
Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Dr. Axel Kohlmeyer

Senior Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

Linking with libraries using multiple
programming languages

http://sites.google.com/site/akohlmey/

2

Symbols in Object Files & Visibility

● Compiled object files have multiple sections
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with
either the “nm” tool or the “readelf” command

3

Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) {
 return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
 int val5 = 20;
 printf("%d / %d / %d\n",
 add_abs(val1,val2),
 add_abs(val3,val4),
 add_abs(val1,val5));
 return 0;
}

nm visibility.o:
00000000 t add_abs
 U errno
00000024 T main
 U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4

4

What Happens During Linking?

● Historically, the linker combines a “startup
object” (crt1.o) with all compiled or listed object
files, the C library (libc) and a “finish object”
(crtn.o) into an executable (a.out)

● Nowadays it is more complicated
● The linker then “builds” the executable by

matching undefined references with available
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function

5

Static Libraries

● Static libraries built with the “ar” command are
collections of objects with a global symbol table

● When linking to a static library, object code is
copied into the resulting executable and all
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so
circular dependencies require to list libraries
multiple times or use a special linker flag

● When linking only the name of the symbol is
checked, not whether its argument list matches

6

Shared Libraries

● Shared libraries are more like executables that
are missing the main() function

● When linking to a shared library, a marker is
added to load the library by its “generic” name
(soname) and the list of undefined symbols

● When resolving a symbol (function) from
shared library all addresses have to be
recomputed (relocated) on the fly.

● The shared linker program is executed first and
then loads the executable and its dependencies

7

Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved
between explicit objects or inside a library
-> need to specify librariess multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved
at link time, only checked for symbols required
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared
libraries whose symbols will be globally visible

8

Semi-static Linking

● Fully static linkage is a bad idea with glibc;
requires matching shared objects for NSS

● Dynamic linkage of add-on libraries requires a
compatible version to be installed (e.g. MKL)

● Static linkage of individual libs via linker flags
-Wl,-Bstatic,-lfftw3,-Bdynamic

● can be combined with grouping, example:
-Wl,--start-group,-Bstatic \
 -lmkl_gf_lp64 -lmkl_sequential \
 -lmkl_core -Wl,--end-group,-Bdynamic

9

Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 => (0x0049d000)
libc.so.6 => /lib/libc.so.6
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode
/some/dir into the binary for searching

10

Using LD_PRELOAD

● Using the LD_PRELOAD environment variable,
symbols from a shared object can be preloaded
into the global object table and will override
those in later resolved shared libraries
=> replace specific functions in a shared library

● Example override log() and exp() in libm:
#include “fastermath.h”
double log(double x) { return fm_log(x); }
double exp(double x) { return fm_exp(x); }

● gcc -shared -o faster.so faster.c -lfastermath
● LD_PRELOAD=./faster.so ./myprog-with

11

Difference Between C and Fortran
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)

12

Fortran Example

 SUBROUTINE GREET
 PRINT*, 'HELLO, WORLD!'
END SUBROUTINE GREET

program hello
 call greet
end program

0000006d t MAIN__
 U _gfortran_set_args
 U _gfortran_set_options
 U _gfortran_st_write
 U _gfortran_st_write_done
 U _gfortran_transfer_character
00000000 T greet_
0000007a T main

- “program” becomes symbol “MAIN__” (compiler dependent)
- “subroutine” name becomes lower case with '_' appended
- several “undefineds” with '_gfortran' prefix
 => calls into the Fortran runtime library, libgfortran
- cannot link object with “gcc” alone, need to add -lgfortran
 => cannot mix and match Fortran objects from different compilers

13

Fortran 90+ Modules

● When subroutines or variables are defined
inside a module, they have to be hidden

● gfortran creates the following symbols:

module func
 integer :: val5, val6
contains
 integer function add_abs(v1,v2)
 integer, intent(in) :: v1, v2
 add_abs = iabs(v1)+iabs(v2)
 end function add_abs
end module func

00000000 T __func_MOD_add_abs
00000000 B __func_MOD_val5
00000004 B __func_MOD_val6

14

The Next Level: C++

● In C++ functions with different number or type
of arguments can be defined (overloading)
=> encode prototype into symbol name:

Example : symbol for int add_abs(int,int)
becomes: _ZL7add_absii

● Note: the return type is not encoded
● C++ symbols are no longer compatible with C

=> add 'extern “C”' qualifier for C style symbols
● C++ symbol encoding is compiler specific

15

C++ Namespaces and Classes
vs. Fortran 90 Modules

● Fortran 90 modules share functionality with
classes and namespaces in C++

● C++ namespaces are encoded in symbols
Example: int func::add_abs(int,int)
becomes: _ZN4funcL7add_absEii

● C++ classes are encoded the same way
● Figuring out which symbol to encode into the

object as undefined is the job of the compiler
● When using the gdb debugger use '::' syntax

16

Why We Need Header or Module Files

● The linker is “blind” for any language specific
properties of a symbol => checking of the
validity of the interface of a function is only
possible during compilation

● A header or module file contains the prototype
of the function (not the implementation) and the
compiler can compare it to its use

● Important: header/module has to match library
=> Problem with FFTW-2.x: cannot tell if library
was compiled for single or double precision

17

Calling C from Fortran

● Need to make C function look like Fortran 77
=> provide a wrapper function visible in Fortran
● Append underscore
● Use call by reference conventions
● Best only used for “subroutine”
void add_abs_(int *v1,int *v2,int *res){
*res = abs(*v1)+abs(*v2);}

● Arrays are always passed as flat arrays
● String passing is tricky (no zero-termination)

(length typically appended to list of arguments)

18

Calling C from Fortran Example

void sum_abs_(int *in, int *num, int *out) {
 int i,sum;
 sum = 0;
 for (i=0; i < *num; ++i) { sum += abs(in[i]);}
 *out = sum;
 return;
}

/* fortran code:
 integer, parameter :: n=200
 integer :: s, data(n)

 call SUM_ABS(data, n, s)
 print*, s
*/

19

Calling Fortran from C

● Inverse from above, i.e. need to add
underscore and use lower case

● Difficult for anything but Fortran 77 style calls
since Fortran 90+ features need extra info
● Shaped arrays, optional parameters, modules

● Arrays need to be “flat”,
C-style multi-dimensional arrays are lists of
pointers to individual pieces of storage, which
may not be consecutive
=> use 1d and compute position

20

Calling Fortran From C Example
subroutine sum_abs(in, num, out)
 integer, intent(in) :: num, in(num)
 integer, intent(out) :: out
 Integer :: i, sum
 sum = 0
 do i=1,num
 sum = sum + ABS(in(i))
 end do
 out = sum
end subroutine sum_abs
!! c code:
! const int n=200;
! int data[n], s;
! sum_abs_(data, &n, &s);
! printf("%d\n", s);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

