
Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Dr. Axel Kohlmeyer

Senior Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

Modern Computer Architectures

http://sites.google.com/site/akohlmey/

2Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with
shifts until
register 2 is 0

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit

3Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

A Simple CPU

● The basic CPU design is not much different
from the mechanical calculator.
● Data still needs to be fetched into registers first
● Different operations take different effort to complete

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

4Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How Many Registers?

● Minimum: 2
> very inefficient, need many load/store ops

● 32-bit x86: 4 general purpose (integer) registers
> more flexible. e.g. “indirect” load/store ops
> “width” of register defines “bitness” of CPU
> 8 floating-point registers (80-/64-/32-bit FPU)

● 64-bit x86 (AMD64,EM64T): 8 integer registers
> same FPU as 32-bit, SIMD unit (SSE2 etc.)

● IBM Power 5+: 80 general purpose registers,
72 64-bit floating-point registers (or 36x 128-bit)

5Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

A Typical Computer

CPU
Memory

Controller

Bus
Controller

R
A

M

R
A

M

R
A

M

R
A

M

N
et

w
o r

k

U
S

BGraphics
Processor SA

T
A

Mass
Storage

PeripheralsDisplay

6Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v1: Vector CPU

● Reading data from memory (RAM) takes time
=> performance depends on memory latency

● Typical problems operate on blocks of data
=> use registers that can hold blocks numbers

● Registers are filled sequentially; arithmetic
operations operate number-by-number and thus
can start before the register fetch is complete
=> memory latency is hidden

● Problems: data dependencies, memory speed

7Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v2: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but is is cheap and
there can be a lot of it

● Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external

8Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Cache vs. Vector Registers

● Cache is much cheaper to implement
● Vector processors are easier to program,

particularly on large multi-dimensional data
=> weather and climate, finite element models

● Programs have to be written differently
Vector CPU => “longest loop” as inner loop
Scalar CPU => re-use data from cache
 => “shortest loop” as inner loop

=> tiling, if inner loop too long

9Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v3: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop

10Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v4: Superscalar

● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling

11Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v5: Hyperthreading

● Method to keep functional units in CPU busy
● Two sets of registers share functional units
● Hardware manages access transparently
● Operating system “sees” two processors
● Performance gain application dependent

- scheduling overhead for 2x # processors
- independent data access => cache trashing
- applications need to use mix of functional
 units (load/store, integer, floating-point)

12Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v6: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting

13Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Running Faster v7: GPGPU

● Offload compute intensive or data intensive
tasks to add-on card with GPGPU

● Fast, wide memory bus
● Single precision FP

fast FP math ops
● SMT (hyper-threading)

hardware thread manager
● Close-to-the-metal

=> no OS/kernel on GPU

14Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What About Memory Access?

● Memory access faster through multi-channel
memory bus (need multiple RAM modules)
=> memory itself not much faster

● Memory controller integrated in CPU
=> Multi-processor machines are NUMA
 (= non-uniform memory access)
=> total (shared memory) larger, but some
 memory is faster than other

● Use processor and memory affinity in OS kernel
when possible for maximum efficiency

15Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Many “Levels” of CPU Hardware
We Need to Worry About

● x86_64 has 16 SIMD/Vector registers
(SSE => 2x DP, 4x SP; AVX => 4x DP, 8x SP;
Xeon Phi 8x DP, 16x SP; ...)

● 2-3 Cache levels, L1 is per core, higher levels
shared between varying amounts of cores

● Hybrid hyper-threading (some functional units
are shared between two cores, others not)

● NUMA for multi-core, multi-processor machines
● Hybrid hardware (CPU/GPU hybrids)

16Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How to Optimize For All of This?
● Vector registers: compiler auto-vectorization

(plus directives), vector intrinsics, libraries
-> loops without data dependencies & branches
-> struct of arrays instead of array of structs

● Caches: maximize data reuse
-> tiling, short inner loops, data reorganization

● Superscalar, pipelined architectures
-> predictable data flows, concurrent execution

● Multi-core, NUMA: multi-level parallelism with
shared and distributed/replicated data as needed

17Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What is Coming Down the Line?

● Hybrid CPUs, new architectures, low power
● “System on a Chip” type hardware
● Smartphones as commodity hardware platform
● Virtualization and “reverse virtualization”
● Remote data access will be a fast/slow as local
● We are drowning in data (streaming to analysis

immediately instead of post processing)

18Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

External Storage

● Hard drive storage has grown in capacity, but
not so much in performance
=> large performance gap: RAM vs. HD
=> virtual memory (swap to disk) mostly useless

● Solid state drives combine lots of (slow) non-
volatile RAM with hard drive-like interface
=> fast search times, higher transfer rate
=> “no” mechanical wear (they still do fail)

● RAID (=redundant array of inexpensive disks)
allows for parallelism or reliability or both

19Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Storage Hierarchy

● Register
integer/floating point, single/vector

● Cache
multiple levels, shared/exclusive

● Main memory
Local/NUMA

● External storage
Solid state, hard drive, networked file server

20Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Conclusions for Software

● It is getting complicated!
=> multiple combined strategies for faster
processing means that a failure at one of them
will limit the overall performance

● Follow the “dance of the data”, keep data “local”
● Multi-level parallelism, fine grained (SIMD,

threading) and coarse grained (MPI), required
● Compiler technology can help, but not for all
● Optimized libraries; domain specific languages

21Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Memory Mountain

● Memory performance with “strided” access
stride = distance between two data locations

● Shows cache sizes
and performances

● Stride 1 best
● Try with and without

compiler optimization
=> prefetch instruction
 vectorization 128m

32m
8m

2m
512k

128k
32k

8k
2k

0

200

400

600

800

1000

1200

1400

1481317212529

Memory Mountain

Nehalem 2.8GHz

Data Size

M
B

yt
e

/s

Stride

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

