
© 2012 Pittsburgh Supercomputing Center

Building C Programs

Shawn T. Brown

Director of Public Health Applications

Pittsburgh Supercomputing Center

© 2012 Pittsburgh Supercomputing Center 2

Computers do not understand programming

languages…

#include <stdlib>

#include <stdio>

int main(){

 printf(“Hello Mom!”);

 return 0

}

?

© 2012 Pittsburgh Supercomputing Center 3

Humans do not understand binary…

010010010010010101001001001

001010100100100100101010010

010010010101001001001001010

100100100100101010010010010

010101001001001001010100100

100100101010010010010010101

001001001001010100100100100

101010010010010010101001001

001001010100100100100101010

010010010010101001001001001

010100100100100101010010010

010010101001001001001010100

10010010010110

?

© 2012 Pittsburgh Supercomputing Center 4

Humans do not understand binary…

010010010010010101001001001

001010100100100100101010010

010010010101001001001001010

100100100100101010010010010

010101001001001001010100100

100100101010010010010010101

001001001001010100100100100

101010010010010010101001001

001001010100100100100101010

010010010010101001001001001

010100100100100101010010010

010010101001001001001010100

10010010010110

Unless you are Axel!

© 2012 Pittsburgh Supercomputing Center 5

For the rest of us…

• Programming languages have been created

so that you do not have to write machine

code.

• Generally speaking, programming

languages are designed with specific

requirements to translate something mere

mortals can understand to machine code.

• Difficult, that is why it is not trivial to learn

programming.

© 2012 Pittsburgh Supercomputing Center 6

Computer Languages

• Generally a spectrum

Ease of use

Productivity

Rapid development

Performance

More control over
computers resources

More complex

PERL

Python

Java

PHP

C

C++

FORTRAN

© 2012 Pittsburgh Supercomputing Center 7

And then God gave us compilers…

• The compiler is the single most useful tool

that a programmer has at his/her disposal.

• The compiler translates through a series of

steps your “human-readable” source code to

something the computer understands.

• All programming languages have to be

compiled at some level.

– In interpreted languages, this is done prior by

another programmer that implements the

interpreter on a given architecture.

© 2012 Pittsburgh Supercomputing Center 8

Steps in a Modern Compilation Chain

Preprocessing Parsing Translation Assembling Linking Executable

© 2012 Pittsburgh Supercomputing Center 9

Preprocessing

• This is the stage in the compilation where

items such as directives

– These are directives that can be defined in

source (usually with a # before the line)

– Can also be passed through the command line

with –D

– Basically just a substitution engine

– gcc –E

© 2012 Pittsburgh Supercomputing Center 10

Parsing and Translation

• This stage takes the preprocessed source

files and translates them into some form of

assembly language

• Optimization also happens in this phase

– Automatic interpretation of common code

constructs that can be rewritten in a more

optimal manner (e.g. loop unrolling

• gcc -S

© 2012 Pittsburgh Supercomputing Center 11

Assembly Stage

• Takes the assembly code and translates it

to machine instructions

• Generally creates object files (.o) files for

each source file given.

© 2012 Pittsburgh Supercomputing Center 12

Linking Stage

• Linking takes and includes of the external
libraries that are to be included in the
executable.

• Usually defined with key words to the
compiler like –lm (which specifies libmath)

• Static Linking:
– Explicitly includes the libraries machine code into

the executable (.a)

• Dynamic Linking:
– Places a hook in executable that gets included at

runtime (.so)

© 2012 Pittsburgh Supercomputing Center 13

Basic Compilation command for C

• gcc –L/libraryDir –lm -I/includeDir–o foo foo.c bar.c

C
o

m
p

il
e
r

L
in

k
in

g

E
x

e
c

u
ta

b
le

S
o

u
rc

e
 F

il
e
s

This syntax will suffice for most simple commands…. it actually runs through all of

the compilation steps in one line.

H
e
a
d

e
r

F
il
e
 L

o
c
a
ti

o
n

s

© 2012 Pittsburgh Supercomputing Center 14

Another way…

• If you would like more control over individual

objects (different includes and libraries

gcc –I/includeDir1 –c –o foo.o foo.c

• gcc –I/includeDir2 –c –o bar.o bar.c

• gcc –L/libDir1 –L/libDir2 -llib1 –llib2 –o foo

foo.o bar.o

© 2012 Pittsburgh Supercomputing Center 15

Makefiles

CC=gcc

CFLAGS=-I.

DEPS = hellomake.h

%.o: %.c $(DEPS)

 $(CC) -c -o $@ $< $(CFLAGS)

hellomake: hellomake.o hellofunc.o

 gcc -o hellomake hellomake.o hellofunc.o -I.

install: hellomake

 cp hellomake /usr/local/bin

clean:

 rm -f $(ODIR)/*.o *~ core $(INCDIR)/*~

With the make file, one just

types “make” and the

program compiles with all

dependencies.

Advanced methods of compiling:

libtools – allows one to write makefiles

that rely on a well defined set of

architecture depend variables (this is what

is used when you type ./configure)

Cmake – an platform independent tool

chain for building source.

