
Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Dr. Axel Kohlmeyer

Senior Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

Liquid Argon Molecular Dynamics

http://sites.google.com/site/akohlmey/

2Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Contents of this ShowContents of this Show

0) Overture: The physics of the model

1) First Act: Writing and optimizing a serial code

2) Intermezzo: Improve scaling with system size

3) Second Act: MPI parallelization

4) Third Act: OpenMP parallelization

5) Finale: Hybrid MPI/OpenMP parallelization

6) Encore: Lessons learned

7) ...and now for something completely different

3Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

0) The Model for Liquid Argon

● Cubic box of particles
with a Lennard-Jones
type pairwise additive
interaction potential

● Periodic boundary
conditions to avoid
surface effects

U r =∑
i , j {4 [r ij

12

− rij

6

] , r ijr c

0 , r ij≥rc

4Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Newton's Laws of Motion

● We consider our particles to be classical
objects so Newton's laws of motion apply:

1. In absence of a force a body rests or moves
in a straight line with constant velocity

2. A body experiencing a force F experiences
an acceleration a related to F by F = ma, where
m is the mass of the body.

3. Whenever a first body exerts a force F on a
second body, the second body exerts a force
−F on the first body (Bonus Law)

5Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

vc

Velocity-Verlet Algorithm

● The Velocity-Verlet algorithm is used to
propagate positions and velocities of the atoms

L. Verlet, Phys. Rev. 159, 98 (1967); Phys. Rev. 165, 201 (1967).

x it t = x it v i t t
1
2

ai t t 2

v it
 t
2

 = v it
1
2

ait t

ait t = −
1
m

▽V x it t

v it t =v it
 t
2

1
2

ait t 2

v it
 t
2

 = v it
1
2

ait t

x it t = x it v i t
 t
2

 t

ait t = −
1
m

▽V x it t

v it t =v it
 t
2

1
2

ait t 2

Force calculation{4 ϵ [−12(
σ
r ij)

13

+6(
σ
r ij)

7

] , r ij<rc

0 , r ij≥rc

6Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What Do We Need to Program?

1. Read in parameters and initial status and
 compute what is missing (e.g. accelerations)

2. Integrate Equations of motion with
 Velocity Verlet for a given number of steps

a) Propagate all velocities for half a step

b) Propagate all positions for a full step

c) Compute forces on all atoms to get accelerations

d) Propagate all velocities for half a step

e) Output intermediate results, if needed

7Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

1) Initial Serial Code: Velocity Verlet
void velverlet(mdsys_t *sys) {
 for (int i=0; i<sys->natoms; ++i) {
 sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
 sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
 sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
 sys->rx[i] += sys->dt*sys->vx[i];
 sys->ry[i] += sys->dt*sys->vy[i];
 sys->rz[i] += sys->dt*sys->vz[i];
 }

 force(sys);

 for (int i=0; i<sys->natoms; ++i) {
 sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
 sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
 sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
 }
}

8Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Initial Code: Force Calculation

 for(i=0; i < (sys->natoms); ++i) {
 for(j=0; j < (sys->natoms); ++j) {
 if (i==j) continue;

 rx=pbc(sys->rx[i] - sys->rx[j], 0.5*sys->box);
 ry=pbc(sys->ry[i] - sys->ry[j], 0.5*sys->box);
 rz=pbc(sys->rz[i] - sys->rz[j], 0.5*sys->box);
 r = sqrt(rx*rx + ry*ry + rz*rz);

 if (r < sys->rcut) {
 ffac = -4.0*sys->epsilon*(-12.0*pow(sys->sigma/r,12.0)/r
 +6*pow(sys->sigma/r,6.0)/r);
 sys->epot += 0.5*4.0*sys->epsilon*(pow(sys->sigma/r,12.0)
 -pow(sys->sigma/r,6.0));
 sys->fx[i] += rx/r*ffac;
 sys->fy[i] += ry/r*ffac;
 sys->fz[i] += rz/r*ffac;
 }}

Compute distance
between atoms i & j

Add force contribution
of atom j on atom i

Compute energy and force

{4[−12 r ij

13

6 r ij

7

] , r ijrc

0 , r ij≥rc

double pbc(double x, const double boxby2) {
 while (x > boxby2) x -= boxby2 + boxby2;
 while (x < -boxby2) x += boxby2 + boxby2;
 return x;
}

9Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How Well Does it Work?

