The Abdus Salam
International Centre
(CTP for Theoretical Physics

Introduction to OpenMP
and Threaded Libraries

Ivan Girotto — igirotto@ictp.it
Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OUTLINE

* Shared Memory Architectures

* Thinking Parallel

e Threaded Libraries

* The OpenMP Programming Paradigm

e Hands-on

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

SHARED MEMORY ARCHITECTURES

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

10,000,000
Du3 ore Ita o /
1,000,000
- = []
Intel CPU Trends 4
{sources: Intel, Wikipedia, K. Olukotun) -
100,000
10,000
1,000
100
10
1 - S
X) ® A Power (W)
@ Perf/Clock (ILP)
o I \
1970 1975 1980 1985 1990 1995 2000 2005 2010

The Abdus Salam

International Centre

for Theoretical Physics

Availability of multi-core CPUs per platform

Number of Cores
S

©O Desktop © Mobile

Infernational Cent m
nternational Centre e
(CTP for Theoretical Physics A

()

Consequences

e Parallelism is no longer an
option for only either larger
scale problems or improve
the time of response

* |tis inescapable to exploit
current & next generations
of compute processors

TTTTTTTTTT m
> International Centre
(CTP for Theoretical Physics

€ B

Representation of Multi-cores system

Xeon E5650

hex-core

Abdus Sa A
International Centre

(@ The us Salam

for Theoretical Physics

Multi-core system Vs Serial Programming

]

Memory Dimms

Xeon E5650
hex-core

Processors
(12GB - RAM)

The Abdus Salam
> International Centre
‘CTP for Theoretical Physics

Multi-core system Vs // Programming

Xeon E5650
hex-core

processors
LLI L (12GB - RAM)

Memory Dimms ‘

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

THINKING IN PARALLEL

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Design of Parallel Algorithm /1

e Aserial algorithm is a sequence of basic steps for
solving a given problem using a single serial computer

* Similarly, a parallel algorithm is a set of instruction that
describe how to solve a given problem using multiple
(>=1) parallel processors

* The parallelism add the dimension of concurrency.
Designer must define a set of steps that can be
executed simultaneously!!!

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Design of Parallel Algorithm /2

* |dentify portions of the work that can be performed
concurrently

 Mapping the concurrent pieces of work onto multiple
processes running in parallel

* Distributing the input, output and intermediate data
associated within the program

* Managing accesses to data shared by multiple processors

* Synchronizing the processors at various stages of the
parallel program execution

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Type of Parallelism

* Functional (or task) parallelism:
different people are performing
different task at the same time

* Data Parallelism:
different people are performing the
same task, but on different
equivalent and independent objects

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Task/Process Mapping

* The tasks, into which a problem is decomposed, are performed on
physical processors

 The process is the computing agent that performs given tasks
within a finite amount of time

« The mapping is the relation (N:N) by which tasks are assigned to
processes for execution

 Mapping is one of the needed keys to find a decent load balancing.
Mapping techniques are mainly:

— Static Mapping: is defined prior to the execution (i.e., task distribution
based on domain decomposition).

— Dynamic Mapping: the work is distributed during the execution (i.e.,
master-slave model)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Process Interactions /1

* The effective speed-up obtained by the parallelization depend by the
amount of overhead we introduce making the algorithm parallel

 There are mainly two key sources of overhead:
1. Time spent in inter-process interactions (communication)
2. Time some process may spent being idle (synchronization)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

What happens if the girls are not well trained?

T

0

J [|)

w1

-/

.

