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0) The Model for Liquid Argon

● Cubic box of particles 
with a Lennard-Jones 
type pairwise additive 
interaction potential 

● Periodic boundary 
conditions to avoid 
surface effects
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Newton's Laws of Motion

● We consider our particles to be classical 
objects so Newton's laws of motion apply:

1. In absence of a force a body rests or moves 
in a straight line with constant velocity

2. A body experiencing a force F experiences 
an acceleration a related to F by F = ma, where 
m is the mass of the body.

3. Whenever a first body exerts a force F on a 
second body, the second body exerts a force 
−F on the first body  (Bonus Law)
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vc

Velocity-Verlet Algorithm

● The Velocity-Verlet algorithm is used to 
propagate positions and velocities of the atoms

L. Verlet, Phys. Rev. 159, 98 (1967); Phys. Rev. 165, 201 (1967). 
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What Do We Need to Program?

1. Read in parameters and initial status and
 compute what is missing (e.g. accelerations)

2. Integrate Equations of motion with
 Velocity Verlet for a given number of steps

a) Propagate all velocities for half a step

b) Propagate all positions for a full step

c) Compute forces on all atoms to get accelerations

d) Propagate all velocities for half a step

e) Output intermediate results, if needed
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1) Initial Serial Code: Velocity Verlet
void velverlet(mdsys_t *sys) {
    for (int i=0; i<sys->natoms; ++i) {
        sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
        sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
        sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
        sys->rx[i] += sys->dt*sys->vx[i];
        sys->ry[i] += sys->dt*sys->vy[i];
        sys->rz[i] += sys->dt*sys->vz[i];
    }

    force(sys);

    for (int i=0; i<sys->natoms; ++i) {
        sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
        sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
        sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
    }
}
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Initial Code: Force Calculation

    for(i=0; i < (sys->natoms); ++i) {
        for(j=0; j < (sys->natoms); ++j) {
            if (i==j) continue;

            rx=pbc(sys->rx[i] - sys->rx[j], 0.5*sys->box);
            ry=pbc(sys->ry[i] - sys->ry[j], 0.5*sys->box);
            rz=pbc(sys->rz[i] - sys->rz[j], 0.5*sys->box);
            r = sqrt(rx*rx + ry*ry + rz*rz);

            if (r < sys->rcut) {
                ffac = -4.0*sys->epsilon*(-12.0*pow(sys->sigma/r,12.0)/r
                                         +6*pow(sys->sigma/r,6.0)/r);
                sys->epot += 0.5*4.0*sys->epsilon*(pow(sys->sigma/r,12.0)
                                               -pow(sys->sigma/r,6.0));
                sys->fx[i] += rx/r*ffac;
                sys->fy[i] += ry/r*ffac;
                sys->fz[i] += rz/r*ffac;
            }}

Compute distance
between atoms i & j

Add force contribution
of atom j on atom i

Compute energy and force
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double pbc(double x, const double boxby2) {
    while (x >  boxby2) x -= boxby2 + boxby2;
    while (x < -boxby2) x += boxby2 + boxby2;
    return x;
}
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How Well Does it Work?

● Compiled with: 
gcc o ljmd.x pg ljmd.c lm
Test input: 108 atoms, 10000 steps: 49s
Let us get a profile (using gprof):

  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 73.70     13.87    13.87    10001     1.39     1.86  force
 24.97     18.57     4.70 346714668     0.00     0.00  pbc
  0.96     18.75     0.18                             main
  0.37     18.82     0.07    10001     0.01     0.01  ekin
  0.00     18.82     0.00    30006     0.00     0.00  azzero
  0.00     18.82     0.00      101     0.00     0.00  output
  0.00     18.82     0.00       12     0.00     0.00  getline
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Step One: Compiler Optimization

● Use of pbc() is convenient, but costs 25% time
=> compiling with -O3 should inline it

● Loops should be unrolled for superscalar CPUs
=> compiling with -O2 or -O3 should do it for us

Time now: 39s (1.3x faster) 
● Now try more aggressive optimization options:

