
Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Dr. Axel Kohlmeyer
(with a little help from several friends)

Senior Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

LAMMPS – An Object Oriented
Scientific Application

http://sites.google.com/site/akohlmey/

Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS is a Collaborative Project
A few lead developers and many significant contributors:

● Steve Plimpton, Paul Crozier, Aidan Thompson
(Sandia National Laboratory, Albuquerque NM)

- Roy Pollock (LLNL), Ewald and PPPM solvers
- Mike Brown (ORNL), GPU package
- Greg Wagner (Sandia), MEAM package for MEAM potential
- Mike Parks (Sandia), PERI package for Peridynamics
- Rudra Mukherjee (JPL), POEMS package for rigid body motion
- Reese Jones (Sandia), USER-ATC package for coupling to continuum
- Ilya Valuev (JIHT), USER-AWPMD package for wave-packet MD
- Christian Trott (Sandia), USER-CUDA package
- A. Jaramillo-Botero (Caltech), USER-EFF electron force field package
- Christoph Kloss (JKU), LIGGGHTS package for DEM and fluid coupling
- Metin Aktulga (LBL), USER-REAXC package for C version of ReaxFF
- Georg Gunzenmuller (EMI), USER-SPH package
- Axel Kohlmeyer (Temple U, ICTP), USER-OMP, USER-CG-CMM,
 USER-COLVARS, USER-MOLFILE packages, SMD and IMD support

Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS is an Extensible Project
● ~2300 C/C++/CUDA files, 50 Fortran files,

about 620,000 lines of code in core executable
● Only about 200 files are essential, about 530

files are compiled by default, 1820 are optional
● Optional files are included through derived C++

classes, extra functionality in bundled libraries
● Three levels of “package support”:

– Core packages (officially supported)
– USER-<NAME> packages (supported by individuals)
– USER-MISC package (mixed bag of everything else)

Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

A Short History of LAMMPS

● Started around 1995 as a DOE/Industry
partnership under the lead of Steve Plimpton

● Development used Fortran 77 until 1999
● Converted to Fortran 90 for dynamical memory

management. Final Fortran version in 2001
● Current version is a complete rewrite in C++

merging in features from several MD codes
written at Sandia (ParaDyn, Warp, GranFlow,
GRASP) and many community contributions

5Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What LAMMPS Is

● Large-scale Atomic/Molecular Massively Parallel Simulator
(each word is an attribute)

● Three-legged stool, supported by force fields and methods:
one foot in biomolecules and polymers (soft materials)
one foot in materials science (solids)
one foot in mesoscale to continuum

6Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS General Features

● Classical Molecular Dynamics (MD)

- runs on a single processor or in parallel
- distributed-memory message-passing parallelism (MPI)
- GPU (CUDA and OpenCL) and OpenMP support for many code features
- spatial-decomposition of simulation domain for parallelism
- open-source distribution
- highly portable C++
- optional libraries used: MPI, serial FFT, JPEG
- easy to extend with new features and functionality
- runs from an input script
- syntax for defining and using variables and formulas
- syntax for looping over runs and breaking out of loops
- run one or multiple simulations simultaneously (in parallel) from one script
- build as library, invoke LAMMPS through library interface
- Python wrapper included, combine with Pizza.py toolkit
- couple with other codes: LAMMPS calls other code,
 other code calls LAMMPS, or umbrella code calls both

7Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Particle and Model Types
● simple atoms, metals
● coarse-grained particles (e.g. bead-spring polymers)
● united-atom polymers or organic molecules
● all-atom polymers, organic molecules, proteins, DNA
● granular materials
● coarse-grained mesoscale models
● finite-size spherical and ellipsoidal particles
● finite-size line segment (2d) and triangle (3d) particles
● point dipolar particles
● rigid collections of particles
● hybrid combinations of these

8Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Force Fields
● Simple pairwise additive potentials: Lennard-Jones, Buckingham, Morse,

Born-Mayer-Huggins, Yukawa, Soft, Class 2 (COMPASS), Mie, hydrogen
bond, tabulated, Coulombic, point-dipole

● Manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM),
embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO,
AIREBO, ReaxFF, COMB, BOP

