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Building up an influenza model* "¢
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Synthetic Population

Person = Each agent is
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Communities
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Agent Movement

(Applies to an
epidemic RO =
1.9)

Homes

30%
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Workplaces

" = [ ] I 37%

16% infections in schools
21% infections in workplaces

Schools
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Reference:

Ferguson N, Cummings DAT, Fraser C, Cajka JC, Cooley
PC, Burke DS. Strategies for mitigating an influenza
pandemic. Nature. July 27, 2006; 442:448-452.



The Entire United States
Approximately 300 Million Agents (74 — 300 GB)
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Multi-Threaded ABM NV PSC

PA Model Parallel Speedup (Total Running Time)
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/El Combination of serial memory performance enhancements and OpenMP
5 implementation lead to dramatic performance enhancements.
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Q PA model: US model:

= 12 Million Agents 300 Million Agents

Before (Single Thread): 2 hours Before (Single Thread): 90 hours
After (8 Threads): 220 secs After (16 Threads): 3.7 hours
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Brown et al. BMC Public Health 2011, 11:353

http://www.biomedcentral.com/1471-2458/11/353 BMC
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RESEARCH ARTICLE Open Access

Would school closure for the 2009 H1N1
influenza epidemic have been worth the cost?: a
computational simulation of Pennsylvania

Shawn T Brown'?", Julie HY Tai'? Rachel R Bailey'?, Philip C Cooley®, William D Wheaton®, Margaret A Potter’,
Ronald E Voorhees'*, Megan LeJeune'*”, John J Grefenstette', Donald S Burke', Sarah M McGlone'” and
Bruce Y Lee'?

Abstract

Background: During the 2009 H1N1 influenza epidemic, policy makers debated over whether, when, and how
long to close schools. While closing schools could have reduced influenza transmission thereby preventing cases,
deaths, and health care costs, it may also have incurred substantial costs from increased childcare needs and lost
productivity by teachers and other school employees.

Methods: A combination of agent-based and Monte Carlo economic simulation modeling was used to determine
the cost-benefit of closing schools (vs. not closing schools) for different durations (range: 1 to 8 weeks) and
symptomatic case incidence triggers (range: 1 to 30) for the state of Pennsylvania during the 2009 H1N1 epidemic.
Different scenarios varied the basic reproductive rate (Ro) from 1.2, 1.6, to 2.0 and used case-hospitalization and
case-fatality rates from the 2009 epidemic. Additional analyses determined the cost per influenza case averted of
implementing school closure.

Results: For all scenarios explored, closing schools resulted in substantially higher net costs than not closing schools.
For Ry =12, 1.6, and 2.0 epidemics, closing schools for 8 weeks would have resulted in median net costs of $21.0 billion
(95% Range: $8.0 - $45.3 hillion). The median cost per influenza case averted would have been $14,185 (55,423 -
$30,565) for Ry = 1.2, $25,253 (59,501 - $53,461) for Ry = 1.6, and $23,483 ($8,870 - $50,926) for Ry = 2.0.

Conclusions: Our study suggests that closing schools during the 2009 HIN1 epidemic could have resulted in
substantial costs to society as the potential costs of lost productivity and childcare could have far outweighed the

cost savings in preventing influenza cases.

VPSC
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Incidence
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Individual School Closures of Varied Length for the State of
Pennsylvannia During an Influenza Pandemic of RO = 1.7

Increasing the length of the school
closure gives an overall reduction in the
incidence of the pandemic. |If schools
are no closed for long enough, the
pandemic regains a foothold in the

population.

Attack Rates:

No Closure 38.02%

1 Week 38.12%

2 Weeks 37.66%

4 Weeks 35.99%

6 Weeks 32.65%
e===No Closure 8 Weeks 26.60%
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Economic Impact of School Closure Y PSC

PITTSBURGH SUPERCOMPUTING CENTER
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Total Cost Estimates of Disease and School Closure

B Cost of School Closure B Cost of Disease

$50,000

o Costpisease =
Costinfluenza - attributable Absenteeism + COStinfluenza - attributable Mortality

$30,000

+CoStinfluenza - attributable Health Care Costs

$20,000

Net total cost (million US dollars)
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Assisting Government with HIN1 Planning NV PSC

2009 : 2010

University of
Pittsburgh

Influenza Task

Washington,
DC

Nov Dec
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Visualizing the Epidemic Peak
in Washington DC -- Four Scenarios

Maryland

District of ColumbigyWashington
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CLARA — Modeling Dengue Y PSC

Dengue

Mosquito-borne virus
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Modeling Vaccine Supply Chains
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HERMES VISION VPSC

Data on Supply
Chain Structure,
Storage Locations,
Transport,
Capacities,
Personnel, etc.

