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SHARED MEMORY ARCHITECTURES
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Consequences

e Parallelism is no longer an
option for only either larger
scale problems or improve
the time of response

* |tis inescapable to exploit
current & next generations
of compute processors
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THINKING IN PARALLEL
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Design of Parallel Algorithm /1

e Aserial algorithm is a sequence of basic steps for
solving a given problem using a single serial computer

* Similarly, a parallel algorithm is a set of instruction that
describe how to solve a given problem using multiple
(>=1) parallel processors

* The parallelism add the dimension of concurrency.
Designer must define a set of steps that can be
executed simultaneously!!!
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Design of Parallel Algorithm /2

* |dentify portions of the work that can be performed
concurrently

 Mapping the concurrent pieces of work onto multiple
processes running in parallel

* Distributing the input, output and intermediate data
associated within the program

* Managing accesses to data shared by multiple processors

* Synchronizing the processors at various stages of the
parallel program execution
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Type of Parallelism

* Functional (or task) parallelism:
different people are performing
different task at the same time

* Data Parallelism:
different people are performing the
same task, but on different
equivalent and independent objects
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Task/Process Mapping

* The tasks, into which a problem is decomposed, are performed on
physical processors

 The process is the computing agent that performs given tasks
within a finite amount of time

« The mapping is the relation (N:N) by which tasks are assigned to
processes for execution

 Mapping is one of the needed keys to find a decent load balancing.
Mapping techniques are mainly:

— Static Mapping: is defined prior to the execution (i.e., task distribution
based on domain decomposition).

— Dynamic Mapping: the work is distributed during the execution (i.e.,
master-slave model)
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Process Interactions /1

* The effective speed-up obtained by the parallelization depend by the
amount of overhead we introduce making the algorithm parallel

 There are mainly two key sources of overhead:
1. Time spent in inter-process interactions (communication)
2. Time some process may spent being idle (synchronization)
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What happens if the girls are not well trained?
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Mapping and Synchronization
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Static Data Partitioning

The simplest data decomposition schemes for dense matrices are
1-D block distribution schemes.

row-wise distribution column-wise distribution
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Granularity

* Granularity is determined by the decomposition level
(number of task) on which we want divide the problem

* The degree to which task/data can be subdivided is
limit to concurrency and parallel execution

* Parallelization has to become “topology aware”

= coarse grain and fine grained parallelization has to be

mapped to the topology to reduce memory and |/O
contention
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OpenMP (Open spec. for Multi Processing)

» OpenMP is not a computer language
— Rather it works in conjunction with existing languages such as
standard Fortran or C/C++
« Application Programming Interface (API)
— that provides a portable model for shared memory // applications.

— Three main components:
« Compiler directives
« Runtime library routines
» Environment variables

« Three main advantages:
— Incremental parallelization, Ease of use, Standardised
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master
thread

{ parallel region} { parallel region}

» Thread-based Parallelism
« Explicit Parallelism

» Fork-Join Model

« Compiler Directive Based
« Dynamic Threads

*Source: http://www.lInl.gov/computing/tutorials/openMP/#ProgrammingModel
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Multi-threading - Recap

e Athreadis a (lightweight) process - an instance of a program
+ its data (private memory)

e Each thread can follow its own flow of control through a
program.

e Threads can share data with other threads, but also have
private data.

e Threads communicate with each other via the shared data.

e The master thread is responsible for co-ordinating the threads
group
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Getting Started with OpenMP

« OpenMP’s construc
— Parallel Regions
— Work sharing

s fall into 5 categories:

— Data Environment (scope)

— Synchronization

— Runtime functions/environment variables
« OpenMP is esentially the same for both Fortran and

C/C++
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Directives Format

A directive is a special line of source code with meaning
only to certain compilers.

A directive is distinguished by a sentinel at the start of
the line.

* OpenMP sentinels are:

— Fortran: 1$OMP (or CSOMP or *$OMP)
— C/C++: #pragma omp
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OpenMP: Parallel Regions

» For example, to create a 4-thread parallel region:
— each thread calls foo(ID,A) forID =0to 3

double A[1000];
Each thread redundantly omp_set_num_threads(4);
executes the code within #pragma omp parallel
the structured block {

int ID =omp_get_thread_num();

thread-safe routine: A routine that performs foo(ID,A);
the intended function even when executed )
concurrently (by more than one thread)

printf( “All Done\n” );
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double A[1000];

omp_set_num_threads(4);

A single copy of A is
shared between
all threads.