-ffast-math -fexpensive-optimizations -msse3

Time now: 10s (4.9x faster)
● Compare to LAMMPS: 3.6s => need to do more 

Only a bit faster than 49s

Much better!
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Now Modify the Code

● Use physics! Newton's 3rd law: F
ij
 = -F

ji

Time now: 5.4s (9.0x faster)

for(i=0; i < (sys>natoms)1; ++i) {
  for(j=i+1; j < (sys>natoms); ++j) {
    rx=pbc(sys>rx[i]  sys>rx[j], 0.5*sys>box);
    ry=pbc(sys>ry[i]  sys>ry[j], 0.5*sys>box);
    rz=pbc(sys>rz[i]  sys>rz[j], 0.5*sys>box);
    r = sqrt(rx*rx + ry*ry + rz*rz);
    if (r < sys>rcut) {
      ffac = 4.0*sys>epsilon*(12.0*pow(sys>sigma/r,12.0)/r
                                +6*pow(sys>sigma/r,6.0)/r);
      sys>epot +=     4.0*sys>epsilon*(pow(sys>sigma/r,12.0)
                                pow(sys>sigma/r,6.0));
      sys>fx[i] += rx/r*ffac;      sys>fx[j] = rx/r*ffac;
      sys>fy[i] += ry/r*ffac;      sys>fy[j] = ry/r*ffac;
      sys>fz[i] += rz/r*ffac;      sys>fz[j] = rz/r*ffac;
}}}

Another big improvement
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More Modifications

● Avoid expensive math: pow(), sqrt(), division

     => 108 atoms: 4.0s (12.2x faster)

c12=4.0*sys>epsilon*pow(sys>sigma,12.0);
c6 =4.0*sys>epsilon*pow(sys>sigma, 6.0);
rcsq = sys>rcut * sys>rcut;
for(i=0; i < (sys>natoms)1; ++i) {
  for(j=i+1; j < (sys>natoms); ++j) {
    rx=pbc(sys>rx[i]  sys>rx[j], 0.5*sys>box);
    ry=pbc(sys>ry[i]  sys>ry[j], 0.5*sys>box);
    rz=pbc(sys>rz[i]  sys>rz[j], 0.5*sys>box);
    rsq = rx*rx + ry*ry + rz*rz;
    if (rsq < rcsq) {
      double r6,rinv; rinv=1.0/rsq;  r6=rinv*rinv*rinv;
      ffac = (12.0*c12*r6  6.0*c6)*r6*rinv;
      sys>epot += r6*(c12*r6  c6);
      sys>fx[i] += rx*ffac;  sys>fx[j] = rx*ffac;
      sys>fy[i] += ry*ffac;  sys>fy[j] = ry*ffac;
      sys>fz[i] += rz*ffac;  sys>fz[j] = rz*ffac;
}}}
  still worth it
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Improvements So Far

● Use the optimal compiler flags => ~5x faster
but some of it: inlining, unrolling could be coded

● Use our knowledge of physics => ~2x faster
since we need to compute only half the data.

● Use our knowledge of computer hardware
=> 1.35x faster. (could be more: SSE/AVX)

We are within 10% (4s vs. 3.6s) of LAMMPS.
● Try a bigger system: 2916 atoms, 100 steps

Our code: 13.3s   LAMMPS: 2.7s => Bad scaling
with system size
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2) Making it Scale with System Size

● Lets look at the algorithm again: 
We compute all distances between pairs

● But for larger systems
not all pairs contribute
and our effort is O(N2)

● So we need a way to
avoid looking at pairs
that are too far away

=> Sort atoms into cell
lists, which is O(N)
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The Cell-List Variant

● At startup build a list of lists to store atom indices 
for atoms that “belong” to a cell

● Compute a list of pairs between cells which 
contain atoms within cutoff. Doesn't change!

