applications And multi-threading

What about Applications?

In a massively parallel context, an upper limit for the scalability of

Walltime

parallel applications is determined by the fraction of the overall
execution time spent in non-scalable operations (Amdahl's law).

maximum speedup tends to
1/(1-P)
P= parallel fraction

Bl serial

[Paraliel 1000000 core

P = 0.999999

serial fraction= 0.000001

MNepus

What about QE?

FORM || NLRH Pseudopotential Form factors

v

!
|
VOFRHO || PRESS | | V(R,y) = V'R, p(r) + VE5er(R, p(G))
|
FORCE Forces on the electrons: F,
ORTHO Orthogonalize wave functions:

PW flow chart

SETUP OF THE
INITIAL PHYSICAL

QUANTITIES

|

CALCULATIO N OF NEW
ATOMIC POSITIONS

(AND LATTICE PARAMETERS)

CALCULATION OF
NEW FORCES
(AND STRESSES)

STRUCTURE OPTIMIZATION

I:ELSE:I

]((_

SELFOCONSISTENCY
ACHIEVED

FORCES AND
STRESSES EgUAL
TO ZER

|

I:ELSE]

CALCULATION OF
WAVEFUNCTIONS

SELFOCONSISTENCY

DIAGONALIZATION OF THE

HAMILTONIAN MATRIX
(FOR EACH KOPOINT)

(

WAVEFUNCTION }

ORTHOONORMALIZATION
CALCULATION OF THE NEW CALCULATION OF THE CALCULATION OF THE
NONOLOCAL POTENTIALS NEW POTENTIALS CHARGE DENSITY

4 5=

. -

Main Algorithms in QE

= 3D FFT
» Linear Algebra

— Matrix Matrix Multiplication
— less Matrix-Vector and Vector-Vector
— Eigenvalues and Eigenvectors computation

= Space integrals

= Point function evaluations

Message Passing (MPI)

Shared Memory (OpenMP)
Languages and Paradigm for Hardware Accelerators (CUDA)

Hybrid: MPI + OpenMP + CUDA

SMP Node 0

SMP Node 1

Programming Models in QE

SMP Node 2

MPI O

MPI 1

MPI 2

OMP 0

CPU 1

v

Cuda
kernel

@ OMP2 OMP 0

CPU 1

A4

Cuda
kernel

CPU 1

Cuda
kernel

!Somp parallel do
do i =1, nsl

call 1DFFT along z (£ [offset(threadid)])
end do

!Somp end parallel do
call fw _scatter (. . .)
!Somp parallel
do i =1, nzl
!Somp parallel do
do j =1, Nx
call 1DFFT along y (£ [offset(threadid)])
end do
!Somp parallel do
do j = 1, Ny
call 1DFFT along x (£ [offset(threadid)])
end do
end do
!Somp end parallel

mprove scalabil OpenMP

Speed-up, relative to 64 cores Pure MPI

—— Pure MPI
—&— MPI+OpenMP, 4 threads
—#— MPI1+OpenMP, 2 threads

MPI+40MP Threads saturate at 512 cores

MPI+20MP Threads saturate at 256 cores

Pure MPI saturate at 128 cores

128

512

1024

cores

CP simulation of 256Water molecules

We observe the same behaviour
But at an higher number of cores

when I should use OpenMP?

Speed-up | MPI+ OpenMP

MPI

Number of core

Speed-up | -ntg 4

-ntg 2

-ntg 1

nproc = nr3 nproc = 2*nr3 Number of cores

Tasks Group

parallel 3D FFT

doi=1, n
compute parallel 3D FFT(psi(i))
end do

pis(i)

PO
P1
P2
P3

the parallelization is limited to the number of planes in the 3D FFT (NX x NY x NZ)

there is little gain to use more than NZ proc

Tasks Group Il

The goal is to use more processors than NZ.

The solution is to perform FFT not one by one but in group of NG.

redistribute the n FFT
do i =1, nb, ng
compute ng parallel 3D FFT

(at the same time) 2 -3D FFT
end do In one shot

we can scaleup to NZ x NG processor.

This cost an additional ALLTOALL
and memory (NG times the size of the 3D vector).

But we have half the number of
Loop cycle!

v

PO
P1
P2
P3

P4
P5

Diagonalization: how to set -ndiag

Daigonalization
time

»
»

1 4 9 .. Nopt “ndiag

Nopt: depend on the number of electrons and the communication performance

Diagonalization/Orthogonalization Group

when incrasing the number of cores, not all part of the code scale with the
same efficiency.

Hermitian matrixes are square matrixes, and a square grid of processors can give
to optimal performance (communication/computatio)

in @ run with 10 processors,
_q_q # #_q the diag. group use 4 procrs (2x2)
. - Matrixes are block distributed to the diag group.
N
In this case is possible to use a mixed parallelization
- MPI+OpenMP using SMP library
Nb

Linear Algebra &
Task Groups
Multi-Threads

Electronic Bands * /

e 1[4 3
m. /'_M _ N ,géﬁm
- T = =T
- W.m A “Mm_ M_m %
et SirhgiHR
gl |[#8 & 198, (g%
N | M .m
N o
5 8
O ~ N @
: :) £
S g
: 8
w |, i Qe T o e
g | | E 2 | 2
£ g M.m_ nm Wk
.Yw »> - mTVm MR
S8 £
as : Se Se
P m (- !
= g =
- s)

QE parallelization hierarchy

Parallelization Strategy

= 3D FFT ad hoc MPI & OpenMP driver

" Linear Algebra ScalaPACK + blas multithread

" Space integrals Mp1 & OpenMP loops parallelization and
reduction

= Point function

evaluations MPI & OpenMP loops parallelization

10240
cores

-nimage 10

Each replica got 1024 cores, everything is replicated, but position are different