—» foo(0,A); foo(1,A); foo(2,A); foo(3,A);

T~

orintf( “All Done\n” Threads wait here for all

threads to finish before
proceeding (i.e. barrier).
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How many threads?

The number of threads in a parallel region is
determined by the following factors:

Use of the omp_set_num_threads() library function
Setting of the OMP_NUM_THREADS environment
variable

The implementation default

Threads are numbered from 0 (master thread) to N-1.
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OpenMP runtime library

OMP_GET_NUM_THREADS() — returns the current # of threads.
OMP_GET_THREAD_NUM() - returns the id of this thread.
OMP_SET_NUM_THREADS(n) — set the desired # of threads.
OMP_IN_PARALLEL() — returns .true. if inside parallel region.

OMP_GET_MAX_THREADS() - returns the # of possible threads.
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Simple C OpenMP Program

#include <omp.h>
#include <stdio.h>

int main () {
printf("Starting off in the sequential world.\n");
#pragma omp parallel

{

printf("Hello from thread number %d\n", omp_get_thread_num() );

}
printf("Back to the sequential world.\n");
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hands-on

HELLO WORLD AND COMPILING
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Exploiting Loop Level Parallelism

Loop level Parallelism: parallelize only loops

e Easyto implement
e Highly readable code
e Less than optimal performance (sometimes)

e Most often used
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Parallel Loop Directives

Fortran do loop directive
— I$omp do

C\C++ for loop directive
— #pragma omp for

 These directives do not create a team of threads but
assume there has already been a team forked.

 If not inside a parallel region shortcuts can be used.
— I$omp parallel do
— #pragma omp parallel for
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Parallel Loop Directives continued

« These are equivalent to a parallel construct followed
immediately by a worksharing construct.

ISomp parallel do #pragma omp parallel for
Same as Same as

1Somp parallel #pragma omp parallel

igomp do ;pragma omp for
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How is OpenMP Typically Used?

« OpenMP is usually used to parallelize loops:

Split-up this loop between multiple threads

void main() void main()
{ {
double Res[1000]; double Res[1000];
#pragma omp parallel for
for(int i=0;i<1000;i++) { - | fOr(int i=0;i<1000;i++) {
do_huge_comp(Res[i]); do_huge_comp(Res][i]);
} : } Parallel program
y | Sequential program } arallcl progra
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Work-Sharing Constructs

 Divides the execution of the enclosed code region
among the members of the team that encounter it.

« Work-sharing constructs do not launch new threads.

* No implied barrier upon entry to a work sharing
construct.

« However, there is an implied barrier at the end of the
work sharing construct (unless nowait is used).
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C\C++ syntax for the parallel for directive

#pragma omp parallel for [clause [,] [clause...]]

for ( index = first; index <= last last ; index++ ){
body of the loop
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Work Sharing Constructs - example

for (i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

#pragma omp parallel
{
int id, i, Nthrds, istart, iend;

id = omp_get thread num();

OpenMP // Region Nthrds = omp get num threads();
istart = id * N / Nthrds;
iend = (id+l) * N / Nthrds;
for (i=istart;I<iend;i++) {a[il=a[i]+b[i];}
}

OpenMP Parallel #pragma omp parallel

Region and a work- #pragma omp for schedule (static)

sharing for construct for (i=0;I<N;i++) { a[i]=a[i]+b[i];}
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The Schedule Clause SCHEDULE (type [,chunk])

« The schedule clause effects how loop iterations are mapped onto threads

schedule(static [,chunk])
« Deal-out blocks of iterations of size “chunk” to each thread

schedule(dynamic [,chunk])

« Each thread grabs “chunk” iterations off a queue until all iterations
have been handled

schedule(guided [,chunk])

« Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds

schedule(runtime)

« Schedule and chunk size taken from the OMP_SCHEDULE environment
variable
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schedule(statlc [,chunk])

Iterations are divided evenly among threads

« If chunk is specified, divides the work into
chunk sized parcels

« If there are N threads, each thread does
every Nt chunk of work.