● Compiled with:
gcc o ljmd.x pg ljmd.c lm
Test input: 108 atoms, 10000 steps: 49s
Let us get a profile (using gprof):

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 73.70 13.87 13.87 10001 1.39 1.86 force
 24.97 18.57 4.70 346714668 0.00 0.00 pbc
 0.96 18.75 0.18 main
 0.37 18.82 0.07 10001 0.01 0.01 ekin
 0.00 18.82 0.00 30006 0.00 0.00 azzero
 0.00 18.82 0.00 101 0.00 0.00 output
 0.00 18.82 0.00 12 0.00 0.00 getline

10Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Step One: Compiler Optimization

● Use of pbc() is convenient, but costs 25% time
=> compiling with -O3 should inline it

● Loops should be unrolled for superscalar CPUs
=> compiling with -O2 or -O3 should do it for us

Time now: 39s (1.3x faster)
● Now try more aggressive optimization options:

-ffast-math -fexpensive-optimizations -msse3

Time now: 10s (4.9x faster)
● Compare to LAMMPS: 3.6s => need to do more

Only a bit faster than 49s

Much better!

11Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Now Modify the Code

● Use physics! Newton's 3rd law: F
ij
 = -F

ji

Time now: 5.4s (9.0x faster)

for(i=0; i < (sys>natoms)1; ++i) {
 for(j=i+1; j < (sys>natoms); ++j) {
 rx=pbc(sys>rx[i] sys>rx[j], 0.5*sys>box);
 ry=pbc(sys>ry[i] sys>ry[j], 0.5*sys>box);
 rz=pbc(sys>rz[i] sys>rz[j], 0.5*sys>box);
 r = sqrt(rx*rx + ry*ry + rz*rz);
 if (r < sys>rcut) {
 ffac = 4.0*sys>epsilon*(12.0*pow(sys>sigma/r,12.0)/r
 +6*pow(sys>sigma/r,6.0)/r);
 sys>epot += 4.0*sys>epsilon*(pow(sys>sigma/r,12.0)
 pow(sys>sigma/r,6.0));
 sys>fx[i] += rx/r*ffac; sys>fx[j] = rx/r*ffac;
 sys>fy[i] += ry/r*ffac; sys>fy[j] = ry/r*ffac;
 sys>fz[i] += rz/r*ffac; sys>fz[j] = rz/r*ffac;
}}}

Another big improvement

12Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

More Modifications

● Avoid expensive math: pow(), sqrt(), division

 => 108 atoms: 4.0s (12.2x faster)

c12=4.0*sys>epsilon*pow(sys>sigma,12.0);
c6 =4.0*sys>epsilon*pow(sys>sigma, 6.0);
rcsq = sys>rcut * sys>rcut;
for(i=0; i < (sys>natoms)1; ++i) {
 for(j=i+1; j < (sys>natoms); ++j) {
 rx=pbc(sys>rx[i] sys>rx[j], 0.5*sys>box);
 ry=pbc(sys>ry[i] sys>ry[j], 0.5*sys>box);
 rz=pbc(sys>rz[i] sys>rz[j], 0.5*sys>box);
 rsq = rx*rx + ry*ry + rz*rz;
 if (rsq < rcsq) {
 double r6,rinv; rinv=1.0/rsq; r6=rinv*rinv*rinv;
 ffac = (12.0*c12*r6 6.0*c6)*r6*rinv;
 sys>epot += r6*(c12*r6 c6);
 sys>fx[i] += rx*ffac; sys>fx[j] = rx*ffac;
 sys>fy[i] += ry*ffac; sys>fy[j] = ry*ffac;
 sys>fz[i] += rz*ffac; sys>fz[j] = rz*ffac;
}}}
 still worth it

13Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Improvements So Far

● Use the optimal compiler flags => ~5x faster
but some of it: inlining, unrolling could be coded

● Use our knowledge of physics => ~2x faster
since we need to compute only half the data.

● Use our knowledge of computer hardware
=> 1.35x faster. (could be more: SSE/AVX)

We are within 10% (4s vs. 3.6s) of LAMMPS.
● Try a bigger system: 2916 atoms, 100 steps

Our code: 13.3s LAMMPS: 2.7s => Bad scaling
with system size

14Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

2) Making it Scale with System Size

● Lets look at the algorithm again:
We compute all distances between pairs

● But for larger systems
not all pairs contribute
and our effort is O(N2)

● So we need a way to
avoid looking at pairs
that are too far away

=> Sort atoms into cell
lists, which is O(N)

15Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

The Cell-List Variant

● At startup build a list of lists to store atom indices
for atoms that “belong” to a cell

● Compute a list of pairs between cells which
contain atoms within cutoff. Doesn't change!

