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A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with 
shifts until 
register 2 is 0 

4) Register 3
= result

Register 2

Register 1

Register 3

Controls
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A Simple CPU

● The basic CPU design is not much different 
from the mechanical calculator.
● Data still needs to be fetched into registers first
● Different operations take different effort to complete

…
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How Many Registers?

● Minimum: 2
> very inefficient, need many load/store ops

● 32-bit x86: 4 general purpose (integer) registers
> more flexible. e.g. “indirect” load/store ops
> “width” of register defines “bitness” of CPU
> 8 floating-point registers (80-/64-/32-bit FPU)

● 64-bit x86 (AMD64,EM64T): 8 integer registers
> same FPU as 32-bit, SIMD unit (SSE2 etc.)

● IBM Power 5+: 80 general purpose registers,
72 64-bit floating-point registers (or 36x 128-bit)
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A Typical Computer
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Running Faster v1: Vector CPU

● Reading data from memory (RAM) takes time
=> performance depends on memory latency

● Typical problems operate on blocks of data
=> use registers that can hold blocks numbers

● Registers are filled sequentially; arithmetic 
operations operate number-by-number and thus 
can start before the register fetch is complete
=> memory latency is hidden

● Problems: data dependencies, memory speed
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Running Faster v2: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but is is cheap and
there can be a lot of it

● Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external
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Cache vs. Vector Registers

● Cache is much cheaper to implement
● Vector processors are easier to program,

particularly on large multi-dimensional data
=> weather and climate, finite element models

● Programs have to be written differently
Vector CPU => “longest loop” as inner loop
Scalar CPU => re-use data from cache
                   => “shortest loop” as inner loop

=> tiling, if inner loop too long



9Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

Running Faster v3: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop
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Running Faster v4: Superscalar

● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling
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Running Faster v5: Hyperthreading

● Method to keep functional units in CPU busy
● Two sets of registers share functional units
● Hardware manages access transparently
● Operating system “sees” two processors
● Performance gain application dependent

- scheduling overhead for 2x # processors
- independent data access => cache trashing
- applications need to use mix of functional
  units (load/store, integer, floating-point)
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Running Faster v6: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting
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Running Faster v7: GPGPU

● Offload compute intensive or data intensive
tasks to add-on card with GPGPU

● Fast, wide memory bus
● Single precision FP

fast FP math ops
● SMT (hyper-threading)

hardware thread manager
● Close-to-the-metal

=> no OS/kernel on GPU
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What About Memory Access?

● Memory access faster through multi-channel
memory bus (need multiple RAM modules)
=> memory itself not much faster

● Memory controller integrated in CPU
=> Multi-processor machines are NUMA
     (= non-uniform memory access)
=> total (shared memory) larger, but some
     memory is faster than other

● Use processor and memory affinity in OS kernel
when possible for maximum efficiency
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Many “Levels” of CPU Hardware
We Need to Worry About

● x86_64 has 16 SIMD/Vector registers
(SSE => 2x DP, 4x SP; AVX => 4x DP, 8x SP; 
Xeon Phi 8x DP, 16x SP; ...)

● 2-3 Cache levels, L1 is per core, higher levels 
shared between varying amounts of cores

● Hybrid hyper-threading (some functional units 
are shared between two cores, others not)

● NUMA for multi-core, multi-processor machines
● Hybrid hardware (CPU/GPU hybrids)
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How to Optimize For All of This?
● Vector registers: compiler auto-vectorization 

(plus directives), vector intrinsics, libraries
-> loops without data dependencies & branches
-> struct of arrays instead of array of structs

● Caches: maximize data reuse
-> tiling, short inner loops, data reorganization

● Superscalar, pipelined architectures
-> predictable data flows, concurrent execution

● Multi-core, NUMA: multi-level parallelism with 
shared and distributed/replicated data as needed
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What is Coming Down the Line?

● Hybrid CPUs, new architectures, low power
● “System on a Chip” type hardware
● Smartphones as commodity hardware platform
● Virtualization and “reverse virtualization”
● Remote data access will be a fast/slow as local
● We are drowning in data (streaming to analysis 

immediately instead of post processing)
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External Storage

● Hard drive storage has grown in capacity, but
not so much in performance
=> large performance gap: RAM vs. HD
=> virtual memory (swap to disk) mostly useless

● Solid state drives combine lots of (slow) non-
volatile RAM with hard drive-like interface
=> fast search times, higher transfer rate
=> “no” mechanical wear (they still do fail)

● RAID (=redundant array of inexpensive disks)
allows for parallelism or reliability or both
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Storage Hierarchy

● Register
integer/floating point, single/vector

● Cache
multiple levels, shared/exclusive

● Main memory
Local/NUMA

● External storage
Solid state, hard drive, networked file server



20Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

Conclusions for Software

● It is getting complicated!
=> multiple combined strategies for faster 
processing means that a failure at one of them 
will limit the overall performance

● Follow the “dance of the data”, keep data “local”
● Multi-level parallelism, fine grained (SIMD, 

threading) and coarse grained (MPI), required
● Compiler technology can help, but not for all
● Optimized libraries; domain specific languages
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Memory Mountain

● Memory performance with “strided” access 
stride = distance between two data locations

● Shows cache sizes
and performances

● Stride 1 best
● Try with and without

compiler optimization
=> prefetch instruction
     vectorization 128m
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