● During MD sort atoms into cells
● Then loop over list of “close” pairs of cells i and j
● For pair of cells loop over pairs of atoms in them
● Now we have linear scaling with system size at 

the cost of using more memory and an O(N) sort
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Cell List Loop

● 2916 atom time: 3.4s (4x faster), LAMMPS 2.7s

for(i=0; i < sys>npair; ++i) {
    cell_t *c1, *c2;
    c1=sys>clist + sys>plist[2*i];
    c2=sys>clist + sys>plist[2*i+1];

        for (int j=0; j < c1>natoms; ++j) {
            int ii=c1>idxlist[j];
            double rx1=sys>rx[ii];
            double ry1=sys>ry[ii];
            double rz1=sys>rz[ii];
        
            for(int k=0; k < c2>natoms; ++k) {
                double rx,ry,rz,rsq;
                int jj=c2>idxlist[k];
                rx=pbc(rx1  sys>rx[jj], boxby2, sys>box);
                ry=pbc(ry1  sys>ry[jj], boxby2, sys>box);
                ... 
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Scaling with System Size

108 atoms 2916 atoms 78732 atoms
0.1

1

10

100

1000
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100000

1000000

10000000
Baseline
Optimized
Cell-List

● Cell list does not help (or hurt) much for small 
inputs, but is a huge win for larger problems
=> Lesson: always pay attention to scaling
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3) What if optimization is not enough?

● Having linear scaling is nice, but twice the 
system size is still twice the work and takes
twice the time.  => Parallelization

● Simple MPI parallelization first
● MPI is “share nothing” (replicated or distributed data)
● Run the same code path with the same data

but insert a few MPI calls
– Broadcast positions from rank 0 to all before force()
– Compute forces on different atoms for each rank
– Collect (reduce) forces from all to rank 0 after force()
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Replicated Data MPI Version
static void force(mdsys_t *sys) {
    double epot=0.0;
    azzero(sys->cx,sys->natoms); azzero(sys->cy,sys->natoms); azzero(sys->cz,sys->natoms);
    MPI_Bcast(sys->rx, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    MPI_Bcast(sys->ry, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    MPI_Bcast(sys->rz, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    for (i=0; i < sys->natoms-1; i += sys->nsize) {
        ii = i + sys->mpirank;
        if (ii >= (sys->natoms - 1)) break;
        for (j=i+1; i < sys->natoms; ++j) {
       [...]
                sys->cy[j] -= ry*ffac;
                sys->cz[j] -= rz*ffac;
    } } 
    MPI_Reduce(sys->cx, sys->fx, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(sys->cy, sys->fy, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(sys->cz, sys->fz, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(&epot, &sys->epot, 1, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
}
     ● Easy to implement, but lots of communication

cx/cy/cz  on all nodes; fx/fy/fz on master only
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Replicated Data Limitations

● Amdahl's Law (we only parallelized the force 
computation)

● Parallel 
overhead
(grows with
system size):
● Broadcast
● Reduction 

● Limited scaling
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MPI Parallel Efficiency
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MPI Parallel Execution Times
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4) OpenMP Parallelization

● OpenMP is directive based
=> code (can) work without them

● OpenMP can be added incrementally
● OpenMP only works in shared memory

=> multi-socket nodes, multi-core processors
● OpenMP hides the calls to a threads library

=> less flexible, but much less programming
● Caution: write access to shared data can 

easily lead to race conditions
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Naive OpenMP Version
#if defined(_OPENMP)
#pragma omp parallel for default(shared) \
    private(i) reduction(+:epot)
#endif
    for(i=0; i < (sys>natoms)1; ++i) {
        double rx1=sys>rx[i];
        double ry1=sys>ry[i];
        double rz1=sys>rz[i];
        [...]

#if defined(_OPENMP)
#pragma omp critical
#endif
                {
                    sys>fx[i] += rx*ffac;
                    sys>fy[i] += ry*ffac;
                    sys>fz[i] += rz*ffac;
                    sys>fx[j] = rx*ffac;
                    sys>fy[j] = ry*ffac;
                    sys>fz[j] = rz*ffac;
                }

               {
                    sys>fx[i] += rx*ffac;
                    sys>fy[i] += ry*ffac;
                    sys>fz[i] += rz*ffac;
                    sys>fx[j] = rx*ffac;
                    sys>fy[j] = ry*ffac;
                    sys>fz[j] = rz*ffac;
                }