Create a freely available and user-
friendly software tool for decision
makers to generate an interactive

4L simulation model of any supply chain
(= a virtual laboratory).
input deck Supn
chain Economic
HERMES
' 2

Discrete

event
simulation
model of

supply

chain

OPTIMIZE
supply

Supply
chain
performance

_ chain
metrics

costing tool

MIDAS ‘E\\ﬁ http://vaccinemodeling.org/hermes
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1 5 « Additional storage and transport
J | * Additional storage and transport requirements for planned vaccine
5 requirements for planned vaccine introductions (PCV and Rotavirus)
= introductions (PCV and Rotavirus)

8 _ _ « Impact of implementation of the
—. | * Restructuring the suply chain (e.g. moving warehouse transport system
g removing the regional level) in Saint Louis Region

& |+ Impact of changing from a 10 dose «  Restructuring the suply chain (e.g.
= measles vial to a 5, 2 or single dose removing the regional and district
g presentation. levels)

o)

= * In-country hands-on training

workshop with HERMES tool with
OPTMIZE
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Thailand

Chad

« Additional storage and transport
requirements for planned vaccine

introductions (PCV and Rotavirus
« Additional storage and transport ( )

requirements for planned vaccine

 |mpact of changing from 10 dose
introductions (PCV) P ging

measles vaccine to single dose

Kenya Vietnam

« Additional storage and transport
requirements for planned vaccine

- Additional storage and transport introductions (PCV and Rotavirus)

requirements for planned vaccine

introductions (PCV and Rotavirus) = In~countryihands-on fraining

workshop with HERMES tool with
OPTMIZE.




Benin

Working with WHO, UNICEF, BMGF, GAVI,
PATH, and Transaid to advise the Beninese
government on how to improve their supply
chain

Not able to introduce needed Rotavirus and
Meningococcal vaccines due to constraints
in the current supply chain.

Coping, ad hoc transport to compensate for
bottlenecks.

Workshop in September to develop
recommendations for improving

} ‘
|

& & performance.
L qportorNovg, Lagos o
Kiomsaganl- (I Government decided to pursue a
4 S i o o consolidation of the Commune Level to a

© 2012 Google
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s, VECNet — Providing Cyberinfrastructure for the ¢
Eradication of Malaria A PSC

VECNet Schematic: Digital Library:
Year 1 Data Cube, Simulation Input/Output,
Databases, Documents

High-Level View

Back End
Services:
Front End Model

Services: Simulations,

Web GUI, Analysis
Basic Analysis Compute Tasks, buildings
o o A - } N 56.04
Specification Commissioner Data ‘ ‘

Visualization

N\
\

. Middleware Services

\
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\ Apollo: Providing Standard Webservice YV PSC
: Infrastructure for Decision Making

Creating an ontology for computational
epidemiology

EODS . Standard API to allow multiple tools to connect
isease Surveillance

Interoperability to create an end-to-end decision
making platform.
1 Anthrax
\ compartment model

4
3
o
S
FRED
Apollo-WS Client A
. . ; pollo-WS /\
(simple web interface (Web Service) <
to run models) .
s Q
BARD
\\
o
s
GAIA \9
(visualization) Influenza SEIR

http://code.google.com/p/apollo/



MIDAS Software Sharing and Information Outreach Network

4 Leverage
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MIDAS Software Sharing and Information Outreach Network
http://mission.midas.psc.edu
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The University of Pittsburgh MIDAS COE
Computational Core supports...

Gaining understanding through visualization

Getting needed vaccines to children

Creating communities through cyberinfrastructure and technology
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