
Optimization and Profiling

Shawn T. Brown

Director of Public Health Applications

Pittsburgh Supercomputing Center

stbrown@psc.edu

Philosophy...

Real processors have

registers, cache, parallelism, ... they are bloody complicated

Why is this your problem?

In theory, compilers understand all of this and can optimize your

code; in practice they don't.

Generally optimizing algorithms across all computational

architectures is an impossible task, hand optimization will always

be needed.

We need to learn how...

to measure performance of codes on modern architectures

to tune performance of the codes by hand (32/64 bit commodity

processors)

Philosophy...

When you are charged with optimizing an application...

Don't optimize the whole code

Profile the code, find the bottlenecks

They may not always be where you thought they were

Break the problem down

Try to run the shortest possible test you can to get meaningful results

Isolate serial kernels

Keep a working version of the code!

Getting the wrong answer faster is not the goal.

Optimize on the architecture on which you intend to run

Optimizations for one architecture will not necessarily translate

The compiler is your friend!

If you find yourself coding in machine language, you are doing to much.

Performance

The peak performance of a chip

The number of theoretical floating point operations per second

e.g. 2.4 Ghz Operon can theoretically do 2 fops per cycle, for a peak

performance of 4.8 Gflops

Real performance

Algorithm dependent, the actually number of floating point

operations per second

Generally, most programs get about 10% or lower of peak performance

40% of peak, and you can go on holiday

Parallel performance

The scaling of an algorithm relative to its speed on 1 processor

Performance Evaluation process

Monitoring System

Observe both overall system performance and single-program

execution characteristics.

Look to see if the system is doing well and what percentage of the resources

your program is using.

Pro: easy Con: not very detailed

Profiling and Timing the code

Timing a whole programs (time command :/usr/bin/time)

Timing portions of the program (code modification)

Profiling

Useful Monitoring Commands (Linux)

Uptime returns information about system usage and user

load

ps(1) lets you see a “ snapshot” of the process

table

top process table dynamic display

free memory usage

vmstat memory usage monitor

Swapping... A top disaster

virtual or swap memory:

This memory, is actually space on the hard drive. The operatingsystem

reserves a space on the hard drive for “ swap space” .

time to access virtual memory VERY large:

this time is done by the system not by your program !

Monitoring your own code (time)

NAME

 time - time a simple command or give resource usage

SYNOPSIS

 time [options] command [arguments...]

DESCRIPTION

 The time command runs the specified program command with

 the given arguments. When command finishes, time writes a

 message to standard output giving timing statistics about

 this program ..

--------------->time ./a.out

[program output]

real 0m1.361s

user 0m0.770s

sys 0m0.590s

user time: Cputime dedicated to your
 program
sys time: time used by your program to
 execute system calls
real time: total time aka walltime

Timing A Portion of the Code

C function: clock Fortran Subroutine:

cpu_time

Most programming languages provide a means to access the systems

own timing functions

clock_t c0, c1;
c0 = clock();
 section to code..
c1= clock();
cputime = (c1 - c0)/(CLOCKS_PER_SEC);

call cpu_time(t0)
 section to code..
call cpu_time(t1)
cputime = (t1 - t0)

It is good practice....

Good application writers

will take full advantage of

these to give users insight

into code performance.

Profiling

Profiling is an approach to performance analysis in which

the amount of time spent in sections of code is measured

(using either a sampling technique or on entry/exit of a

code block) and presented as a histogram.

Allows a developer to target key time consuming portions

of codes.

Profiling can be done at varied levels of granularity

Subroutine, code block, loop and source code line

GCC profiling and gprof

Simple gcc compiler flags can be used to get profiling

information.

Great place to start

GNU:

-p Generate extra code to write profile information suitable for

analysis program prof

-pg Generate extra code to write profile information suitable for

analysis by program gprof.

Procedure

gcc -pg prog.c -o prog

./prog

gprof prog.c gmon.out

Example

Example

Hardware Performance Counters

Most modern processors have one or more registers

dedicated to count low level hardware information

e.g. floating point operations, L1 cache misses, etc.

This information is really useful to understand at a very fine

grain of detail what a program is doing on the architecture.

PAPI (Performance API)

The API provides function handles for setting and accessing these

counters.

http://icl.cs.utk.edu/papi/

http://icl.cs.utk.edu/papi/

Tuning and Analysis Utilities

TAU is a portable profiling and tracing toolkit for

performance analysis of parallel programs.

www.cs.uoregon.edu/research/tau/home.php

Pipelining

Pipelining allows for a smooth

progression of instructions and data to

flow through the processor

Any optimization that facilitate

pipelining will speed the serial

performance of your code.

As chips support more SSE like

character, filling the pipeline is more

difficult.

