
Scientific Software projects: my modest
experience with quantum ESPRESSO

P. Giannozzi

Università di Udine and IOM-Democritos, Trieste, Italy

20 March 2013

– Typeset by FoilTEX –

Quick introduction to quantum ESPRESSO

In the following I am concentrating on free/open-source scientific

software projects. The project I have been working on, quantum

ESPRESSO, (quantum-espresso.org) performs electronic-structure

calculations from first principles, with applications in condensed-matter

physics, chemistry, biology, engineering, materials science.

quantum ESPRESSO is not a very big project, involving

• a hard-to-quantify number of developers: about a few tens;

• an even harder-to-quantify number of users: a few hundreds research

groups, O(1000) individuals subscribed to the mailing list;

• no less than 300K lines of ”core” code (mostly Fortran-95, some C).

It is not small either, though!

http://www.quantum-espresso.org

Scientific software vs other software

Free/open source scientific software differs from other kinds of software

in several important respects:

• Software is the mean, not the goal. Nobody works just for better

software; the goal is better science (or better jobs, see later).

• Little help is coming from outside. Scientific software is mostly

written by scientists working in the field. The role of other people in

development is limited, although sometimes very useful.

• Developers are amateurs programmers. Scientists can be really awful

programmers: bound to old habits, skeptical about new techniques,

knowing little to nothing about software engineering.

More sources of trouble in scientific software

• Most development done by people on short-term positions. Typically

post-docs or graduate students, who have a more pressing task than

software (or even science): finding the next job. A lot of effort is

spent, and sometimes wasted, in taking over half-baked work.

• Funding for software development erratic to non-existent. No way

to convince funding agencies that scientific software is an important

tool that must be properly developed and maintained: you have to

promise flashy things (new sources of energy, new electronic devices,

cures for cancer/hemorrhoids/stupidity...), with very few exceptions.

• Too many people reluctant to contribute: “I have done something

that gives me a competitive edge, why should I contribute it?”, or

the ever-green “I have no time”, are too-frequent afterthoughts.

The ultimate source of trouble in scientific software

Development of really new and important stuff may take years (and

this wouldn’t be a problem) and it is very often done working on code

versions that are obsolete by the time the development is completed.

Backporting changes done in an archaic code version to a much more

recent version takes a disproportionate amount of time and effort.

Sometimes it is done anyway, more often than not it isn’t. Eventually

the software forks into many incompatible and incomplete versions ...

Fighting fragmentation was one of the original motivations to start the

PWscf code that later became part of quantum ESPRESSO.

A few ideas (but confused)

• We shouldn’t make life too hard for those who contribute: let’s avoid

Soviet-style central planning and strict programming rules

• Let’s introduce methods, tools and techniques that are common

in more organized open-source software projects. SCM (Source

Configuration Management) software like CVS or SVN allows

– to keep track of everything that has been done since the beginning

– to have a unified code base, with “branches” if needed

– to make “stable” releases so that development can go on almost

continuously while still guaranteeing some stability and reliability

• Let’s proceed smoothly, with incremental changes, keeping input and

output compatibility with previous releases as much as possible.

QE as a distribution

QE is not organized as a monolithic code, but it is rather a distribution

(integrated suite) of “packages” that can be installed on demand and

with varying degrees of integration. It is possible to contribute:

• a small (or large) piece of code to an existing package; or

• a new package that uses QE as a library; or

• a “plugin” that modifies QE, adding a new functionality; or

• a new “external” package that just reads data file produced by QE.

Next slides courtesy of Filippo Spiga.

The#development#model#

•  QUANTUM#ESPRESSO#is#notamonolithic$applica=on,#but#an#integrated#ecosystem#
thriving#around#a#small#number#of#core#components#developed#and#maintained#by#
a#small#number#of#developers#

•  the#ecosystem#is#designed#so#as#to#be#alien:friendly:#a#number#of#third6party$QE6
compa=ble$applica=ons$and$add6ons,#o`en#designed#to#be#code:agnosQc,#are#
distributed#with#QE#(notable#examples#include#wannier90,#yambo,#EPW,#WanT,#
XCrysDen,#...)#

•  the#environment#that#allows#the#ecosystem#to#prosper#is#provided#by#the#QE:
FORGE.ORG#plaporm,#freely$available$to#researchers#and#developers#from#all#over#
the#world#

6#

Quantum#ESPRESSO#package#porpolio#

7#

CORE$$
modules$

CP#PWscf#
Atomic#

NEB#
PWCOND#PHonon#

TDDFPT#
GWW#GPAW#

Xspectra#

SaX#
WanT# Wannier90# PLUMED#

YAMBO#

CVS and SVN

CVS (Concurrent Version System) has been the first Source

Configuration Management software used in QE (it was a big step

forward!). More recently we moved to SVN: more modern and powerful,

has interface with git and other fancy stuff, but it is still simple enough

for non-geeks (e.g. physicists). Current organization:

• trunk: development goes on here – open read-only to everybody

• branches: major new developments, disruptive changes, very

experimental features, things that have a long time before being

released (if ever) ... – branches may or may not be public

• external: packages that are be developed in a separate SVN trunk can

be downloaded into the main QE trunk – access may be restricted to

specific (usually expert) developers.

Development environment: QE-forge

Download space, CVS/SVN, mailing lists, forums, bug tracking, ...

Releases

Release early, release often (open-source conventional wisdom). Releases

are labelled as N.M.p, where N=major, M=minor, p=bugfix.

• Major: when something really important changes, e.g.

1. First public release of PWscf

2. Conversion from f77 to f90

3. Merge with the CP and FPMD codes (quantum ESPRESSO)

4. New XML-based data file format

5. Major package and directory reorganization

• Minor: when some important new functionality is being added

• Bugfix: only bug fixes; occasionally, minor new functionalities that

don’t break any existing one are allowed to sneak into a bugfix release.

Release F.A.Q.’s

• Who decides when and how a release is done? Informal discussions

on the developers mailing list

• What happens then? Development of new stuff is temporarily

stopped: nothing new or potentially ”dangerous” is added, and

all attention is dedicated to fix bugs and to stabilize the distribution

• Are all packages released at the same time? Not necessarily:

”external” packages can be independently released, as long as there

is no compatibility problem; all others are typically released together

Future directions

In order to simplify and make more effective the development, and to

reduce ”long-range” unintended effects of modifications that affect in a

hard to guess other parts of the code, it is planned to

• transform quantum ESPRESSO into a library, with a set of well-

defined API’s (Application Programming Interface)

or maybe more realistically:

• better document what each routine does, reducing in the process

their size and the number of things they do.

