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What is Debugging?
● Identifying the cause of an error and correcting it

● Once you have identified defects, you need to:

● find and understand the cause 
● remove the defect from your code 

● Statistics show about 60% of bug fixes are wrong: 
-> they remove the symptom, but not the cause

● Improve productivity by getting it right the first time

● A lot of programmers don't know how to debug!

● Debugging needs practice and experience:
-> understand the science and the tools
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More About Debugging

● Debugging is a last resort:
● Doesn't add functionality
● Doesn't improve the science

● The best debugging is to avoid bugs:
● Good program design
● Follow good programming practices
● Always consider maintainability and readability

of code over getting results a bit faster
● Maximize modularity and code reuse
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Errors are Opportunities

● Learn from the program you're working on:
● Errors mean you didn't understand the program.

If you knew it better, it wouldn't have an error.
You would have fixed it already 

● Learn about the kind of mistakes you make:
● If you wrote the program, you inserted the error
● Once you find a mistake, ask yourself: 

– Why did you make it?
– How could you have found it more quickly?
– How could you have prevented it?
– Are there other similar mistakes in the code?
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How to NOT do Debugging

● Find the error by guessing 

● Change things randomly until it works (again) 

● Don't keep track of what you changed

● Don't make a backup of the original

● Fix the error with the most obvious fix

● If wrong code gives the correct result, 
and changing it doesn't work, don't correct it. 

● If the error is gone, the problem is solved.
Trying to understand the problem, is a waste of time
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The Physics of Strange Bugs

● Heisenbug: bug disappears when debugging a 
problem (compiling with -g or adding prints)

● Schroedingbug: bug only shows up after you 
found out that the code could not have worked 
at all in the first place

● Mandelbug: bug whose causes are too complex 
to be reliably reproduced; it thus defies repair

● In contrast a “regular”, straightforward to solve 
bug would be referred to as a “Bohr bug”.
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Debugging Tools

● Source code comparison and management 
tools: diff, vimdiff, emacs/ediff, cvs/svn/git
● Help you to find differences, origins of changes

● Source code analysis tools:
compiler warnings, ftnchek, lint
● Help you to find problematic code

-> Always enable warnings when programming
-> Always take warnings seriously (but not all)
-> Always compile/test on multiple platforms

● Bounds checking allows checking of (static) 
memory allocation violations (no malloc)



 Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

More Debugging Tools

● Debuggers and debugger frontends:
gdb (GNU compilers), idb (Intel compilers),
ddd (GUI), eclipse (IDE), gdb-mode (emacs)

● gprof (profiler) as it can generate call graphs
● Valgrind, an instrumentation framework

● Memcheck: detects memory management problems
● Cachegrind: cache profiler, detects cache misses
● Callgrind: call graph creation tool
● Helgrind: thread debugger 
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Purpose of a Debugger

● More information than print statements 

● Allows to stop/start/single step execution

● Look at data and modify it

● 'Post mortem' analysis from core dumps

● Prove / disprove hypotheses

● No substitute for good thinking 

● But, sometimes good thinking is not a substitute
for effectively using a debugger! 

● Easier to use with modular code
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Using a Debugger

● When compiling use -g option to include 
debug info in object (.o) and executable

● 1:1 mapping of execution and source code 
only when optimization is turned off
-> problem when optimization uncovers bug

● GNU compilers allow -g with optimization
-> not always correct line numbers
-> variables/code can be 'optimized away'

● strip command removes debug info 
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Using gdb as a Debugger
● gdb ex01c  launches debugger, loads binary, 

stops with (gdb) prompt waiting for input:

● run starts executable, arguments are passed
● Running program can be interrupted (ctrl-c)
● gdb p <pid> attaches gdb to an already

running process with given process id (PID)
● continue continues stopped program

● finish continues until the end of a subroutine

● step single steps through program line by line

● next single steps but doesn't step into subroutines
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More Basic gdb Commands

● print displays contents of a known data object

● display is like print but shows updates every step

● where shows stack trace (of function calls)

● up down allows to move up/down on the stack

● break sets break point (unconditional stop), 
location indicated by file name+line no. or function 

