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Symbols in Object Files & Visibility

● Compiled object files have multiple sections 
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with 
either the “nm” tool or the “readelf” command 
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Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) { 
    return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
     int val5 = 20;
     printf("%d / %d / %d\n",
            add_abs(val1,val2),
            add_abs(val3,val4),
            add_abs(val1,val5));
     return 0;
}

nm visibility.o:
00000000 t add_abs
         U errno
00000024 T main
         U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4
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What Happens During Linking?

● Historically, the linker combines a “startup 
object” (crt1.o) with all compiled or listed object 
files, the C library (libc) and a “finish object” 
(crtn.o) into an executable (a.out)

● Nowadays it is more complicated
● The linker then “builds” the executable by 

matching undefined references with available 
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function
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Static Libraries

● Static libraries built with the “ar” command are 
collections of objects with a global symbol table

● When linking to a static library, object code is 
copied into the resulting executable and all 
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so 
circular dependencies require to list libraries 
multiple times or use a special linker flag

● When linking only the name of the symbol is 
checked, not whether its argument list matches
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Shared Libraries

● Shared libraries are more like executables that 
are missing the main() function

● When linking to a shared library, a marker is 
added to load the library by its “generic” name 
(soname) and the list of undefined symbols

● When resolving a symbol (function) from 
shared library all addresses have to be 
recomputed (relocated) on the fly.

● The shared linker program is executed first and 
then loads the executable and its dependencies
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Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved 
between explicit objects or inside a library
-> need to specify librariess multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved 
at link time, only checked for symbols required 
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared 
libraries whose symbols will be globally visible



8 

Semi-static Linking

● Fully static linkage is a bad idea with glibc; 
requires matching shared objects for NSS

● Dynamic linkage of add-on libraries requires a 
compatible version to be installed (e.g. MKL)

● Static linkage of individual libs via linker flags
-Wl,-Bstatic,-lfftw3,-Bdynamic

● can be combined with grouping, example:
-Wl,--start-group,-Bstatic \
      -lmkl_gf_lp64 -lmkl_sequential \
      -lmkl_core -Wl,--end-group,-Bdynamic



9 

Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 =>  (0x0049d000)
libc.so.6 => /lib/libc.so.6 
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode 
/some/dir into the binary for searching
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Using LD_PRELOAD

● Using the LD_PRELOAD environment variable, 
symbols from a shared object can be preloaded 
into the global object table and will override 
those in later resolved shared libraries
=> replace specific functions in a shared library

● Example override log() and exp() in libm:
#include “fastermath.h”
double log(double x) { return fm_log(x); }
double exp(double x) { return fm_exp(x); }

● gcc -shared -o faster.so faster.c -lfastermath
● LD_PRELOAD=./faster.so ./myprog-with
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Difference Between C and Fortran
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to 

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)
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Fortran Example

 SUBROUTINE GREET
  PRINT*, 'HELLO, WORLD!'
END SUBROUTINE GREET

program hello
  call greet
end program

0000006d t MAIN__
         U _gfortran_set_args
         U _gfortran_set_options
         U _gfortran_st_write
         U _gfortran_st_write_done
         U _gfortran_transfer_character
00000000 T greet_
0000007a T main

- “program” becomes symbol “MAIN__”  (compiler dependent)
- “subroutine” name becomes lower case with '_' appended
- several “undefineds” with '_gfortran' prefix
  => calls into the Fortran runtime library, libgfortran
- cannot link object with “gcc” alone, need to add -lgfortran
  => cannot mix and match Fortran objects from different compilers
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Fortran 90+ Modules

● When subroutines or variables are defined 
inside a module, they have to be hidden

● gfortran creates the following symbols:

module func
  integer :: val5, val6
contains
  integer function add_abs(v1,v2)
    integer, intent(in) :: v1, v2
    add_abs = iabs(v1)+iabs(v2)
  end function add_abs
end module func

00000000 T __func_MOD_add_abs
00000000 B __func_MOD_val5
00000004 B __func_MOD_val6
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The Next Level: C++

● In C++ functions with different number or type 
of arguments can be defined (overloading)
=> encode prototype into symbol name:

Example : symbol for int add_abs(int,int)
becomes: _ZL7add_absii

● Note: the return type is not encoded
● C++ symbols are no longer compatible with C

=> add 'extern “C”' qualifier for C style symbols
● C++ symbol encoding is compiler specific
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C++ Namespaces and Classes
vs. Fortran 90 Modules

● Fortran 90 modules share functionality with 
classes and namespaces in C++

● C++ namespaces are encoded in symbols
Example: int func::add_abs(int,int)
becomes: _ZN4funcL7add_absEii

● C++ classes are encoded the same way
● Figuring out which symbol to encode into the 

object as undefined is the job of the compiler
● When using the gdb debugger use '::' syntax 
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Why We Need Header or Module Files

● The linker is “blind” for any language specific 
properties of a symbol => checking of the 
validity of the interface of a function is only 
possible during compilation

● A header or module file contains the prototype 
of the function (not the implementation) and the 
compiler can compare it to its use

● Important: header/module has to match library
=> Problem with FFTW-2.x: cannot tell if library 
was compiled for single or double precision
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Calling C from Fortran

● Need to make C function look like Fortran 77
=> provide a wrapper function visible in Fortran
● Append underscore
● Use call by reference conventions
● Best only used for “subroutine”
void add_abs_(int *v1,int *v2,int *res){
*res = abs(*v1)+abs(*v2);}

● Arrays are always passed as flat arrays
● String passing is tricky (no zero-termination)

(length typically appended to list of arguments)
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Calling C from Fortran Example

void sum_abs_(int *in, int *num, int *out) {
 int i,sum;
 sum = 0;
 for (i=0; i < *num; ++i) { sum += abs(in[i]);}
   *out = sum;
   return;
}

/* fortran code:
   integer, parameter :: n=200
   integer :: s, data(n)

   call SUM_ABS(data, n, s)
   print*, s
*/
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Calling Fortran from C

● Inverse from above, i.e. need to add 
underscore and use lower case

● Difficult for anything but Fortran 77 style calls 
since Fortran 90+ features need extra info
● Shaped arrays, optional parameters, modules

● Arrays need to be “flat”,
C-style multi-dimensional arrays are lists of 
pointers to individual pieces of storage, which 
may not be consecutive
=> use 1d and compute position
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Calling Fortran From C Example
subroutine sum_abs(in, num, out)
   integer, intent(in)  :: num, in(num)
   integer, intent(out) :: out
   Integer              :: i, sum
   sum = 0
   do i=1,num
     sum = sum + ABS(in(i))
   end do
   out = sum
end subroutine sum_abs
!! c code:
!   const int n=200;
!   int data[n], s;
!   sum_abs_(data, &n, &s);
!   printf("%d\n", s);
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