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LAMMPS is a Collaborative Project
A few lead developers and many significant contributors:

● Steve Plimpton, Paul Crozier, Aidan Thompson
(Sandia National Laboratory, Albuquerque NM)

- Roy Pollock (LLNL), Ewald and PPPM solvers
- Mike Brown (ORNL), GPU package
- Greg Wagner (Sandia), MEAM package for MEAM potential
- Mike Parks (Sandia), PERI package for Peridynamics
- Rudra Mukherjee (JPL), POEMS package for rigid body motion
- Reese Jones (Sandia), USER-ATC package for coupling to continuum
- Ilya Valuev (JIHT), USER-AWPMD package for wave-packet MD
- Christian Trott (Sandia), USER-CUDA package
- A. Jaramillo-Botero (Caltech), USER-EFF electron force field package
- Christoph Kloss (JKU), LIGGGHTS package for DEM and fluid coupling
- Metin Aktulga (LBL), USER-REAXC package for C version of ReaxFF
- Georg Gunzenmuller (EMI), USER-SPH package
- Axel Kohlmeyer (Temple U, ICTP), USER-OMP, USER-CG-CMM,
  USER-COLVARS, USER-MOLFILE packages, SMD and IMD support
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LAMMPS is an Extensible Project
● ~2300 C/C++/CUDA files, 50 Fortran files,

about 620,000 lines of code in core executable
● Only about 200 files are essential, about 530 

files are compiled by default, 1820 are optional
● Optional files are included through derived C++ 

classes, extra functionality in bundled libraries
● Three levels of “package support”:

– Core packages (officially supported)
– USER-<NAME> packages (supported by individuals)
– USER-MISC package (mixed bag of everything else)



Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

A Short History of LAMMPS

● Started around 1995 as a DOE/Industry 
partnership under the lead of Steve Plimpton

● Development used Fortran 77 until 1999
● Converted to Fortran 90 for dynamical memory 

management. Final Fortran version in 2001
● Current version is a complete rewrite in C++ 

merging in features from several MD codes 
written at Sandia (ParaDyn, Warp, GranFlow, 
GRASP) and many community contributions
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What LAMMPS Is

● Large-scale Atomic/Molecular Massively Parallel Simulator
(each word is an attribute)

● Three-legged stool, supported by force fields and methods:
one foot in biomolecules and polymers (soft materials)
one foot in materials science (solids)
one foot in mesoscale to continuum
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LAMMPS General Features

● Classical Molecular Dynamics (MD)

- runs on a single processor or in parallel
- distributed-memory message-passing parallelism (MPI)
- GPU (CUDA and OpenCL) and OpenMP support for many code features
- spatial-decomposition of simulation domain for parallelism
- open-source distribution
- highly portable C++
- optional libraries used: MPI, serial FFT, JPEG
- easy to extend with new features and functionality
- runs from an input script
- syntax for defining and using variables and formulas
- syntax for looping over runs and breaking out of loops
- run one or multiple simulations simultaneously (in parallel) from one script
- build as library, invoke LAMMPS through library interface
- Python wrapper included, combine with Pizza.py toolkit
- couple with other codes: LAMMPS calls other code,
   other code calls LAMMPS, or umbrella code calls both
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Particle and Model Types
● simple atoms, metals
● coarse-grained particles (e.g. bead-spring polymers)
● united-atom polymers or organic molecules
● all-atom polymers, organic molecules, proteins, DNA
● granular materials
● coarse-grained mesoscale models
● finite-size spherical and ellipsoidal particles
● finite-size line segment (2d) and triangle (3d) particles
● point dipolar particles
● rigid collections of particles
● hybrid combinations of these
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Force Fields
● Simple pairwise additive potentials: Lennard-Jones, Buckingham, Morse, 

Born-Mayer-Huggins, Yukawa, Soft, Class 2 (COMPASS), Mie, hydrogen 
bond, tabulated, Coulombic, point-dipole

● Manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), 
embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, 
AIREBO, ReaxFF, COMB, BOP

● Electron force fields: eFF, AWPMD
● Coarse-grained: DPD, GayBerne, REsquared, colloidal, DLVO, SDK
● Mesoscopic potentials: Granular media, Peridynamics, SPH
● Potentials for bond/angles/dihedrals: harmonic, FENE, Morse, nonlinear, 

Class 2, quartic (breakable), CHARMM, OPLS, cvff, umbrella
● implicit solvent potentials: hydrodynamic lubrication, Debye
● long-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to 

particle-mesh Ewald), Ewald/N for long-range Lennard-Jones
● hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can 

be used in one simulation
● overlaid potentials: superposition of multiple pair potentials
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Ensembles, Boundary Conditions
● 2d or 3d systems
● orthogonal or non-orthogonal (triclinic symmetry) simulation domains
● constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators
● thermostatting options for groups and geometric regions of atoms
● pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 

dimensions, coupled and uncoupled
● simulation box deformation (tensile and shear)
● harmonic constraint forces, collective variables (MTD, ABF, SMD)
● rigid body constraints
● SHAKE bond and angle constraints
● bond breaking, formation, swapping
● walls of various kinds
● non-equilibrium molecular dynamics (NEMD)
● Properties and manipulations can be controlled by custom functions 
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Methods
● Integrators:

● Velocity Verlet, r-RESPA multi-timestepping, 
Brownian dynamics, rigid bodies

● Energy minimization with various algorithms
● Multi-replica methods:

● Nudged-elastic band
● Parallel replica dynamics
● Temperature accelerated MD
● Parallel tempering MD
● Split short-range / long-range force computation
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Not so Common Features

● generalized aspherical particles
● stochastic rotation dynamics (SRD)
● real-time visualization and interactive MD
● atom-to-continuum coupling with finite elements
● coupled rigid body integration via the POEMS library
● grand canonical Monte Carlo insertions/deletions
● Direct Simulation Monte Carlo for low-density fluids
● Peridynamics mesoscale modeling
● targeted and steered molecular dynamics
● two-temperature electron model
● On-the-fly parallel processing of data (direct and via rerun)
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Pizza.py Companion Toolkit

● Each tool is a 
Python class

● Use multiple tools 
simultaneously 
from command-
line, scripts, or 
GUIs

● Tools for building 
LAMMPS input, 
reading LAMMPS 
output, conversion, 
analysis, plotting, 
viz, etc

● GUI-based tool to 
run a LAMMPS 
simulation in real-
time ...
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LAMMPS for Outreach
The Nano Dome

● Single person immersive, stereo-3d, haptic, and 
interactive simulation/visualization environment

● Combines HPC, visualization, molecular 
simulation, virtual reality, and STEM outreach 
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What’s an Algorithm?
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Timescale in Classical MD

● Timescale of simulation is most serious bottleneck in MD
● Timestep size limited by atomic oscillations:

● C-H bond = 10 fmsec  ½ to 1 fmsec timestep
● Debye frequency = 1013  2 fmsec timestep

● Reality is often on a much longer timescale:
● protein folding (msec to seconds)
● polymer entanglement (msec and up)
● glass relaxation (seconds to decades)
● nanoparticle rheology (milliseconds to seconds)

● Even smaller timestep in tight-binding or quantum-MD
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Particle-Time Metric

● Atom * steps = size of your simulation

● 1012 is supercomputer scale  106 atoms for 106 timesteps
2 months on a 1.7 GHz Pentium (simple LJ system)
few hours on 100s of processors

● 1 cubic micron (1010 atoms) for a nanosecond (106 steps)
1000 flops per atom per step  1019 flops
MD is 10% of peak  1 day on a Petaflop machine
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Serial Performance

● Low-level data structures
C-like, Fortran-like
x[N][3] = coordinates = 3N contiguous memory locations
one simulation allocates many atom-based arrays