● During MD sort atoms into cells
● Then loop over list of “close” pairs of cells i and j
● For pair of cells loop over pairs of atoms in them
● Now we have linear scaling with system size at

the cost of using more memory and an O(N) sort

16Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Cell List Loop

● 2916 atom time: 3.4s (4x faster), LAMMPS 2.7s

for(i=0; i < sys>npair; ++i) {
 cell_t *c1, *c2;
 c1=sys>clist + sys>plist[2*i];
 c2=sys>clist + sys>plist[2*i+1];

 for (int j=0; j < c1>natoms; ++j) {
 int ii=c1>idxlist[j];
 double rx1=sys>rx[ii];
 double ry1=sys>ry[ii];
 double rz1=sys>rz[ii];

 for(int k=0; k < c2>natoms; ++k) {
 double rx,ry,rz,rsq;
 int jj=c2>idxlist[k];
 rx=pbc(rx1 sys>rx[jj], boxby2, sys>box);
 ry=pbc(ry1 sys>ry[jj], boxby2, sys>box);
 ...

17Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Scaling with System Size

108 atoms 2916 atoms 78732 atoms
0.1

1

10

100

1000

10000

100000

1000000

10000000
Baseline
Optimized
Cell-List

● Cell list does not help (or hurt) much for small
inputs, but is a huge win for larger problems
=> Lesson: always pay attention to scaling

18Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

3) What if optimization is not enough?

● Having linear scaling is nice, but twice the
system size is still twice the work and takes
twice the time. => Parallelization

● Simple MPI parallelization first
● MPI is “share nothing” (replicated or distributed data)
● Run the same code path with the same data

but insert a few MPI calls
– Broadcast positions from rank 0 to all before force()
– Compute forces on different atoms for each rank
– Collect (reduce) forces from all to rank 0 after force()

19Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Replicated Data MPI Version
static void force(mdsys_t *sys) {
 double epot=0.0;
 azzero(sys->cx,sys->natoms); azzero(sys->cy,sys->natoms); azzero(sys->cz,sys->natoms);
 MPI_Bcast(sys->rx, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
 MPI_Bcast(sys->ry, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
 MPI_Bcast(sys->rz, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
 for (i=0; i < sys->natoms-1; i += sys->nsize) {
 ii = i + sys->mpirank;
 if (ii >= (sys->natoms - 1)) break;
 for (j=i+1; i < sys->natoms; ++j) {
 [...]
 sys->cy[j] -= ry*ffac;
 sys->cz[j] -= rz*ffac;
 } }
 MPI_Reduce(sys->cx, sys->fx, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
 MPI_Reduce(sys->cy, sys->fy, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
 MPI_Reduce(sys->cz, sys->fz, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
 MPI_Reduce(&epot, &sys->epot, 1, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
}
 ● Easy to implement, but lots of communication

cx/cy/cz on all nodes; fx/fy/fz on master only

20Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Replicated Data Limitations

● Amdahl's Law (we only parallelized the force
computation)

● Parallel
overhead
(grows with
system size):
● Broadcast
● Reduction

● Limited scaling

21Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

MPI Parallel Efficiency

1 task 2 tasks 4 tasks 8 tasks
0

20

40

60

80

100

120

140

108 atoms / O(N^2)
2915 atoms / O(N^2)
2916 atoms / O(N)

E p=
T 1

pT p

superlinear Speedup

22Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

MPI Parallel Execution Times

1 task 2 tasks 4 tasks 8 tasks
0

20

40

60

80

100

120
108 atoms / O(N^2)
2915 atoms / O(N^2)
2916 atoms / O(N)

23Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

4) OpenMP Parallelization

● OpenMP is directive based
=> code (can) work without them

● OpenMP can be added incrementally
● OpenMP only works in shared memory

=> multi-socket nodes, multi-core processors
● OpenMP hides the calls to a threads library

=> less flexible, but much less programming
● Caution: write access to shared data can

easily lead to race conditions

24Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Naive OpenMP Version
#if defined(_OPENMP)
#pragma omp parallel for default(shared) \
 private(i) reduction(+:epot)
#endif
 for(i=0; i < (sys>natoms)1; ++i) {
 double rx1=sys>rx[i];
 double ry1=sys>ry[i];
 double rz1=sys>rz[i];
 [...]