© 2012 Pittsburgh Supercomputing Center 16

A simple C program
#include <math.h>

#include <stdio.h>

#include "ctest.h"

#define NUM 5000000

float great_circle(float lon1, float lat1, float lon2, float lat2){

 float radius = 3956.0;

 float pi = 3.14159265;

 float x = pi/180.0;

 float a,b,theta,c;

 a = (90.0-lat1)*(x);

 b = (90.0-lat2)*(x);

 theta = (lon2-lon1)*(x);

 c = acos((cos(a)*cos(b)) + (sin(a)*sin(b)*cos(theta)));

 return radius*c;

}

int main() {

 int i;

 float x;

 for (i=0; i <= NUM; i++)

 x = great_circle(-72.345, 34.323, -61.823, 54.826);

 printf("%f\n", x);

}

© 2012 Pittsburgh Supercomputing Center 17

Variable Scope
#include <stdio.h>

void foo(int a){

 a = 5;

 printf("a inside foo = %d\n",a);

}

int main(void){

 int a = 10;

 foo(a);

 printf("a = %d\n",a);

 return 0;

}

> ./test2

a inside foo = 5

a = 10

© 2012 Pittsburgh Supercomputing Center 18

Pointers

• A pointer is a variable that holds the address to

a location in memory.

• In C a pointer is signified by putting an “*” in front

of the variable

#include <stdio.h>

int main(void){

int i = 1;

int *j = &i;

printf("I = %d j = %p *j = %d\n",i,j,*j);

return 0;

}

>gcc –o test test.c

>./test

>I = 1 j = 0x7fff16ef7fdc *j = 1

© 2012 Pittsburgh Supercomputing Center 19

Passing variables to functions

#include <stdio.h>

void foo(int a, int *b){

 a = 5;

 *b = 9;

}

int main(void){

 int a = 2;

 int b = 3;

 foo(a,&b);

 printf("a = %d b= %d\n",a,b);

 return 0;

}

Passing by value

Passing by reference

> ./test1

a = 2 b= 9

© 2012 Pittsburgh Supercomputing Center 20

Arrays in C

#include <stdlib.h>

#include <stdio.h>

void foo(double* A,double B){

 A[0] = 2.0;

 B = 4.0;

}

int main(void){

 double *a;

 int i;

 a = (double*)malloc(sizeof(double)*4);

 for(i=0;i<4;i++){a[i] = (double)i;}

 for(i=0;i<4;i++){printf("a[%d] before=%10.2f\n",i,a[i]);}

 printf("\n");

 foo(a,a[3]);

 for(i=0;i<4;i++){printf("a[%d] after=%10.2f\n",i,a[i]);}

 return 0;

}

© 2012 Pittsburgh Supercomputing Center 21

> ./test3

a[0] before = 0.00

a[1] before = 1.00

a[2] before = 2.00

a[3] before = 3.00

a[0] after = 2.00

a[1] after = 1.00

a[2] after = 2.00

a[3] after = 3.00

Arrays in C

© 2012 Pittsburgh Supercomputing Center 22

Viewing what is in an object or executable file

> nm test3
0000000000600e40 d _DYNAMIC
0000000000600fe8 d _GLOBAL_OFFSET_TABLE_
00000000004007b8 R _IO_stdin_used
 w _Jv_RegisterClasses
0000000000600e20 d __CTOR_END__
0000000000600e18 d __CTOR_LIST__
0000000000600e30 D __DTOR_END__
0000000000600e28 d __DTOR_LIST__
00000000004008b0 r __FRAME_END__
0000000000600e38 d __JCR_END__
0000000000600e38 d __JCR_LIST__
0000000000601030 A __bss_start
0000000000601020 D __data_start
0000000000400770 t __do_global_ctors_aux
0000000000400530 t __do_global_dtors_aux
0000000000601028 D __dso_handle
 w __gmon_start__
0000000000600e14 d __init_array_end
0000000000600e14 d __init_array_start
00000000004006d0 T __libc_csu_fini
00000000004006e0 T __libc_csu_init
 U __libc_start_main@@GLIBC_2.2.5
0000000000601030 A _edata
0000000000601040 A _end
00000000004007a8 T _fini
0000000000400470 T _init
00000000004004e0 T _start
000000000040050c t call_gmon_start
0000000000601030 b completed.7382
0000000000601020 W data_start
0000000000601038 b dtor_idx.7384
00000000004005c4 T foo
00000000004005a0 t frame_dummy
00000000004005f2 T main
 U malloc@@GLIBC_2.2.5
 U printf@@GLIBC_2.2.5
 U putchar@@GLIBC_2.2.5

© 2012 Pittsburgh Supercomputing Center 23

Some other difference between C/C++

• In C, all variables have to be declared at the

beginning of a function, C++ can have

variables declared everywhere.

• C provides some modest OO programming
capabilities through the struct data

structure.

• Function overloading is not valid in C.

• The gap between C and C++ performance

is not as wide as in past.

© 2012 Pittsburgh Supercomputing Center 24

A word about C in Python

• Cython – tries to make up for the poor

performance of Python by allowing you to

directly import C functions as modules in

Python (f2py is the Fortran equivalent that

comes with NumPy)

 cython myPython.pyx

 gcc –c –fPIC –O3 –I/usr/include/python2.7 myPython.c

 gcc –shared myPython.c –o myPython.so

 ...

 In Python

import myPython

 a = python.foo(var1,var2)

© 2012 Pittsburgh Supercomputing Center 25

Hands-on Cython and f2py

• Complete the Cython tutorial at

http://blog.perrygeo.net/2008/04/19/a-quick-cython-

introduction/

– Note, there are some issues with spacing things like “< =“

in the c code that are placed there on purpose, so you

can’t only copy and paste everything.

• Try the f2py from NumPy to do the same thing.

– Fortran code for the Great Circle is available at

http://www.psc.edu/~stbrown/ftest.f90.

– To make a python module:

• f2py –c –m <moduleName> <fortranSourceName>

– Try this two ways, call great_circle with looping in Python,

and then call great_circle_loop so that it is all done in

Fortran.

http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://blog.perrygeo.net/2008/04/19/a-quick-cython-introduction/
http://www.psc.edu/~stbrown/ftest.f90