The Abdus Salam
International Centre
for Theoretical Physics

Synchronization
+

Communication

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Mapping and Synchronization

start synchronization finish start synchronization finish
A A
| |
| |
P1 1 5 : 9 P1 1 g 3|
S R | :
| |
P2 2 6 : 10 P2 4 5 6 :
[K
P3 3 7 : 11 P3 7 8 19
. . . . - o
| |
P4 4] [8] o+ [12 P4 1o 1) a2
v v

t=0 t=2 t=3 t=0 t=3 t=6

(a) (b)

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Static Data Partitioning

The simplest data decomposition schemes for dense matrices are
1-D block distribution schemes.

row-wise distribution column-wise distribution

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Granularity

* Granularity is determined by the decomposition level
(number of task) on which we want divide the problem

* The degree to which task/data can be subdivided is
limit to concurrency and parallel execution

* Parallelization has to become “topology aware”

= coarse grain and fine grained parallelization has to be

mapped to the topology to reduce memory and |/O
contention

The Abdus Salam
> International Centre
‘CTP for Theoretical Physics

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OpenMP (Open spec. for Multi Processing)

» OpenMP is not a computer language
— Rather it works in conjunction with existing languages such as
standard Fortran or C/C++
« Application Programming Interface (API)
— that provides a portable model for shared memory // applications.

— Three main components:
« Compiler directives
« Runtime library routines
» Environment variables

« Three main advantages:
— Incremental parallelization, Ease of use, Standardised

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

master
thread

{ parallel region} { parallel region}

» Thread-based Parallelism
« Explicit Parallelism

» Fork-Join Model

« Compiler Directive Based
« Dynamic Threads

*Source: http://www.lInl.gov/computing/tutorials/openMP/#ProgrammingModel

The Abdus Salam

(@ Ir:ternotional Centre

for Theoretical Physics

Memory footprint

Thread 1 Thread 2 Thread 3
— B
PC| | Private data?t’c Private data UPC

Private data '

r—J

Shared data

W

S

=Y

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Multi-threading - Recap

e Athreadis a (lightweight) process - an instance of a program
+ its data (private memory)

e Each thread can follow its own flow of control through a
program.

e Threads can share data with other threads, but also have
private data.

e Threads communicate with each other via the shared data.

e The master thread is responsible for co-ordinating the threads
group

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Getting Started with OpenMP

« OpenMP’s construc
— Parallel Regions
— Work sharing

s fall into 5 categories:

— Data Environment (scope)

— Synchronization

— Runtime functions/environment variables
« OpenMP is esentially the same for both Fortran and

C/C++

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Directives Format

A directive is a special line of source code with meaning
only to certain compilers.

A directive is distinguished by a sentinel at the start of
the line.

* OpenMP sentinels are:

— Fortran: 1$OMP (or CSOMP or *$OMP)
— C/C++: #pragma omp

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OpenMP: Parallel Regions

» For example, to create a 4-thread parallel region:
— each thread calls foo(ID,A) forID =0to 3

double A[1000];
Each thread redundantly omp_set_num_threads(4);
executes the code within #pragma omp parallel
the structured block {

int ID =omp_get_thread_num();

thread-safe routine: A routine that performs foo(ID,A);
the intended function even when executed)
concurrently (by more than one thread)

printf(“All Done\n”);

The Abdus Salam
International Centre
(CTP for Theoretical Physics

double A[1000];

omp_set_num_threads(4);

A single copy of A is
shared between
all threads.

—» foo(0,A); foo(1,A); foo(2,A); foo(3,A);

T~

orintf(“All Done\n” Threads wait here for all

threads to finish before
proceeding (i.e. barrier).

The Abdus Salam
International Centre
(CTP for Theoretical Physics

How many threads?

The number of threads in a parallel region is
determined by the following factors:

Use of the omp_set_num_threads() library function
Setting of the OMP_NUM_THREADS environment
variable

The implementation default

Threads are numbered from 0 (master thread) to N-1.

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OpenMP runtime library

OMP_GET_NUM_THREADS() — returns the current # of threads.
OMP_GET_THREAD_NUM() - returns the id of this thread.
OMP_SET_NUM_THREADS(n) — set the desired # of threads.
OMP_IN_PARALLEL() — returns .true. if inside parallel region.

OMP_GET_MAX_THREADS() - returns the # of possible threads.