● Electron force fields: eFF, AWPMD
● Coarse-grained: DPD, GayBerne, REsquared, colloidal, DLVO, SDK
● Mesoscopic potentials: Granular media, Peridynamics, SPH
● Potentials for bond/angles/dihedrals: harmonic, FENE, Morse, nonlinear,

Class 2, quartic (breakable), CHARMM, OPLS, cvff, umbrella
● implicit solvent potentials: hydrodynamic lubrication, Debye
● long-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to

particle-mesh Ewald), Ewald/N for long-range Lennard-Jones
● hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can

be used in one simulation
● overlaid potentials: superposition of multiple pair potentials

9Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Ensembles, Boundary Conditions
● 2d or 3d systems
● orthogonal or non-orthogonal (triclinic symmetry) simulation domains
● constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators
● thermostatting options for groups and geometric regions of atoms
● pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3

dimensions, coupled and uncoupled
● simulation box deformation (tensile and shear)
● harmonic constraint forces, collective variables (MTD, ABF, SMD)
● rigid body constraints
● SHAKE bond and angle constraints
● bond breaking, formation, swapping
● walls of various kinds
● non-equilibrium molecular dynamics (NEMD)
● Properties and manipulations can be controlled by custom functions

10Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Methods
● Integrators:

● Velocity Verlet, r-RESPA multi-timestepping,
Brownian dynamics, rigid bodies

● Energy minimization with various algorithms
● Multi-replica methods:

● Nudged-elastic band
● Parallel replica dynamics
● Temperature accelerated MD
● Parallel tempering MD
● Split short-range / long-range force computation

11Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Not so Common Features

● generalized aspherical particles
● stochastic rotation dynamics (SRD)
● real-time visualization and interactive MD
● atom-to-continuum coupling with finite elements
● coupled rigid body integration via the POEMS library
● grand canonical Monte Carlo insertions/deletions
● Direct Simulation Monte Carlo for low-density fluids
● Peridynamics mesoscale modeling
● targeted and steered molecular dynamics
● two-temperature electron model
● On-the-fly parallel processing of data (direct and via rerun)

12Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Pizza.py Companion Toolkit

● Each tool is a
Python class

● Use multiple tools
simultaneously
from command-
line, scripts, or
GUIs

● Tools for building
LAMMPS input,
reading LAMMPS
output, conversion,
analysis, plotting,
viz, etc

● GUI-based tool to
run a LAMMPS
simulation in real-
time ...

13Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS for Outreach
The Nano Dome

● Single person immersive, stereo-3d, haptic, and
interactive simulation/visualization environment

● Combines HPC, visualization, molecular
simulation, virtual reality, and STEM outreach

14Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

What’s an Algorithm?

15Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Timescale in Classical MD

● Timescale of simulation is most serious bottleneck in MD
● Timestep size limited by atomic oscillations:

● C-H bond = 10 fmsec  ½ to 1 fmsec timestep
● Debye frequency = 1013  2 fmsec timestep

● Reality is often on a much longer timescale:
● protein folding (msec to seconds)
● polymer entanglement (msec and up)
● glass relaxation (seconds to decades)
● nanoparticle rheology (milliseconds to seconds)

● Even smaller timestep in tight-binding or quantum-MD

16Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Particle-Time Metric

● Atom * steps = size of your simulation

● 1012 is supercomputer scale  106 atoms for 106 timesteps
2 months on a 1.7 GHz Pentium (simple LJ system)
few hours on 100s of processors

● 1 cubic micron (1010 atoms) for a nanosecond (106 steps)
1000 flops per atom per step  1019 flops
MD is 10% of peak  1 day on a Petaflop machine

17Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Serial Performance

● Low-level data structures
C-like, Fortran-like
x[N][3] = coordinates = 3N contiguous memory locations
one simulation allocates many atom-based arrays

● Neighbor lists
O(N) binning
Verlet list with skin, stored in large “pages” of integers
keep for 10-20 steps
biggest memory requirement in code

● Performance is same as C and same as Fortran
we don’t do things that slow down pair and neighbor routines
people do care how fast your code is

18Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Classical MD in Parallel

● MD is inherently parallel
forces on each atom can be computed simultaneously
X and V can be updated simultaneously

