
Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Dr. Axel Kohlmeyer

Senior Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

Debugging and Profiling

http://sites.google.com/site/akohlmey/

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What is Debugging?
● Identifying the cause of an error and correcting it

● Once you have identified defects, you need to:

● find and understand the cause
● remove the defect from your code

● Statistics show about 60% of bug fixes are wrong:
-> they remove the symptom, but not the cause

● Improve productivity by getting it right the first time

● A lot of programmers don't know how to debug!

● Debugging needs practice and experience:
-> understand the science and the tools

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

More About Debugging

● Debugging is a last resort:
● Doesn't add functionality
● Doesn't improve the science

● The best debugging is to avoid bugs:
● Good program design
● Follow good programming practices
● Always consider maintainability and readability

of code over getting results a bit faster
● Maximize modularity and code reuse

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Errors are Opportunities

● Learn from the program you're working on:
● Errors mean you didn't understand the program.

If you knew it better, it wouldn't have an error.
You would have fixed it already

● Learn about the kind of mistakes you make:
● If you wrote the program, you inserted the error
● Once you find a mistake, ask yourself:

– Why did you make it?
– How could you have found it more quickly?
– How could you have prevented it?
– Are there other similar mistakes in the code?

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How to NOT do Debugging

● Find the error by guessing

● Change things randomly until it works (again)

● Don't keep track of what you changed

● Don't make a backup of the original

● Fix the error with the most obvious fix

● If wrong code gives the correct result,
and changing it doesn't work, don't correct it.

● If the error is gone, the problem is solved.
Trying to understand the problem, is a waste of time

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

The Physics of Strange Bugs

● Heisenbug: bug disappears when debugging a
problem (compiling with -g or adding prints)

● Schroedingbug: bug only shows up after you
found out that the code could not have worked
at all in the first place

● Mandelbug: bug whose causes are too complex
to be reliably reproduced; it thus defies repair

● In contrast a “regular”, straightforward to solve
bug would be referred to as a “Bohr bug”.

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Debugging Tools

● Source code comparison and management
tools: diff, vimdiff, emacs/ediff, cvs/svn/git
● Help you to find differences, origins of changes

● Source code analysis tools:
compiler warnings, ftnchek, lint
● Help you to find problematic code

-> Always enable warnings when programming
-> Always take warnings seriously (but not all)
-> Always compile/test on multiple platforms

● Bounds checking allows checking of (static)
memory allocation violations (no malloc)

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

More Debugging Tools

● Debuggers and debugger frontends:
gdb (GNU compilers), idb (Intel compilers),
ddd (GUI), eclipse (IDE), gdb-mode (emacs)

● gprof (profiler) as it can generate call graphs
● Valgrind, an instrumentation framework

● Memcheck: detects memory management problems
● Cachegrind: cache profiler, detects cache misses
● Callgrind: call graph creation tool
● Helgrind: thread debugger

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Purpose of a Debugger

● More information than print statements

● Allows to stop/start/single step execution

● Look at data and modify it

● 'Post mortem' analysis from core dumps

● Prove / disprove hypotheses

● No substitute for good thinking

● But, sometimes good thinking is not a substitute
for effectively using a debugger!

● Easier to use with modular code

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Using a Debugger

● When compiling use -g option to include
debug info in object (.o) and executable

● 1:1 mapping of execution and source code
only when optimization is turned off
-> problem when optimization uncovers bug

● GNU compilers allow -g with optimization
-> not always correct line numbers
-> variables/code can be 'optimized away'

● strip command removes debug info

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Using gdb as a Debugger
● gdb ex01c launches debugger, loads binary,

stops with (gdb) prompt waiting for input:

● run starts executable, arguments are passed
● Running program can be interrupted (ctrl-c)
● gdb p <pid> attaches gdb to an already

running process with given process id (PID)
● continue continues stopped program

● finish continues until the end of a subroutine

● step single steps through program line by line

● next single steps but doesn't step into subroutines

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

More Basic gdb Commands

● print displays contents of a known data object

● display is like print but shows updates every step

● where shows stack trace (of function calls)

