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Fig. 1.1. The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states, the photon and the Z boson can also be exchanged
via the t-channel. The contribution of Higgs boson exchange diagrams is negligible.
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Fig. 1.2. The hadronic cross-section as a function of centre-of-mass energy. The solid line is the prediction of the SM, and the points are the
experimental measurements. Also indicated are the energy ranges of various e+e− accelerators. The cross-sections have been corrected for the
effects of photon radiation.

centre-of-mass energies of approximately 91 GeV, close to the mass of the Z boson.1 Fig. 1.2 illustrates two prominent
features of the hadronic cross-section as a function of the centre-of-mass energy. The first is the 1/s fall-off, due to
virtual photon exchange, corresponding to the left-hand diagram in Fig. 1.1, which leads to the peak at low energies.
The second is the peak at 91 GeV, due to Z exchange, which corresponds to the right-hand diagram of Fig. 1.1, and
allows LEP and SLC to function as “Z factories”.

The LEP accelerator operated from 1989 to 2000, and until 1995, the running was dedicated to the Z boson region.
From 1996 to 2000, the centre-of-mass energy was increased to 161 GeV and ultimately to 209 GeV allowing the
production of pairs of W bosons, e+e− → W+W−, as indicated in Fig. 1.2. Although some results from this later
running will be used in this report, the bulk of the data stems from the Z period. When needed, the Z period will be
denoted “LEP-I”, and the period beginning in 1996 “LEP-II”. During the seven years of running at LEP-I, the four
experiments ALEPH [7], DELPHI [8], L3 [9] and OPAL [10] collected approximately 17 million Z decays in total,
distributed over seven centre-of-mass energy points within plus or minus 3 GeV of the Z-pole.

The SLC accelerator started running in 1989 and the Mark-II collaboration published the first observations of Z
production in e+e− collisions [11]. However, it was not until 1992 that longitudinal polarisation of the SLC electron
beam was established. By then the SLD detector [12,13] had replaced Mark-II. From 1992 until 1998, when the
accelerator was shut down, SLD accumulated approximately 600 thousand Z decays. Although the data set is much

1 In this report h̄ = c = 1.
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Figure 13: The CLs values for the SM Higgs boson hypothesis as a function of the Higgs boson
mass in the range 110–145 GeV. The background-only expectations are represented by their
median (dashed line) and by the 68% and 95% CL bands.

7.1 Significance of the observed excess

The consistency of the observed excess with the background-only hypothesis may be judged
from Fig. 14, which shows a scan of the local p-value for the 7 and 8 TeV data sets and their
combination. The 7 and 8 TeV data sets exhibit an excess of 3.2 s and 3.8 s significance, re-
spectively, for a Higgs boson mass of approximately 125 GeV. In the overall combination the
significance is 5.0 s for mH = 125.5 GeV. Figure 15 gives the local p-value for the five decay
modes individually and displays the expected overall p-value.

The largest contributors to the overall excess in the combination are the gg and ZZ decay
modes. They both have very good mass resolution, allowing good localization of the invariant
mass of a putative resonance responsible for the excess. Their combined significance reaches
5.0 s (Fig. 16). The WW decay mode has an exclusion sensitivity comparable to the gg and ZZ
decay modes but does not have a good mass resolution. It has an excess with local significance
1.6 s for mH ⇠ 125 GeV. When added to the gg and ZZ decay modes, the combined signifi-
cance becomes 5.1 s. Adding the bb and tt channels in the combination, the final significance
becomes 5.0 s. Table 6 summarises the expected and observed local p-values for a SM Higgs
boson mass hypothesis of 125.5 GeV for the various combinations of channels.

Table 6: The expected and observed local p-values, expressed as the corresponding number of
standard deviations of the observed excess from the background-only hypothesis, for mH =
125.5 GeV, for various combinations of decay modes.