● Most widely used MD codes are parallelized via distributed-
memory message-passing style parallelism

● MPI  www-unix.mcs.anl.gov/mpi
assembly-language of parallel computing
lowest-common denominator
most portable
runs on all parallel machines:

SMP shared-memory
 hybrids = multi-node with multiple procs or cores / node

19Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Parallelism via Spatial-
Decomposition

● Physical domain divided into 3d boxes, one per processor
● Communication of “ghost” atoms via

nearest-neighbor 6-way stencil
● Each processor computes forces on atoms in its box
● Atoms "carry along" molecular topology

as they migrate to new procs

● Work hard for optimal scaling:
 N/P so long as load-balanced

● Computation scales as N/P
● Communication scales

sub-linear as (N/P)2/3

(for large problems)
● Memory scales as N/P

20Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS Performance

● Fixed-size (32K atoms) & scaled-size
(32K/proc) parallel efficiencies

● Protein (rhodopsin) in solvated lipid bilayer

● Billions of atoms on 64K procs of Blue Gene or
Red Storm

● Opteron speed: 4.5E-5 sec/atom/step (12x for
metal, 25x for LJ)

21Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

OpenMP/MPI Scaling on Cray XT5

27 63 148 345 805 1878

0.04

0.08

0.17

0.36

1 Vesicle CG System / 3,862,854 CG-Beads

12 MPI / 1 OpenMP
6 MPI / 2 OpenMP
4 MPI / 3 OpenMP
2 MPI / 6 OpenMP
2 MPI / 6 OpenMP (SP)

Nodes

T
im

e
pe

r M
D

 s
te

p
(s

e c
)

22Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

OpenMP+MPI Best Effort vs. MPI

23Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Extending LAMMPS

● In hindsight, this is best feature of LAMMPS
> 80% of code is “extensions”

● Easy for us and others to add new features (“style”)
new particle types
new force fields
new computations (T, per-atom stress, ...)
new fix (BC, constraint, integrator, diagnostic, ...)
new input command (read_data, velocity, run, ...)

● Adding a feature only requires 2 lines in a header file and recompiling
include "pair_airebo.h"
PairStyle (airebo, PairAIRebo)

● Enabled by C++
virtual parent class for all styles, e.g. pair potentials
defines interface the feature must provide
compute(), init(), coeff(), restart(), etc

24Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

• Define particle attributes

• Loop over timesteps:

communicate ghost atoms

build neighbor list (once in a while)

compute forces

communicate ghost forces

output to screen and files

"Fixes" are Flexible

• Define particle attributes mass, x, v, f, charge, bonds, angles,

orientation, torque, dipole, shear history, ...

• Loop over timesteps:
fix_initial NVE, NVT, NPT, rigid-body integration

communicate ghost atoms
fix_neighbor insert particles

build neighbor list (once in a while)

compute forces

communicate ghost forces
fix_force SHAKE, langevin drag, wall, spring, gravity

fix_final NVE, NVT, NPT, rigid-body integration

fix_end volume & T rescaling, diagnostics

output to screen and files

• Fixes operate on sub-groups of atoms, add per-atom storage,

communicate, write status to restart file, ...

25Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Hybrid Models
● Water/proteins on metal/silica surface
● Metal-semiconductor interface
● Metal islands on amorphous

 (LJ) substrate
● Specify 2 (or more) pair

 potentials:
A-A, B-B, A-B, etc

● Overlay potentials:
add explicit h-bonds
add coulomb

● Hybrid in two ways:
potentials (pair, bond, etc)
atom style (bio, metal, etc)

Seel and Webb, SNL

26Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Multiple Processor Partitions
● Command-line switch:

mpirun -np 32 lmp_ibm -partition 8x4 -in in.temper
partition your 32 procs into 8 4-processor partitions

● "Variable", "loop", "jump" commands in input script
variable loop t 250.0 300.0 350.0 400.0
fix 1 all nvt $t $t 0.01

● Run 8 different simulations simultaneously
at different temperatures
from different input scripts

● Run 100 simulations one after the other on 8 partitions

● Run 8 simulations with loose coupling  parallel tempering

27Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Parallel Tempering

● More efficient sampling of polymer/protein conformations

● Every 100 steps:
pair up ensembles
attempt a temperature swap
Monte Carlo accept/reject