● Neighbor lists
O(N) binning
Verlet list with skin, stored in large “pages” of integers
keep for 10-20 steps
biggest memory requirement in code

● Performance is same as C and same as Fortran
we don’t do things that slow down pair and neighbor routines
people do care how fast your code is
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Classical MD in Parallel

● MD is inherently parallel
forces on each atom can be computed simultaneously
X and V can be updated simultaneously

● Most widely used MD codes are parallelized via distributed-
memory message-passing style parallelism

● MPI    www-unix.mcs.anl.gov/mpi
assembly-language of parallel computing
lowest-common denominator
most portable
runs on all parallel machines:

SMP shared-memory
     hybrids = multi-node with multiple procs or cores / node 
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Parallelism via Spatial-
Decomposition

● Physical domain divided into 3d boxes, one per processor
● Communication of “ghost” atoms via

nearest-neighbor 6-way stencil 
● Each processor computes forces on atoms in its box
● Atoms "carry along" molecular topology

as they migrate to new procs

● Work hard for optimal scaling:
  N/P so long as load-balanced

● Computation scales as  N/P
● Communication scales

sub-linear as  (N/P)2/3

(for large problems)
● Memory scales as  N/P
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LAMMPS Performance

● Fixed-size (32K atoms) & scaled-size 
(32K/proc) parallel efficiencies

● Protein (rhodopsin) in solvated lipid bilayer 

● Billions of atoms on 64K procs of Blue Gene or 
Red Storm

● Opteron speed: 4.5E-5 sec/atom/step (12x for 
metal, 25x for LJ)
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OpenMP/MPI Scaling on Cray XT5

27 63 148 345 805 1878
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OpenMP+MPI Best Effort vs. MPI
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Extending LAMMPS

● In hindsight, this is best feature of LAMMPS
> 80% of code is “extensions”

● Easy for us and others to add new features (“style”)
new particle types
new force fields
new computations (T, per-atom stress, ...)
new fix (BC, constraint, integrator, diagnostic, ...)
new input command (read_data, velocity, run, ...)

● Adding a feature only requires 2 lines in a header file and recompiling
# include "pair_airebo.h"
PairStyle ( airebo, PairAIRebo )

● Enabled by C++
virtual parent class for all styles, e.g. pair potentials
defines interface the feature must provide
compute(), init(), coeff(), restart(), etc
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• Define particle attributes

• Loop over timesteps:

communicate ghost atoms

build neighbor list (once in a while)

compute forces

communicate ghost forces

output to screen and files

"Fixes" are Flexible

• Define particle attributes mass, x, v, f, charge, bonds, angles,

orientation, torque, dipole, shear history, ...

• Loop over timesteps:
fix_initial NVE, NVT, NPT, rigid-body integration 

communicate ghost atoms
fix_neighbor insert particles

build neighbor list (once in a while)

compute forces

communicate ghost forces
fix_force SHAKE, langevin drag, wall, spring, gravity

fix_final NVE, NVT, NPT, rigid-body integration

fix_end volume & T rescaling, diagnostics

output to screen and files

• Fixes operate on sub-groups of atoms, add per-atom storage,

communicate, write status to restart file, ...
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Hybrid Models
● Water/proteins on metal/silica surface
● Metal-semiconductor interface
● Metal islands on amorphous

 (LJ) substrate
● Specify 2 (or more) pair

 potentials:
A-A, B-B, A-B, etc

● Overlay potentials:
add explicit h-bonds
add coulomb 

● Hybrid in two ways:
potentials (pair, bond, etc)
atom style (bio, metal, etc)

   
Seel and Webb, SNL
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Multiple Processor Partitions
● Command-line switch:

mpirun -np 32 lmp_ibm -partition 8x4 -in in.temper
partition your 32 procs into 8 4-processor partitions

● "Variable", "loop", "jump" commands in input script 
variable loop t 250.0 300.0 350.0 400.0
fix 1 all nvt $t $t 0.01