Stalling the pipeline slows codes down

Out of cache reads and writes

Conditional statements

Memory locality

Effective use of the memory heirarchy can

facilitate good pipelining

Temporal locality:

Recently referenced items (instr or data) are likely to

be referenced again in the near future

iterative loops, subroutines, local variables

working set concept

on-chip

 cache
registers

datapath

control

processor

Second
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TB GB MB KB B Size

10sec 10ms 100ns 10ns 1ns Speed

Spatial locality:

programs access data which is near to each other:

operations on tables/arrays

cache line size is determined by spatial locality

Sequential locality:

processor executes instructions in program order:

branches/insequence ratio is typically 1 to 5

Caching

CPU cache is generally set

up as a series of lines that

can pull in a specified

amount of data a given

time.

Accessing Cache infinitely

faster than main memory

Get as much data in at a

time

Use that data to its fullest!

Optimization Methodology

So I profiled my code... found bottle necks...

Optimize one loop/routine at a time

Start with the most time consuming routines (that is why

we profile)

Then the second and the third most...

Parallelize your program..

Then work on parallel performance (communication, load

balancing, etc..)

Optimization Techniques

There are basically two different categories:

Improve memory performance (taking advantage of locality)

Better memory access patterns

Optimal usage of cache lines

Re-use of cached data

Improve CPU performance

Reduce flop count

Better instruction scheduling

Use optimal instruction set

Optimization Techniques for

Memory

Stride

contiquous blocks of memory

Accessing memory in stride greatly enhances the

performance

Array indexing

Ther are several ways to index arrays:

Example (stride)

Data Dependencies

In order to perform hand optimization, you really need to

get a handle on the data dependencies of your loops.

Operations that do not share data dependencies can be

performed in tandum.

Automatically determining data dependencies is tough for the compiler.

great opportunity for hand optimization

Loop Interchange

Basic idea: change the order of data independent nested

loops.

Advantages:

Better memory access patterns (leading to improved cache and

memory usage)

Elimination of data dependencies (to increase opportunity for CPU

optimization and parallelization

Disadvantage:

Make make a short loop innermost

Loop Interchange – Example 1

Loop Interchange in C/C++

Loop Interchange – Example 2

Compiler Loop Interchange

GNU compilers: No support

PGI compilers:

-Mvect Enable vectorization, including loop interchange

Intel compilers:

-O3 Enable aggressive optimization including loop

transformations

CAUTION: Make sure that your program still works after

this!

Loop Unrolling

Computation cheap... branching expensive

Loops, conditionals, etc. Cause branching instructions to be

performed.

Looking at a loop...

for(i = 0; i < N; i++){
 do work....
}

Every time this statement is
hit, a branching instruction is
called.

More work, less
branches

So optimizing a loop would involve increasing
the work per loop iteration.

Loop unrolling

Good news – compilers can do this in the most helpful

cases (not itanium, more later)

Bad news – compilers sometimes do this where it is not

helpful and or valid.

This is not helpful when the work inside the loop is not

mostly number crunching.

Loop Unrolling - Compiler

GNU compilers:

-funrollloops Enable loop unrolling
-funrollallloops Unroll all loops; not
 recommended

PGI compilers:

-Munroll Enable loop unrolling
-Munroll=c:N Unroll loops with trip counts
 of at least N
-Munroll=n:M Unroll loops up to M times

Intel compilers:

-unroll Enable loop unrolling

-unrollM Unroll loops up to M times

CAUTION: Make sure that your program still works after

this!

Loop Unrolling Directives

program dirunroll

integer,parameter :: N=1000000

real,dimension(N):: a,b,c

real:: begin,end

real,dimension(2):: rtime

common/saver/a,b,c

call random_number(b)

call random_number(c)

x=2.5

begin=dtime(rtime)

!DIR$ UNROLL 4

do i=1,N

a(i)=b(i)+x*c(i)

end do

end=dtime(rtime)

print *,' my loop time (s) is ',(end)

flop=(2.0*N)/(end)*1.0e6

print *,' loop runs at ',flop,'

MFLOP'

print *,a(1),b(1),c(1)

end s) is 5.9999999E02

Directives provide a very

portable way for the

compiler to perform

automatic loop unrolling.

Compiler can choose to

ignore it.

Blocking for cache (tiling)

Blocking for cache is

An optimization that applies for datasets that do not fit entirely into

cache

A way to increase spatial locality of reference i.e. exploit full cache

lines

A way to increase temporal locality of reference i.e. improves data

reuse

Example, the transposing of a matrix

Block algorithm for transposing a

matrix

block data size = bsize

mb = n/bsize

nb = n/bsize

These sizes can be

manipulated to coincide with

actual cache sizes on individual

architectures.

Results...