● Need overlapping energy histograms

● Unstuck from energy minima

● Each ensemble cycles up and down thru temperatures

28Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Coupling LAMMPS to Other
Codes

● Method 1: MD is the driver
MD  FE
enabled by fixes, link to external library
coupled rigid body solver from RPI

● Method 2: Other code is the driver
FE  MD
build LAMMPS as a library
call from C++, C, Fortran
low-overhead to run MD in spurts
invoke low-level ops (get/put coords)

● Method 3: Umbrella code is the driver
Umbrella code calls MD and FE
RPI group linking LAMMPS to their FE codes for deformation
problems
could run LAMMPS on P procs, FE on Q procs, talk to each other

● Challenge: balance the computation so both codes run efficiently

29Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Classical MD Basics
● Each of N particles is a point mass

atom
group of atoms (united atom)
macro- or meso- particle

● Particles interact via empirical force laws
all physics in energy potential  force
pair-wise forces (LJ, Coulombic)
many-body forces (EAM, Tersoff, REBO)
molecular forces (springs, torsions)
long-range forces (Ewald)

● Integrate Newton's equations of motion
F = ma
set of N, coupled ODEs
advance as far in time as possible

● Properties via time-averaging ensemble snapshots (vs MC sampling)

30Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

MD Timestep

● Velocity-Verlet formulation:
update V by ½ step (using F)
update X (using V)
build neighbor lists (occasionally)
compute F (using X)
apply constraints & boundary conditions (on F)
update V by ½ step (using new F)
output and diagnostics

● CPU time break-down:
forces = 80%
neighbor lists = 15%
everything else = 5%

31Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Computational Issues

● These have a large impact on CPU cost of a simulation:

Level of detail in model
Cutoff in force field
Long-range Coulombics
Neighbor lists

Newton's 3rd law (compute on ghost atoms, but more
communication)
Timestep size (vanilla, SHAKE, rRESPA)
Parallelism (already discussed)

32Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Level of Detail in Polymer Models
● All-atom:

∆ t = 0.5-1.0 fmsec for C-H
C-C distance = 1.5 Angs
cutoff = 10 Angs

● United-atom:
of interactions is 9x less
∆ t = 1.0-2.0 fmsec for C-C
cutoff = 10 Angs
20-30x savings over all-atom

● Bead-Spring:
2-3 C per bead
∆ t  fmsec mapping is T-dependent
21/6 σ cutoff  8x in interactions
can be considerable savings over united-atom

● "Eternity" vs "Near-eternity" vs "Not quite possible"

33Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Cutoff in Force Field

● Forces = 80% of CPU cost
● Short-range forces  O(N) scaling for classical MD

constant density assumption
pre-factor is cutoff-dependent

● # of pairs/atom = cubic in cutoff
2x the cutoff  8x the work

● Use as short a cutoff as can justify:
LJ = 2.5σ (standard)
all-atom and UA = 8-12 Angstroms
bead-spring = 21/6 σ (repulsive only)
Coulombics = 12-20 Angstroms
solid-state (metals) = few neighbor shells (due to screening)

● Test sensitivity of your results to cutoff

34Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Long-range Coulombics

● Systems that need it:
Charged polymers (polyelectrolytes)
Organic & biological molecules
Ionic solids
Not metals (screening)

● Computational issue:
Coulomb energy only falls off as 1/r

● Options:
cutoff scales as N (scales N3 with cutoff),

but large contribution at 10 Angs
Ewald scales as N3/2

particle-mesh Ewald scales as Nlog2N

multipole scales as N (but large prefactor)
multigrid scales as N (but large prefactor)

35Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Parallel FFTs in LAMMPS

● 3d FFT is 3 sets of 1d FFTs
in parallel, 3d grid is distributed across procs
1d FFTs on-processor
native library or FFTW (www.fftw.org)
multiple "transposes" of 3d grid
data transfer can be costly