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Simple C OpenMP Program

#include <omp.h>
#include <stdio.h>

int main () {
printf("Starting off in the sequential world.\n");
#pragma omp parallel

{

printf("Hello from thread number %d\n", omp_get_thread_num());

}
printf("Back to the sequential world.\n");

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

hands-on

HELLO WORLD AND COMPILING

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Exploiting Loop Level Parallelism

Loop level Parallelism: parallelize only loops

e Easyto implement
e Highly readable code
e Less than optimal performance (sometimes)

e Most often used

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Parallel Loop Directives

Fortran do loop directive
— I$omp do

C\C++ for loop directive
— #pragma omp for

 These directives do not create a team of threads but
assume there has already been a team forked.

 If not inside a parallel region shortcuts can be used.
— I$omp parallel do
— #pragma omp parallel for

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Parallel Loop Directives continued

« These are equivalent to a parallel construct followed
immediately by a worksharing construct.

ISomp parallel do #pragma omp parallel for
Same as Same as

1Somp parallel #pragma omp parallel

igomp do ;pragma omp for

The Abdus Salam
International Centre
(CTP for Theoretical Physics

How is OpenMP Typically Used?

« OpenMP is usually used to parallelize loops:

Split-up this loop between multiple threads

void main() void main()
{ {
double Res[1000]; double Res[1000];
#pragma omp parallel for
for(int i=0;i<1000;i++) { - | fOr(int i=0;i<1000;i++) {
do_huge_comp(Res[i]); do_huge_comp(Res][i]);
} : } Parallel program
y | Sequential program } arallcl progra

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Work-Sharing Constructs

 Divides the execution of the enclosed code region
among the members of the team that encounter it.

« Work-sharing constructs do not launch new threads.

* No implied barrier upon entry to a work sharing
construct.

« However, there is an implied barrier at the end of the
work sharing construct (unless nowait is used).

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

THREADS

THREADS

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

C\C++ syntax for the parallel for directive

#pragma omp parallel for [clause [,] [clause...]]

for (index = first; index <= last last ; index++){
body of the loop

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

Work Sharing Constructs - example

for (i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

#pragma omp parallel
{
int id, i, Nthrds, istart, iend;

id = omp_get thread num();

OpenMP // Region Nthrds = omp get num threads();
istart = id * N / Nthrds;
iend = (id+l) * N / Nthrds;
for (i=istart;I<iend;i++) {a[il=a[i]+b[i];}
}

OpenMP Parallel #pragma omp parallel

Region and a work- #pragma omp for schedule (static)

sharing for construct for (i=0;I<N;i++) { a[i]=a[i]+b[i];}

The Abdus Salam
International Centre
(CTP for Theoretical Physics

The Schedule Clause SCHEDULE (type [,chunk])

« The schedule clause effects how loop iterations are mapped onto threads

schedule(static [,chunk])
« Deal-out blocks of iterations of size “chunk” to each thread

schedule(dynamic [,chunk])

« Each thread grabs “chunk” iterations off a queue until all iterations
have been handled

schedule(guided [,chunk])

« Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds

schedule(runtime)

« Schedule and chunk size taken from the OMP_SCHEDULE environment
variable

The Abdus Salam
International Centre
(CTP for Theoretical Physics

schedule(statlc [,chunk])

Iterations are divided evenly among threads

« If chunk is specified, divides the work into
chunk sized parcels

« If there are N threads, each thread does
every Nt chunk of work.

1$OMP PARALLEL DO &
1$OMP SCHEDULE(STATIC,3)

DOJ=1, 36
Work (j)
END DO

I$OMP END DO

The Abdus Salam
International Centre
(CTP for Theoretical Physics

 Divides the workload into chunk sized parcels.

« As a thread finishes one chunk, it grabs the
next available chunk.

« Default value for chunk is one.

« More overhead, but potentially better load
balancing.