● watch sets a conditional break point (breaks when 
an expression changes, e.g. a variable)

● delete removes display or break points
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Post Mortem Analysis

● Enable core dumps: ulimit c unlimited
● Run executable until it crashes; will generate a 

file core or core.<pid> with memory image

● Load executable and core dump into debugger
gdb myexe core.<pid>

● Inspect location of crash through commands: 
where, up, down, list

● Use directory to point to location of sources
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Debugging Parallel Programs

● Thread level debugging is built into gdb

=> use the command thread to switch 
between threads and display current thread id

● Thread ids are counted starting from 1
● Debugging MPI programs in parallel requires a 

parallel debugger that can forward debugger 
commands to all copies of the program

● The poor man's parallel debugger:
mpirun -np 2 xterm -e gdb -x script ./a.out 
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Using valgrind
● Run valgrind ./exe to instrument and run

● memcheck is default tool and most common

● Output will list individual errors and summary
● With debug info present can resolve problems to 

line of code, otherwise to name of function
● Also monitors memory allocation / deallocation to 

flag memory leaks (“forgotten” allocations)
● Instrumentation slows down execution
● Can produce “false positives” (flag non-errors)
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How to Report a Bug(?) to Others

● Research whether bug is known/fixed
-> web search, mailing list archive, bugzilla

● Provide description on how to reproduce the 
problem. Find a minimal input to show bug.

● Always state hardware/software you are 
using (distribution, compilers, code version)

● Demonstrate, that you have invested effort
● Make it easy for others to help you!
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Profiling
● Profiling usually means:

● Instrumentation of code (e.g. during compilation)
● Automated collection of timing data during execution
● Analysis of collected data, breakdown by function

● Example: gcc -o some_exe.x -pg some_code.c

./some_exe.x

gprof some_exe.x gmon.out
● Profiling is often incompatible with code 

optimization or can be misleading (inlining)
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PERF – Hardware Assisted Profiling

● Modern x86 CPUs contain performance monitor 
tools included in their hardware

● Linux kernel versions support this feature which 
allows for very low overhead profiling without 
instrumentation of binaries

● perf stat ./a.out -> profile summary

● perf record ./a.out; perf report 
gprof like function level profiling (with coverage 
report and disassembly, if debug info present)
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Profiling Examples
# gfortran -pg prog1.f ; ./a.out ; gprof --flat-profile ./a.out gmon.out 

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
100.69      4.30     4.30    10000     0.00     0.00  xaver_
  0.00      4.30     0.00        1     0.00     4.30  MAIN__

# make CFLAGS=-pg mountain ; ./mountain ; gprof -p mountain gmon.out 

  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 98.30      5.80     5.80     3206     1.81     1.81  test
  1.87      5.91     0.11        1   110.19   110.19  init_data
  0.00      5.91     0.00     2920     0.00     0.00  access_counter
  0.00      5.91     0.00     1460     0.00     0.00  get_counter
  0.00      5.91     0.00     1460     0.00     0.00  start_counter
  0.00      5.91     0.00     1459     0.00     0.00  add_sample
  0.00      5.91     0.00     1459     0.00     0.00  has_converged
  0.00      5.91     0.00      288     0.00    18.33  fcyc2
  0.00      5.91     0.00      288     0.00    18.33  fcyc2_full
[...]
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Profiling with perf stat

 Performance counter stats for './t-clap_big'
       26768.141153  task-clock-msecs
        44415055252  instructions   (~1.18 IPC) 
        12836799487  branches
           71893989  branch-misses  (~0.56%)
          749245773  cache-references
          222548146  cache-misses   (~29%)
       26.976495019  seconds time elapsed

 Performance counter stats for './t-clap_small'
       16657.158128  task-clock-msecs
        42539302044  instructions   (~1.84 IPC)
        12722925205  branches
           72503705  branch-misses  (~0.57%)
          168421526  cache-references
           24221380  cache-misses   (~14%)
       16.757377494  seconds time elapsed
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Profiling with perf record
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Profiling with perf record
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