● FFTs for PPPM can scale poorly
on large # of procs and on clusters

● Good news: Cost of PPPM is only ~2x more than 8-10 Ang cutoff
● Analytic differentiation (1/3rd the FFTs), hybrid OpenMP/MPI,

split-Verlet method to counter scaling issues

36Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Neighbor Lists
● Problem: how to efficiently find neighbors within cutoff?
● Simple solution:

for each atom, test against all others
O(N2) algorithm

● Verlet lists:
Verlet, Phys Rev, 159, p 98 (1967)
Rneigh = Rforce + ∆ skin

build list: once every few timesteps
other timesteps: scan thru larger list

for neighbors within force cutoff
rebuild list: any atom moves 1/2 of skin

● Link-cells (bins):
Hockney, et al, J Comp Phys, 14, p 148 (1974)
grid simulation box into bins of size Rforce

each timestep: search 27 bins for neighbors

37Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Neighbor Lists (continued)

● Verlet list is ~6x savings over bins
Vsphere = 4/3 π r3

Vcube = 27 r3

● Fastest methods do both:
link-cell to build Verlet list
Verlet list on non-build timesteps
O(N) in CPU and memory
constant-density assumption
this is what LAMMPS implements

38Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS Input

● Reads an input script (ASCII text) via re-direction:
lmp_mac -echo screen -in in.colloid

● One command per line, acted on immediately

● Command name + arguments
atom_style molecular
read_data water.data
fix 1 all nve
run 10000

● Have doc pages for individual commands handy!

● Examples and bench sub-directories have sample input scripts

39Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Sample Input Script
3d Lennard-Jones melt

variable x index 20 # concept of variables
variable y index 20
variable z index 20

units lj
atom_style atomic

lattice fcc 0.8442
region box block 0 $x 0 $y 0 $z
create_box 1 box
create_atoms 1 box
mass 1 1.0

velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin
neigh_modify delay 0 every 20 check no

fix 1 all nve # concept of groups

run 100

40Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

LAMMPS Output

● log.lammps contains what is printed to screen
thermodynamic info
Pizza.py log tool, gnu tool, matlab tool

● "dump" command outputs snapshots of atom properties
default format is simple: id, type, x, y, z
other supported formats: XYZ, DCD, XTC
conversion tools: PDB, Ensight, XYZ, VTK

Rasmol, Raster3d, SVG, etc
Pizza.py dump tool, pdbfile tool, xyz tool, etc

41Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

Bundled Example Problems

● colloid: colloid system with explicit solvent (2d)
● crack: crack growth in a LJ crystal (2d)
● dipole: dipolar particles (2d)
● ellipse: ellipsoidal GayBerne particles (2d)
● flow: Couette/Poisseuille flow between walls (2d)
● friction: rubbing of 2 irregular surfaces (2d)
● indent: crystal response to spherical indenter (2d)
● meam: MEAM potential (3d)
● melt: LJ lattice (3d)
● micelle: self-assembly of tiny lipid molecules (2d)
● min: energy minimization of LJ melt (2d)
● nemd: non-equilibrium MD run with triclinic box (2d)
● obstacle: flow around obstacles (2d)
● peptide: small peptide chain in water (3d)
● pour: granular particle pour and flow (2d/3d)
● rigid: rigid bodies (3d)
● shear: shear of a metal slab with void (quasi-3d)

42Workshop on Computer Programming and
Advanced Tools for Scientific Research Work

lammps.sandia.gov

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	LAMMPS
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Pizza.py Screenshot
	Slide 13
	What’s an Algorithm?
	Timescale in Classical MD
	Particle-Time Metric
	Serial Performance
	Classical MD in Parallel
	Parallelism via Spatial-Decomposition
	LAMMPS Performance
	Slide 21
	Slide 22
	Extending LAMMPS
	"Fixes" are Flexible
	Hybrid Models
	Multiple Processor Partitions
	Parallel Tempering
	Coupling LAMMPS to Other Codes
	Classical MD Basics
	MD Timestep
	Computational Issues
	Level of Detail in Polymer Models
	Cutoff in Force Field
	Long-range Coulombics
	Parallel FFTs in LAMMPS
	Neighbor Lists
	Neighbor Lists (continued)
	LAMMPS Input
	Sample Input Script
	LAMMPS Output
	17 Example Problems
	Slide 42