1$OMP PARALLEL DO & !
$OMPSCHEDULE(DYNAMIC, 1)

DOJ=1, 36
Work (j)
END DO

1$SOMP END DO

The Abdus Salam
International Centre
(CTP for Theoretical Physics

No Wait Clauses

« No wait: if specified then threads do not
synchronise at the end of the parallel loop.

« For Fortran, the END DO directive is optional with
NO WAIT being the default.

* Note that the nowait clause is incompatible with a
simple parallel region meaning that using the
composite directives will not allow you to use the
nowait clause.

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OpenMP: Reduction(op : list)
« The variables in “list” must be shared in the enclosing parallel region.
» Inside a parallel or a worksharing construct:

— A local copy of each list variable is made and initialized depending on

13 144

the “op” (e.g. 0 for “+7)
— pair wise “op” is updated on the local value

— Local copies are reduced into a single global copy at the end of the
construct.

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

OpenMP: A Reduction Example

#include <omp.h>
#define NUM_THREADS 2
void main ()

{
inti;
double ZZ, func(), sum=0.0;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(ZZ)

for (i=0; i< 1000; i++){
ZZ = func(i);
sum = sum + ZZ;

}
)

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

if CLAUSE

We can make the parallel region directive itself conditional.

Fortran: IF (scalar logical expression)

C/C++: if (scalar expression)

#fpragma omp parallel i1if (tasks > 1000)
{

while (tasks > 0) donexttask();

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

SYNCHRONIZATION

The Abdus Salam
International Centre
(CTP for Theoretical Physics

OpenMP: How do Threads Interact?

OpenMP is a shared memory model.
— Threads communicate by sharing variables.
Unintended sharing of data can lead to race conditions:

— race condition: when the program’ s outcome changes as the
threads are scheduled differently.

To control race conditions:
— Use synchronization to protect data conflicts.
» Synchronization is expensive so:

— Change how data is stored to minimize the need for
synchronization.

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Note that updates to shared variables:

(e.g.a=a+1)

are not atomic!

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Thread 1 Thread 2
load a load a
Program add a 1 add a 1
store a store a
Private 11 11
data ¥ T
111
Shared
data

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Barrier
Fortran - ISOMP BARRIER
C\C++ - #pragma omp barrier

 This directive synchronises the threads in a team by
causing them to wait until all of the other threads
have reached this point in the code.

« Implicit barriers exist after work sharing constructs.

The nowait clause can be used to prevent this
behaviour.

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Critical

« Only one thread at a time can enter a critical section.

Example: pushing and popping a task stack
1ISOMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

1SOMP CRITICAL (STACKPROT)
inext = getnext(stack)
1SOMP END CRITICAL (STACKPROT)
call work(inext,inew)
1ISOMP CRITICAL (STACKPROT)
if (inew .gt. 0) call putnew(inew,stack)
1ISOMP END CRITICAL (STACKPROT)

1ISOMP END PARALLEL

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Atomic

« Atomic is a special case of a critical section that can be used for
certain simple statements

Fortran: ' SOMP ATOMIC
statement

where statement must have one of these forms:

X= X Op expr X=expropx, x=intr (x, expr) or

X = Intr(expr, X)

opisoneof +, *, -, /, .and., .or., .eqv., OF .neqv.
intr is one of MAX, MIN, IAND, IOR Or IEOR

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

C/C++: #pragma omp atomic
statement

where statement must have one of the forms:

X binop = expr, x++, ++x, x——, or ——x
and binop isoneof +, *, -, /, &, *~, <<, or >>

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

mFFIW

HANDS-ON ON THREADED LIBRARIES

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

OpenMP Practical

Compute pi by integrating f(x) = 4/(1 + x**2)

* Set the number of rectangles used in the approximation (n)

* Each thread:
1. calculates the areas of the assigned rectangles
2. Synchronizes for a global summation

* print the result

Main variables description:

* pithe calculated result

* nnumber of points of integration

* x midpoint of each rectangle's interval

* ffunction to integrate

* sum,pi area of rectangles