Loop Fusion and Fission

Loop Fusion Example

Loop Fission Example

Prefetching

Modern CPU's can perform anticipated memory lookups ahead

of their use for computation.

Hides memory latency and overlaps computation

Minimizes memory lookup times

This is a very architecture specific item

Very helpful for regular, in-stride memory patterns

GNU:

 -fprefetch-loop-arrays

 If supported by the target machine, generate instructions to prefetch
 memory to improve the performance of loops that access large arrays.

PGI:

 -Mprefetch[=option:n] -Mnoprefetch

 Add (don’t add) prefetch instructions for those processors that support
 them (Pentium 4,Opteron); -Mprefetch is default on Opteron;
 -Mnoprefetch is default on other processors.

Intel:

 -O3

 Enable -O2 optimizations and in addition, enable more aggressive
 optimizations such as loop and memory access transformation, and
 prefetching.

Optimizing Floating Point

performance

Operation replacement

Replacing individual time consuming operations with faster ones

Floating point division

Notoriously slow, implemented with a series of instructions

So does that mean we cannot do any division if we want performance?

IEEE standard dictates that the division must be carried out

We can relax this and replace the division with multiplication by a reciprocal

Compiler level optimization, rarely helps doing this by hand.

Much more efficient in machine language than straight division, because it

can be done with approximates

IEEE relaxation

Keep in mind! This does reduce the precision of the math!

Elimination of Reduntant Work

Consider the following piece of code

It is clear that the division by B(j) is redundant and can be

pulled out of the loop

do j = 1,N

 do i = 1,N

 A(j) = A(j) + C(i,j)/B(j)

 enddo

enddo

do j = 1,N

 sum = 0.0D0

 do i = 1,N

 sum = sum + C(i,j)

 enddo

 A(j) = A(j) + sum/B(j)

enddo

Elimination of Reduntant Work

do k = 1,N

 do j = 1,N

 do i = 1,N

 A(k) = B(k) + C(j) + D(i)

 enddo

 enddo

enddo

do k = 1,N

 Bk = B(k)

 do j = 1,N

 BkCj = Bk + C(j)

 do i = 1,N

 A(k) = BkCj + D(i)

 enddo

 enddo

enddo

Array lookups cost time

By introducing constants and
precomputing values, we
eliminate a bunch of
unnecessary
fops

This is the type of thing compilers
can do quite easily.

Function (Procedure) Inlining

Calling functions and subroutines requires overhead by the

CPU to perform

The instructions need to be looked up in memory, the arguments

translated, etc..

Inlining is the process by which the compiler can replace a

function call in the object with the source code

It would be like creating your application in one big function-less

format.

Advantage

Increase optimization opportunities

Particularly advantegeous (necessary) when a function is called a

lot, and does very little work (e.g. max and min functions).

Function (Procedure) Inlining

Compiler Options

Superscalar Processors

Processors which have multiple functional units are called

superscalar (instruction level parallelism)

Examples:

Athlons, Opterons, Pentium 4's

All can do multiple floating point and integer procedures in one

clock cycle

Special instructions

SSE (Streaming SIMD Extensions)

Allow users to take advantage of this power by packing mutliple operations

into one register.

SSE2 for double-precision

Right now, 2 way is very common (Opteron, P4), but 4-way to 16-way on the

horizon.

Much much more difficult to get peak performance.

Instruction Set Extension

Compiler Options

How do you know what the

compiler is doing?

Compiler Reports and Listings

By default, compilers don't say much unless you screwed up.

One can generate optimization reports and listing files to yeild

output that shows what optimizations are performed

Case Study: GAMESS

Mission from the DoD – Optimize GAMESS DFT code on

an SGI Altix

First step: profile the code

Case Study: GAMESS

Further inspection of the Itanium archtecture showed 2

things:

The compilers were really bad at loop optimization

The overhead for conditionals is enormous

Future...

Heterogeneos Computer

GPGPUs, CPUs and other processors all sharing the same

memory space.

Potential for high performance, also potential for very complicated

programming models.

Increasing SIMD operations

SSE2 and beyond

4-way here, 8 and 16-way down the pike

Makes it increasingly more difficult to get peak performance of a chip

Stalling the pipeline gives a relatively bigger hit.

Intel Phi Co-processors

60 cores per socket, 512 SSE vectorization

Intended to give accellerated performance

Take Home Messages...

Performance programming on single processors requires

Understanding memory

levels, costs, sizes

Understand SSE and how to get it to work

In the future this will one of the most important aspects of processor

performance.

Understand your program

No subsitute for speding quality time with your code.

Do not spend a lot of time doing what I compiler will do

automatically.

Start with compiler optimizations!

Code optimization is hard work!

We haven't even talked about parallel applications yet!