Race condition:
“i” will be unique for
each thread, but not “j”
=> multiple threads may
write to the same location 
concurrently

Each thread will
work on different
values of “i”

The “critical” directive will let only
one thread execute this block at a time

Timings (108 atoms):
1 thread: 4.2s
2 threads: 7.1s
4 threads: 7.7s
8 threads: 8.6s
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OpenMP Improvements

● Use omp atomic to protect one instruction
=> faster, but requires hardware support
=> some speedup, but serial is faster for 108,
     at 2916 atoms we are often beyond cutoff

● No  Newton's 3rd Law:
=> no race condition
=> better scaling, but
we lose 2x serial speed
=> need 8 threads to
be faster than atomic

 108/atomic  108/no 3rd
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1 Thread
2 Threads
4 Threads
8 Threads
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MPI-like Approach with OpenMP

#if defined(_OPENMP)
#pragma omp parallel reduction(+:epot)
#endif
    {  double *fx, *fy, *fz;
#if defined(_OPENMP)
        int tid=omp_get_thread_num();
#else
        int tid=0;
#endif
        fx=sys>fx + (tid*sys>natoms); azzero(fx,sys>natoms);
        fy=sys>fy + (tid*sys>natoms); azzero(fy,sys>natoms);
        fz=sys>fz + (tid*sys>natoms); azzero(fz,sys>natoms);
        for(int i=0; i < (sys>natoms 1); i += sys>nthreads) {
            int ii = i + tid;
            if (ii >= (sys>natoms 1)) break;
            rx1=sys>rx[ii];
            ry1=sys>ry[ii];
            rz1=sys>rz[ii];

Thread Id is like MPI rank
sys->fx holds storage for one full fx array for
each thread => race condition is eliminated.
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MPI-like Approach with OpenMP (2)

#if defined (_OPENMP)
#pragma omp barrier
#endif
    i = 1 + (sys>natoms / sys>nthreads);
    fromidx = tid * i;
    toidx = fromidx + i;
    if (toidx > sys>natoms) toidx = sys>natoms;

    for (i=1; i < sys>nthreads; ++i) {
        int offs = i*sys>natoms;
        for (int j=fromidx; j < toidx; ++j) {
            sys>fx[j] += sys>fx[offs+j];
            sys>fy[j] += sys>fy[offs+j];
            sys>fz[j] += sys>fz[offs+j];
        }
    }

● We need to write our own reduction:

Need to make certain, all threads 
are done with computing forces

Use threads to 
parallelize the
reductions
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More OpenMP Timings
● The omp parallel region timings

2916: 1T: 103s, 2T:  53s, 4T:  19s, 8T: 10s
=> better speedup, but serial is faster for 108,
     at 2916 atoms we are often beyond cutoff

● This approach also works with cell lists
=> with 8 threads: 
4.1s = 6.8x speedup vs.
serial cell list version (28s). 
That is 62x faster than
the first naive serial version

2916/atomic 2916/no 3rd 2916/region 2916/cell
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50

100

150

200

250
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6) Hybrid OpenMP/MPI Version

● With multi-core nodes, communication between 
MPI tasks becomes a problem
=> all communication has to us2 one link
=> reduced bandwidth, increased latency

● OpenMP and MPI parallelization are orthogonal
and can be used at the same time
Caution: don't call MPI from threaded region!

● Parallel region OpenMP version is very similar 
to MPI version, so that would be easy to merge
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Hybrid OpenMP/MPI Kernel

● MPI tasks are like GPU thread blocks
● Need to reduce forces/energies first across 

threads and then across all MPI tasks
  [...]
        incr = sys>mpisize * sys>nthreads;
        /* self interaction of atoms in cell */
        for(n=0; n < sys>ncell; n += incr) {
            int i,j;
            const cell_t *c1;

            i = n + sys>mpirank*sys>nthreads + tid;
            if (i >= sys>ncell) break;
            c1=sys>clist + i;

            for (j=0; j < c1>natoms1; ++j) {
   [...]
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Hybrid OpenMP/MPI Timings

2916 atoms system: 78732 atoms system:

Cell list serial code:  18s 50.1s

16 MPI x 1 Threads: 14s    19.8s 

  8 MPI x 2 Threads: 5.5s   8.9s

  4 MPI x 4 Threads: 4.3s   8.2s

  2 MPI x 8 Threads: 4.0s   7.3s

=> Best speedup:   4.5x                6.9x
=>Total speedup:  185x  333x

T
w

o n
o

des  w
ith

 2
x qu

ad-co re



32Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

Total Speedup Comparison

Baseline
Compiler Opt
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GPU O(N^2)
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What about GPUs?