Decay mode/combination Expected (s) Observed (s)
gg 2.8 4.1
ZZ 3.6 3.1
tt + bb 2.4 0.4
gg + ZZ 4.7 5.0
gg + ZZ + WW 5.2 5.1
gg + ZZ + WW + tt + bb 5.8 5.0

The global p-value for the search range 115–130 (110–145) GeV is calculated using the method
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Gauge sector of SM on tree level is given 
by 3 free parameters, e.g.: α, MZ, GF  

Vector and axial-vector couplings for Z  ff in SM: 
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4.1 Formalism and Observables 12

primary goal of experiments and phenomenological analysis has been moved from CKM parameter
determination to the detection of new physics via inconsistencies in the CKM phase determination.
The relatively young field of neutrino oscillation measurements on the contrary does not yet provide
significant overconstraints of the neutrino flavour mixing matrix.

In the following we revisit the global electroweak fit at the Z-mass scale using the Gfitter package.
We recall the relevant observables, their SM predictions, perform fits under various conditions,
and discuss the results.

4.1 Formalism and Observables

The formal analysis of this section is placed within the framework of the SM. The electroweak
fit focuses on the parameters directly related to the Z and W boson properties, and to radiative
corrections to these, providing the sensitivity to heavy particles like the top quark and the Higgs
boson. The floating parameters of the fit are the Higgs and Z-boson masses, the c, b, and t-quark
masses, as well as the electromagnetic and strong coupling strengths at the Z pole. Most of these
parameters are also directly constrained by measurements included in the fit.

We have put emphasis on the completeness of the information given in this paper, with a large
part of the relevant formulae quoted in the main text and the appendices. Readers seeking for
a more pedagogical introduction are referred to the many excellent reviews on this and related
topics (see, e.g., Refs. [25, 26, 56, 57]). Section 4.1.1 provides a formal introduction of tree-level
relations, and quantum loop corrections sensitive to particles heavier than the Z. The observables
used in the global fit and their SM predictions are summarised in Section 4.1.2 and Section 4.1.3
respectively. Theoretical uncertainties are discussed in Section 4.1.4.

4.1.1 Standard Model Tree-Level Relations and Radiative Corrections

The tree-level vector and axial-vector couplings occurring in the Z boson to fermion-antifermion

vertex ifγµ(g
(0)
V ,f + g(0)

V ,fγ5)fZµ are given by16

g(0)
V ,f ≡ g(0)

L,f + g(0)
R,f = If3 − 2Qf sin2 θW , (8)

g(0)
A,f ≡ g(0)

L,f − g(0)
R,f = If3 , (9)

where g(0)
L(R),f are the left-handed (right-handed) fermion couplings, and Qf and If3 are respectively

the charge and the third component of the weak isospin. In the (minimal) SM, containing only
one Higgs doublet, the weak mixing angle is defined by

sin2 θW = 1−
M2

W

M2
Z

. (10)

16Throughout this paper the superscript ’(0)’ is used to label tree-level quantities.
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Electroweak radiative corrections modify these relations, leading to an effective weak mixing angle
and effective couplings

sin2θfeff = κfZ sin2 θW , (11)

gV ,f =
√

ρfZ

(

If3 − 2Qf sin2θfeff

)

, (12)

gA,f =
√

ρfZI
f
3 , (13)

where κfZ and ρfZ are form factors absorbing the radiative corrections. They are given in Eqs. (59)
and (60) of Appendix A.3. Due to non-zero absorptive parts in the self-energy and vertex correction
diagrams, the effective couplings and the form factors are complex quantities. The observable
effective mixing angle is given by the real parts of the couplings

Re(gV ,f )

Re(gA,f )
= 1− 4|Qf | sin2θfeff . (14)

Electroweak unification leads to a relation between weak and electromagnetic couplings, which at
tree level reads

GF =
πα

√
2(M (0)

W )2
(

1− (M
(0)
W )2

M2
Z

) . (15)

Radiative corrections are parametrised by multiplying the r.h.s. of Eq. (15) with the form factor
(1−∆r)−1. Using Eq. (10) and resolving for MW gives

M2
W =

M2
Z

2



1 +
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√
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GFM2
Z



 . (16)

The form factors ρfZ , κ
f
Z and ∆r depend nearly quadratically on mt and logarithmically on MH .