● Run 8 different simulations simultaneously
at different temperatures
from different input scripts

● Run 100 simulations one after the other on 8 partitions

● Run 8 simulations with loose coupling  parallel tempering
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Parallel Tempering

● More efficient sampling of polymer/protein conformations

● Every 100 steps:
pair up ensembles
attempt a temperature swap
Monte Carlo accept/reject

● Need overlapping energy histograms

● Unstuck from energy minima

● Each ensemble cycles up and down thru temperatures
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Coupling LAMMPS to Other 
Codes

● Method 1:   MD is the driver
MD  FE
enabled by fixes, link to external library
coupled rigid body solver from RPI

● Method 2:   Other code is the driver
FE  MD
build LAMMPS as a library
call from C++, C, Fortran
low-overhead to run MD in spurts
invoke low-level ops (get/put coords)

● Method 3:   Umbrella code is the driver
Umbrella code calls MD and FE
RPI group linking LAMMPS to their FE codes for deformation 
problems
could run LAMMPS on P procs, FE on Q procs, talk to each other

● Challenge:  balance the computation so both codes run efficiently
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Classical MD Basics
● Each of N particles is a point mass

atom
group of atoms (united atom)
macro- or meso- particle

● Particles interact via empirical force laws
all physics in energy potential  force
pair-wise forces (LJ, Coulombic)
many-body forces (EAM, Tersoff, REBO)
molecular forces (springs, torsions)
long-range forces (Ewald)

● Integrate Newton's equations of motion
F = ma
set of N, coupled ODEs
advance as far in time as possible

● Properties via time-averaging ensemble snapshots (vs MC sampling)
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MD Timestep

● Velocity-Verlet formulation:
update V by ½ step (using F)
update X (using V)
build neighbor lists (occasionally)
compute F (using X)
apply constraints & boundary conditions (on F)
update V by ½ step (using new F)
output and diagnostics

● CPU time break-down:
forces = 80%
neighbor lists = 15%
everything else = 5%
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Computational Issues

● These have a large impact on CPU cost of a simulation:

Level of detail in model
Cutoff in force field
Long-range Coulombics
Neighbor lists

Newton's 3rd law (compute on ghost atoms, but more 
communication)
Timestep size (vanilla, SHAKE, rRESPA)
Parallelism (already discussed)
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Level of Detail in Polymer Models
● All-atom:

∆ t = 0.5-1.0 fmsec for C-H
C-C distance = 1.5 Angs
cutoff = 10 Angs

● United-atom:
# of interactions is 9x less
∆ t = 1.0-2.0 fmsec for C-C
cutoff = 10 Angs
20-30x savings over all-atom

● Bead-Spring:
2-3 C per bead
∆ t  fmsec mapping is T-dependent
21/6 σ cutoff  8x in interactions
can be considerable savings over united-atom

● "Eternity" vs "Near-eternity" vs "Not quite possible"
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Cutoff in Force Field

● Forces = 80% of CPU cost
● Short-range forces  O(N) scaling for classical MD

constant density assumption
pre-factor is cutoff-dependent

● # of pairs/atom = cubic in cutoff
2x the cutoff  8x the work

● Use as short a cutoff as can justify:
LJ = 2.5σ (standard)
all-atom and UA = 8-12 Angstroms
bead-spring = 21/6 σ (repulsive only)
Coulombics = 12-20 Angstroms
solid-state (metals) = few neighbor shells (due to screening)

● Test sensitivity of your results to cutoff
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Long-range Coulombics

● Systems that need it:
Charged polymers (polyelectrolytes)
Organic & biological molecules
Ionic solids
Not metals (screening)

● Computational issue:
Coulomb energy only falls off as 1/r

● Options:
cutoff scales as N (scales N3 with cutoff),

but large contribution at 10 Angs
Ewald scales as N3/2

particle-mesh Ewald scales as Nlog2N

multipole scales as N (but large prefactor)
multigrid scales as N (but large prefactor)
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Parallel FFTs in LAMMPS