● up down allows to move up/down on the stack

● break sets break point (unconditional stop),
location indicated by file name+line no. or function

● watch sets a conditional break point (breaks when
an expression changes, e.g. a variable)

● delete removes display or break points

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Post Mortem Analysis

● Enable core dumps: ulimit c unlimited
● Run executable until it crashes; will generate a

file core or core.<pid> with memory image

● Load executable and core dump into debugger
gdb myexe core.<pid>

● Inspect location of crash through commands:
where, up, down, list

● Use directory to point to location of sources

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Debugging Parallel Programs

● Thread level debugging is built into gdb

=> use the command thread to switch
between threads and display current thread id

● Thread ids are counted starting from 1
● Debugging MPI programs in parallel requires a

parallel debugger that can forward debugger
commands to all copies of the program

● The poor man's parallel debugger:
mpirun -np 2 xterm -e gdb -x script ./a.out

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Using valgrind
● Run valgrind ./exe to instrument and run

● memcheck is default tool and most common

● Output will list individual errors and summary
● With debug info present can resolve problems to

line of code, otherwise to name of function
● Also monitors memory allocation / deallocation to

flag memory leaks (“forgotten” allocations)
● Instrumentation slows down execution
● Can produce “false positives” (flag non-errors)

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How to Report a Bug(?) to Others

● Research whether bug is known/fixed
-> web search, mailing list archive, bugzilla

● Provide description on how to reproduce the
problem. Find a minimal input to show bug.

● Always state hardware/software you are
using (distribution, compilers, code version)

● Demonstrate, that you have invested effort
● Make it easy for others to help you!

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Profiling
● Profiling usually means:

● Instrumentation of code (e.g. during compilation)
● Automated collection of timing data during execution
● Analysis of collected data, breakdown by function

● Example: gcc -o some_exe.x -pg some_code.c

./some_exe.x

gprof some_exe.x gmon.out
● Profiling is often incompatible with code

optimization or can be misleading (inlining)

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

PERF – Hardware Assisted Profiling

● Modern x86 CPUs contain performance monitor
tools included in their hardware

● Linux kernel versions support this feature which
allows for very low overhead profiling without
instrumentation of binaries

● perf stat ./a.out -> profile summary

● perf record ./a.out; perf report
gprof like function level profiling (with coverage
report and disassembly, if debug info present)

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Profiling Examples
gfortran -pg prog1.f ; ./a.out ; gprof --flat-profile ./a.out gmon.out

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
100.69 4.30 4.30 10000 0.00 0.00 xaver_
 0.00 4.30 0.00 1 0.00 4.30 MAIN__

make CFLAGS=-pg mountain ; ./mountain ; gprof -p mountain gmon.out

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 98.30 5.80 5.80 3206 1.81 1.81 test
 1.87 5.91 0.11 1 110.19 110.19 init_data
 0.00 5.91 0.00 2920 0.00 0.00 access_counter
 0.00 5.91 0.00 1460 0.00 0.00 get_counter
 0.00 5.91 0.00 1460 0.00 0.00 start_counter
 0.00 5.91 0.00 1459 0.00 0.00 add_sample
 0.00 5.91 0.00 1459 0.00 0.00 has_converged
 0.00 5.91 0.00 288 0.00 18.33 fcyc2
 0.00 5.91 0.00 288 0.00 18.33 fcyc2_full
[...]

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Profiling with perf stat

 Performance counter stats for './t-clap_big'
 26768.141153 task-clock-msecs
 44415055252 instructions (~1.18 IPC)
 12836799487 branches
 71893989 branch-misses (~0.56%)
 749245773 cache-references
 222548146 cache-misses (~29%)
 26.976495019 seconds time elapsed

 Performance counter stats for './t-clap_small'
 16657.158128 task-clock-msecs
 42539302044 instructions (~1.84 IPC)
 12722925205 branches
 72503705 branch-misses (~0.57%)
 168421526 cache-references
 24221380 cache-misses (~14%)
 16.757377494 seconds time elapsed

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Profiling with perf record

 Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Profiling with perf record

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