#if defined(_OPENMP)
#pragma omp critical
#endif
 {
 sys>fx[i] += rx*ffac;
 sys>fy[i] += ry*ffac;
 sys>fz[i] += rz*ffac;
 sys>fx[j] = rx*ffac;
 sys>fy[j] = ry*ffac;
 sys>fz[j] = rz*ffac;
 }

 {
 sys>fx[i] += rx*ffac;
 sys>fy[i] += ry*ffac;
 sys>fz[i] += rz*ffac;
 sys>fx[j] = rx*ffac;
 sys>fy[j] = ry*ffac;
 sys>fz[j] = rz*ffac;
 }

Race condition:
“i” will be unique for
each thread, but not “j”
=> multiple threads may
write to the same location
concurrently

Each thread will
work on different
values of “i”

The “critical” directive will let only
one thread execute this block at a time

Timings (108 atoms):
1 thread: 4.2s
2 threads: 7.1s
4 threads: 7.7s
8 threads: 8.6s

25Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

OpenMP Improvements

● Use omp atomic to protect one instruction
=> faster, but requires hardware support
=> some speedup, but serial is faster for 108,
 at 2916 atoms we are often beyond cutoff

● No Newton's 3rd Law:
=> no race condition
=> better scaling, but
we lose 2x serial speed
=> need 8 threads to
be faster than atomic

 108/atomic 108/no 3rd

0

1

2

3

4

5

6

7
1 Thread
2 Threads
4 Threads
8 Threads

2916/atomic 2916/no 3rd

0

50

100

150

200

250

26Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

MPI-like Approach with OpenMP

#if defined(_OPENMP)
#pragma omp parallel reduction(+:epot)
#endif
 { double *fx, *fy, *fz;
#if defined(_OPENMP)
 int tid=omp_get_thread_num();
#else
 int tid=0;
#endif
 fx=sys>fx + (tid*sys>natoms); azzero(fx,sys>natoms);
 fy=sys>fy + (tid*sys>natoms); azzero(fy,sys>natoms);
 fz=sys>fz + (tid*sys>natoms); azzero(fz,sys>natoms);
 for(int i=0; i < (sys>natoms 1); i += sys>nthreads) {
 int ii = i + tid;
 if (ii >= (sys>natoms 1)) break;
 rx1=sys>rx[ii];
 ry1=sys>ry[ii];
 rz1=sys>rz[ii];

Thread Id is like MPI rank
sys->fx holds storage for one full fx array for
each thread => race condition is eliminated.

27Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

MPI-like Approach with OpenMP (2)

#if defined (_OPENMP)
#pragma omp barrier
#endif
 i = 1 + (sys>natoms / sys>nthreads);
 fromidx = tid * i;
 toidx = fromidx + i;
 if (toidx > sys>natoms) toidx = sys>natoms;

 for (i=1; i < sys>nthreads; ++i) {
 int offs = i*sys>natoms;
 for (int j=fromidx; j < toidx; ++j) {
 sys>fx[j] += sys>fx[offs+j];
 sys>fy[j] += sys>fy[offs+j];
 sys>fz[j] += sys>fz[offs+j];
 }
 }

● We need to write our own reduction:

Need to make certain, all threads
are done with computing forces

Use threads to
parallelize the
reductions

28Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

More OpenMP Timings
● The omp parallel region timings

2916: 1T: 103s, 2T: 53s, 4T: 19s, 8T: 10s
=> better speedup, but serial is faster for 108,
 at 2916 atoms we are often beyond cutoff

● This approach also works with cell lists
=> with 8 threads:
4.1s = 6.8x speedup vs.
serial cell list version (28s).
That is 62x faster than
the first naive serial version

2916/atomic 2916/no 3rd 2916/region 2916/cell

0

50

100

150

200

250

29Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

6) Hybrid OpenMP/MPI Version

● With multi-core nodes, communication between
MPI tasks becomes a problem
=> all communication has to us2 one link
=> reduced bandwidth, increased latency

● OpenMP and MPI parallelization are orthogonal
and can be used at the same time
Caution: don't call MPI from threaded region!

● Parallel region OpenMP version is very similar
to MPI version, so that would be easy to merge

30Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Hybrid OpenMP/MPI Kernel

● MPI tasks are like GPU thread blocks
● Need to reduce forces/energies first across

threads and then across all MPI tasks
 [...]
 incr = sys>mpisize * sys>nthreads;
 /* self interaction of atoms in cell */
 for(n=0; n < sys>ncell; n += incr) {
 int i,j;
 const cell_t *c1;

 i = n + sys>mpirank*sys>nthreads + tid;
 if (i >= sys>ncell) break;
 c1=sys>clist + i;

 for (j=0; j < c1>natoms1; ++j) {
 [...]

31Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Hybrid OpenMP/MPI Timings

2916 atoms system: 78732 atoms system:

Cell list serial code: 18s 50.1s

16 MPI x 1 Threads: 14s 19.8s

 8 MPI x 2 Threads: 5.5s 8.9s

 4 MPI x 4 Threads: 4.3s 8.2s

 2 MPI x 8 Threads: 4.0s 7.3s

=> Best speedup: 4.5x 6.9x
=>Total speedup: 185x 333x

T
w

o n
o

des w
ith

 2
x qu

ad-co re

32Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Total Speedup Comparison

Baseline
Compiler Opt

Opt imal O(N^2)
Cell List

GPU O(N^2)
MPI 4 task

OpenMP 4 task
Hybrid 16 task

0

50

100

150

200

250

300

350
108 Atoms 2916 Atoms 78732 Atoms

33Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What about GPUs?

● GPUs are threading taken to the extreme
● Programming models: CUDA (like C), OpenCL

(more explicit but portable across hardware),
OpenACC (like OpenMP)

● Need to generate >1000 work units:
=> One (or more) thread(s) per “i atom”
=> good weak scaling, limited strong scaling

● Offload only some kernels (GPU=accelerator)
vs. moving entire calculation (CPU=decelerator)
=> depends on problem size, choice of hardware

34Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Conclusions

● Make sure that you exploit the physics of your
problem well => Newton's 3rd law gives a 2x
speedup for free (but interferes with threading!)

● Let the compiler help you (more readable code),
but also make it easy to the compiler
=> unrolling, inlining can be offloaded

● Understand the properties of your hardware
and adjust your code to match it

● Best strong scaling on current hardware with
hybrid parallelization, e.g. MPI+OpenMP

35Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What Else Can Be Done?

● Vectorization (“the” thing in the 1970s & 1980s)
● MMX/SSE/AVX instructions allow processing of

multiple data elements with one instruction (SIMD)
=> 64/128/256-bit registers for “packed” data

● Since Pentium IV: 128-bit SSE2 unit can be used
for double precision floating-point math.

● Recent CPUs support 256-bit AVX and “fused
multiply add” (FMA) instructions

● Xeon Phi (and future CPUs) support 512-bit AVX2
● Portability issues: different CPUs support different

subsets of the vector instructions.

36Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How to Add Vectorization

● Let the compiler do it:
● On 32-bit need to specify architecture (Pentium IV+)

8 SSE registers supported, SSE2-unit independent
of floating-point unit (unlike for MMX/SSE1)

● On 64-bit SSE2 is supported by all hardware
includes 16 SSE2 registers instead of 8 in 32-bit

● Vectorization requires 16-byte aligned data; if not
possible to tell, compiler will generate slower code
(default on x86 is 8-byte alignment!)

● Only addition, subtraction, multiplication, division
and (inverse) square root are vectorized

37Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

How to Add Vectorization (2)
● Write explicit assembly code

● Tedious, difficult, non-portable and requires detailed
knowledge of the instruction set and the hardware

● Use compiler “intrinsics”
● Available for C/C++, similar to macros
● Portable between Microsoft, Intel, GNU compilers
● d = a + b * c: for double precision values becomes:

__m128d v1 = _mm_load_sd(&a); __m128d v2 = _mm_load_sd(&b);
__m128d v3 = _mm_load_sd(&c);
__m128d v4 = _mm_add_sd(v1, _mm_mul_sd(v2,v3));
_mm_store_sd(&d, v4);

● Write explicit assembly code
● Tedious, difficult, non-portable and requires detailed

knowledge of the instruction set and the hardware

● Use compiler “intrinsics”
● Available for C/C++, similar to macros
● Portable between Microsoft, Intel, GNU compilers
● d = a + b * c: for 2 double precision values becomes:

__m128d v1 = _mm_load_pd(&a); __m128d v2 = _mm_load_pd(&b);
__m128d v3 = _mm_load_pd(&c);
__m128d v4 = _mm_add_pd(v1, _mm_mul_pd(v2,v3));
_mm_store_pd(&d, v4);

38Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Why Worry About Vectorization?

● Vector instructions already in the CPU
=> unused acceleration potential

● Programming model somewhat similar to GPU
=> optimization strategies that work well on
GPUs should be transferable to vectorization

● OpenCL explicitly supports 3 types of hardware
GPU, FPGA, and CPU (with vector unit)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