1024 1024 1024 1024 1024 1024 1024 1024 1024
cores cores cores || cores cores || cores || cores cores || cores
-nbgrp 4 Each band group got 256 cores, g-vectors are replicated, but bands are different

256
cores

/ 7 A
64 64 64 64
Tasks Tasks Tasks Tasks
A
16 48 o
works idle ndiag 16

Only 16 tasks are involved in
KS hamiltonian
diagonalization,
In most computation using all
tasks is an overshooting

OMP_NUM_THREADS=4, g-vectors and fft are distributed across 64 tasks
Each task manage 4 cores using shared memory/OpenMP parallelism

i

64
Tasks

32 32
Tasks | Tasks

-ntg 2

FFT computation is reorganized and distributed to two group of
32 tasks each. This help overcoming the limitation to the

parallelization given by the number of grid points in the Z direction.

G-vectors are replicated G-vectors are distributed
(across groups) (within each group)

go 1x1xN proc grid

Parallelization over Images C ! &0

Energy barrier evaluation Charge density

Parallelization over Pools:

K-points sempling of Parallelization of the FFT
Brillouin Zone. Real and Reciprocal Space
Electronic band structure Decomposition.

One FFT for each electron

VN x VN proc grid

states
A

»

sta{es

Hamiltonian

Parallelization of
Bands structure.
Matrix Diagonalization
At least one state for
each electron

Loosely coupled —————7 T o——— Tightly coupled

Bands parallelization scaling

- CP on BGQ

CNT10PORS

- UIVILT

M rhoofr

M updatc

M ortho
Virtual cores
Realcores
Band groups

400

o o o o o o o o
N o wn o wn o LN
[a0] (a2} o o — —

sdais/ spuodas

CdSe 1214 - FERMI

virtual core real core MPItask OpenMP 1Band Grot Task Grou Ortho procs Time/step
8192 4096 1024 8 4 4 256 472
32768 16384 4096 8 4 4 1024 241
65536 32768 8192 8 16 4 512 148.835

CdSe 1214 - CP on BGQ

500

450

400
[prefor
H nifl
Hnlfg

350

w
o
o

M vofrho

M calphi

seconds /steps
N
1%
o

M dforce

M rhoofr

W updatc

M ortho

Virtual cores

Real cores

Band groups

Typical CP command line
on massively parallel supercomputers

export
export
export
export
export
export
export
export
export
export
export

runjob

WORKDIR="pwd /.

TASKS=16384

PREFIX=cp

TASK PER NODE=8

THREADS=4

NTG=4

NDIAG=512

NBG=16

RUNID=4

INPUT FILE=SWORKDIR/$PREFIX.in
OUTPUT FILE=SWORKDIR/$PREFIX.${TASKS}t.${TASK PER NODE}tpn.${THREADS}omp.${NBG}bg.${NTG}tg.S{NDIAG}d.${RUNID}.out

--np $TASKS --ranks-per-node STASK PER NODE --envs OMP NUM THREADS=STHREADS : \
SWORKDIR/cp.x —nbgrp $SNBG -ntask groups $NTG -ndiag SNDIAG < $INPUT FILE > SOUTPUT FILE

Input parameters

&control
title="'Prace bench’',
calculation = 'cp',
restart mode='restart',
ndr=53,
ndw=52,
prefix="'nano',
nstep=500,
iprint=10,
isave=200,
dt=5.0d0,
etot conv_thr = 1.d-8,
pseudo dir = './'
outdir = './!"
tstress = .false.
tprnfor = .true.

wf _collect=.false.
}<

saverho=. false.
memory="small"

can be critical for performance,
use only when really needed

Reading the output... CNT10PORS8

Program CP v.5.0.1 (svn rev. 9250M) starts on 7Aug2012 at 23: 8:40

This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (20009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at

http://www.quantum-espresso.org/quote.php

Parallel version (MPI & OpenMP), running on 131072 processor cores

Number of MPI processes: 16384
Threads/MPI process: 8
band groups division: nbgrp = 16
R & G space division: proc/pool = 16384
wavefunctions fft division: fft/group = 4

Matrix Multiplication Performances
ortho mmul, time for parallel driver = 0.02369 with 1024 procs

Constraints matrixes will be distributed block like on
ortho sub-group = 32* 32 procs

Basic Data Type

Charge density

Real space

"3D arrays

al

Wave functions

+1D arrays

Reciprocal space

4 3=

Recipral Space epresentation

Wave Y, (r)= L C (G)expliGr)
Functions @Z

|G|2 /2 < Ecut To truncate the infinite sum

Charge ~v)=2/kt)
Density (G)= éE fl_ZCi(G’)CI.(G—G')exp(i(G—G')r)

2 To retain the same accurancy
|G| /2<4F,, as the wave function

FFTs

CIg
Reciprocal e \’J(G)
S ace IG|*/2< E G
--p .. FF.T
Real
Space 0. plr)=3)

Reciprocal Space distribution

p(G)

¥,(G) l

—

.IP()

P2

P3

P4

Understanding QE 3DFFT, Parallelization of
Plane Wave

Reciprocal Space
G ~Plane Wave vectors

=
wl,

/ Charge density ~ Nx Ny /5 FFT along z

Single state electronic wave function

Similar 3DFFT are present in most ab-initio codes like CPMD

Conclusion

Number of cores double every two years -> parallel vs serial
Memory per core decreases -> parallelism at all level
Multi/many core nodes -> MPI| and OpenMP

Communicator hierarchy -> tune command line parameters

I/O will be critical -> avoid it when not required

Power consumption will drive CPU/Computer design