● 3d FFT is 3 sets of 1d FFTs
in parallel, 3d grid is distributed across procs
1d FFTs on-processor
native library or FFTW (www.fftw.org)
multiple "transposes" of 3d grid
data transfer can be costly

● FFTs for PPPM can scale poorly
on large # of procs and on clusters

● Good news: Cost of PPPM is only ~2x more than 8-10 Ang cutoff
● Analytic differentiation (1/3rd the FFTs), hybrid OpenMP/MPI,

split-Verlet method to counter scaling issues
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Neighbor Lists
● Problem: how to efficiently find neighbors within cutoff?
● Simple solution:

for each atom, test against all others
O(N2) algorithm

● Verlet lists:
Verlet, Phys Rev, 159, p 98 (1967)
Rneigh = Rforce + ∆ skin

build list: once every few timesteps
other timesteps: scan thru larger list

for neighbors within force cutoff
rebuild list: any atom moves 1/2 of skin

● Link-cells (bins):
Hockney, et al, J Comp Phys, 14, p 148 (1974)
grid simulation box into bins of size Rforce

each timestep: search 27 bins for neighbors



37Workshop on Computer Programming and 
Advanced Tools for Scientific Research Work

Neighbor Lists (continued)

● Verlet list is ~6x savings over bins
Vsphere = 4/3 π r3

Vcube = 27 r3

● Fastest methods do both:
link-cell to build Verlet list
Verlet list on non-build timesteps
O(N) in CPU and memory
constant-density assumption
this is what LAMMPS implements
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LAMMPS Input

● Reads an input script (ASCII text) via re-direction:
lmp_mac -echo screen -in in.colloid

● One command per line, acted on immediately

● Command name + arguments
atom_style molecular
read_data water.data
fix 1 all nve
run 10000

● Have doc pages for individual commands handy!

● Examples and bench sub-directories have sample input scripts
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Sample Input Script
# 3d Lennard-Jones melt

variable        x index 20 # concept of variables
variable        y index 20
variable        z index 20

units           lj
atom_style      atomic

lattice         fcc 0.8442
region          box block 0 $x 0 $y 0 $z
create_box      1 box
create_atoms    1 box
mass            1 1.0

velocity        all create 1.44 87287 loop geom
pair_style      lj/cut 2.5
pair_coeff      1 1 1.0 1.0 2.5

neighbor        0.3 bin
neigh_modify    delay 0 every 20 check no

fix             1 all nve # concept of groups

run             100
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LAMMPS Output

● log.lammps contains what is printed to screen
thermodynamic info
Pizza.py log tool, gnu tool, matlab tool

● "dump" command outputs snapshots of atom properties
default format is simple: id, type, x, y, z
other supported formats: XYZ, DCD, XTC
conversion tools: PDB, Ensight, XYZ, VTK

Rasmol, Raster3d, SVG, etc
Pizza.py dump tool, pdbfile tool, xyz tool, etc
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Bundled Example Problems

● colloid: colloid system with explicit solvent (2d)
● crack: crack growth in a LJ crystal (2d)
● dipole:             dipolar particles (2d)
● ellipse: ellipsoidal GayBerne particles (2d)
● flow: Couette/Poisseuille flow between walls (2d)
● friction: rubbing of 2 irregular surfaces (2d)
● indent: crystal response to spherical indenter (2d)
● meam: MEAM potential (3d)
● melt: LJ lattice (3d)
● micelle: self-assembly of tiny lipid molecules (2d)
● min: energy minimization of LJ melt (2d)
● nemd: non-equilibrium MD run with triclinic box (2d)
● obstacle: flow around obstacles (2d)
● peptide: small peptide chain in water (3d)
● pour: granular particle pour and flow (2d/3d)
● rigid: rigid bodies (3d)
● shear: shear of a metal slab with void (quasi-3d)
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lammps.sandia.gov
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