1$OMP PARALLEL DO &
1$OMP SCHEDULE(STATIC,3)

DOJ=1, 36
Work (j)
END DO

I$OMP END DO
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 Divides the workload into chunk sized parcels.

« As a thread finishes one chunk, it grabs the
next available chunk.

« Default value for chunk is one.

« More overhead, but potentially better load
balancing.

1$OMP PARALLEL DO & !
$OMPSCHEDULE(DYNAMIC, 1)

DOJ=1, 36
Work (j)
END DO

1$SOMP END DO
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No Wait Clauses

« No wait: if specified then threads do not
synchronise at the end of the parallel loop.

«  For Fortran, the END DO directive is optional with
NO WAIT being the default.

*  Note that the nowait clause is incompatible with a
simple parallel region meaning that using the
composite directives will not allow you to use the
nowait clause.
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OpenMP: Reduction(op : list)
« The variables in “list” must be shared in the enclosing parallel region.
» Inside a parallel or a worksharing construct:

— A local copy of each list variable is made and initialized depending on

13 144

the “op” (e.g. 0 for “+7)
— pair wise “op” is updated on the local value

— Local copies are reduced into a single global copy at the end of the
construct.
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OpenMP: A Reduction Example

#include <omp.h>
#define NUM_THREADS 2
void main ()

{
inti;
double ZZ, func(), sum=0.0;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(ZZ)

for (i=0; i< 1000; i++){
ZZ = func(i);
sum = sum + ZZ;

}
)
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if CLAUSE

We can make the parallel region directive itself conditional.

Fortran: IF (scalar logical expression)

C/C++: if (scalar expression)

#fpragma omp parallel i1if (tasks > 1000)
{

while (tasks > 0) donexttask();
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SYNCHRONIZATION
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OpenMP: How do Threads Interact?

OpenMP is a shared memory model.
— Threads communicate by sharing variables.
Unintended sharing of data can lead to race conditions:

— race condition: when the program’ s outcome changes as the
threads are scheduled differently.

To control race conditions:
— Use synchronization to protect data conflicts.
» Synchronization is expensive so:

— Change how data is stored to minimize the need for
synchronization.
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Note that updates to shared variables:

(e.g.a=a+1)

are not atomic!
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Thread 1 Thread 2
load a load a
Program add a 1 add a 1
store a store a
Private 11 11
data ¥ T
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Shared
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Barrier
Fortran - ISOMP BARRIER
C\C++ - #pragma omp barrier

 This directive synchronises the threads in a team by
causing them to wait until all of the other threads
have reached this point in the code.

« Implicit barriers exist after work sharing constructs.

The nowait clause can be used to prevent this
behaviour.
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Critical

« Only one thread at a time can enter a critical section.

Example: pushing and popping a task stack
1ISOMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

1SOMP CRITICAL (STACKPROT)
inext = getnext(stack)
1SOMP END CRITICAL (STACKPROT)
call work(inext,inew)
1ISOMP CRITICAL (STACKPROT)
if (inew .gt. 0) call putnew(inew,stack)
1ISOMP END CRITICAL (STACKPROT)

1ISOMP END PARALLEL
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Atomic

« Atomic is a special case of a critical section that can be used for
certain simple statements

Fortran: ' SOMP ATOMIC
statement

where statement must have one of these forms:

X= X Op expr X=expropx, x=intr (x, expr) or

X = Intr(expr, X)

opisoneof +, *, -, /, .and., .or., .eqv., OF .neqv.
intr is one of MAX, MIN, IAND, IOR Or IEOR
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C/C++: #pragma omp atomic
statement

where statement must have one of the forms:

X binop = expr, x++, ++x, x——, or ——x
and binop isoneof +, *, -, /, &, *~, <<, or >>
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mFFIW

HANDS-ON ON THREADED LIBRARIES
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OpenMP Practical

Compute pi by integrating f(x) = 4/(1 + x**2)

* Set the number of rectangles used in the approximation (n)

* Each thread:
1. calculates the areas of the assigned rectangles
2. Synchronizes for a global summation

* print the result

Main variables description:

* pithe calculated result

* nnumber of points of integration

* x midpoint of each rectangle's interval

* ffunction to integrate

* sum,pi area of rectangles