● GPUs are threading taken to the extreme
● Programming models: CUDA (like C), OpenCL 

(more explicit but portable across hardware), 
OpenACC (like OpenMP)

● Need to generate >1000 work units:
=> One (or more) thread(s) per “i atom”
=> good weak scaling, limited strong scaling

● Offload only some kernels (GPU=accelerator)
vs. moving entire calculation (CPU=decelerator)
=> depends on problem size, choice of hardware
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Conclusions

● Make sure that you exploit the physics of your 
problem well => Newton's 3rd law gives a 2x 
speedup for free (but interferes with threading!)

● Let the compiler help you (more readable code), 
but also make it easy to the compiler
=> unrolling, inlining can be offloaded

● Understand the properties of your hardware
and adjust your code to match it

● Best strong scaling on current hardware with 
hybrid parallelization, e.g. MPI+OpenMP
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What Else Can Be Done?

● Vectorization (“the” thing in the 1970s & 1980s)
● MMX/SSE/AVX instructions allow processing of 

multiple data elements with one instruction (SIMD)
=> 64/128/256-bit registers for “packed” data

● Since Pentium IV: 128-bit SSE2 unit can be used 
for double precision floating-point math.

● Recent CPUs support 256-bit AVX and “fused 
multiply add” (FMA) instructions

● Xeon Phi (and future CPUs) support 512-bit AVX2
● Portability issues: different CPUs support different 

subsets of the vector instructions.



36Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

How to Add Vectorization

● Let the compiler do it:
● On 32-bit need to specify architecture (Pentium IV+)

8 SSE registers supported, SSE2-unit independent 
of floating-point unit (unlike for MMX/SSE1)

● On 64-bit SSE2 is supported by all hardware
includes 16 SSE2 registers instead of 8 in 32-bit

● Vectorization requires 16-byte aligned data; if not 
possible to tell, compiler will generate slower code
(default on x86 is 8-byte alignment!)

● Only addition, subtraction, multiplication, division 
and (inverse) square root are vectorized
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How to Add Vectorization (2)
● Write explicit assembly code

● Tedious, difficult, non-portable and requires detailed 
knowledge of the instruction set and the hardware

● Use compiler “intrinsics”
● Available for C/C++, similar to macros
● Portable between Microsoft, Intel, GNU compilers
● d = a + b * c: for double precision values becomes:

__m128d v1 = _mm_load_sd(&a); __m128d v2 = _mm_load_sd(&b);
__m128d v3 = _mm_load_sd(&c);
__m128d v4 = _mm_add_sd(v1, _mm_mul_sd(v2,v3));
_mm_store_sd(&d, v4);

● Write explicit assembly code
● Tedious, difficult, non-portable and requires detailed 

knowledge of the instruction set and the hardware

● Use compiler “intrinsics”
● Available for C/C++, similar to macros
● Portable between Microsoft, Intel, GNU compilers
● d = a + b * c: for 2 double precision values becomes:

__m128d v1 = _mm_load_pd(&a); __m128d v2 = _mm_load_pd(&b);
__m128d v3 = _mm_load_pd(&c);
__m128d v4 = _mm_add_pd(v1, _mm_mul_pd(v2,v3));
_mm_store_pd(&d, v4);
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Why Worry About Vectorization?

● Vector instructions already in the CPU
=> unused acceleration potential

● Programming model somewhat similar to GPU
=> optimization strategies that work well on 
GPUs should be transferable to vectorization

● OpenCL explicitly supports 3 types of hardware
GPU, FPGA, and CPU (with vector unit)
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