They have been calculated including two-loop corrections in the on-shell renormalisation scheme
(OMS) [58–60], except for b quarks where an approximate expression, including the full one-loop
correction and the known leading two-loop terms ∝ m4

t , is provided. The relevant formulae used in
this analysis are summarised in Appendix A.3. Since ∆r also depends on MW an iterative method
is needed to solve Eq. (16). The calculation of MW has been performed including the complete one-
loop correction, two-loop and three-loop QCD corrections of order O(ααS) and O(αα2

s), fermionic
and bosonic two-loop electroweak corrections of order O(α2), and the leading O(G2

FαSm4
t ) and

O(G3
Fm

6
t ) three-loop contributions [11–13]. Four-loop QCD corrections have been calculated for

the ρ-parameter [61–63]. Since they affect the W mass by 2 MeV only, they have been neglected
in this work.

For the SM prediction of MW we use the parametrised formula [11]

MW = M ini
W − c1 dH− c2 dH

2 + c3 dH
4 + c4(dh− 1)− c5 dα+ c6 dt

− c7 dt
2 − c8 dHdt + c9 dhdt− c10 dαS + c11 dZ , (17)

with

dH = ln

(
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100 GeV

)

, dh =

(
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100 GeV

)2

, dt =
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174.3 GeV

)2
− 1 ,

dZ =
MZ

91.1875 GeV
− 1 , dα =

∆α(M2
Z)

0.05907
− 1 , dαS =

αS(M2
Z)

0.119
− 1 ,

Electroweak unification connects the 
electromagnetic and the weak coupling 
strengths

with the weak mixing angle:
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A...and MW can be expressed in terms of 
MZ and GF

Electroweak sector of SM is given by three free 
parameters, for example α, GF and MZ
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 which is 19σ away from the experimental 
value obtained by combining all asymmetry 
measurements:  

Radiative corrections –                             
modifying propagators and vertices 

Significance of radiative corrections 
can be illustrated by verifying tree level 
relation:  

  
sin2θW =1−

MW
2

MZ
2

  

MW = (80.399±0.023) GeV
MZ = (91.1875±0.0021) GeV

 one predicts:   

•  Using the measurements: 

  sin2θW = 0.23151±0.00011

  sin2θW = 0.22284±0.00045

Radiative Corrections
Modification of propagators and 
vertices

‣ Parametrisation of radiative corrections: 
electroweak form factors ρ, κ, Δr

‣ Effective couplings at the Z-pole:

‣ Mass of the W boson:

sin2 ✓fe↵ = f
Z sin2 ✓W

gV,f =
q

⇢fZ

⇣
If3 � 2Qf sin2 ✓fe↵

⌘

gA,f =
q
⇢fZI

f
3

‣ ρ, κ, Δr depend nearly quadratically on mt and logarithmically on MH

Precision tests and constraints of the SM
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Fig. 1.16. Comparison of direct and indirect determinations of the mass of the top quark, mt , as a function of time. The shaded area denotes the
indirect determination of mt at 68% confidence level derived from the analysis of radiative corrections within the framework of the SM using
precision electroweak measurements. The dots with error bars at 68% confidence level denote the direct measurements of mt performed by the
Tevatron experiments CDF and D]. Also shown is the 95% confidence level lower limit on mt from the direct searches before the discovery of the
top quark. Predictions and measurements agree well.

arising from ambiguities in the theoretical definition of the pseudo-observables are discussed in Section 2.4.4, and
quantified in Table 2.8.

In the same spirit, the contribution of the 4-fermion process e+e− → Z → Z∗H → ffH entering the fermion-pair
samples used for analysis should be negligible. The limit of mH > 114.4 GeV [39] established by the direct search
for the Higgs boson at LEP-II ensures that this is in fact the case. Only when hypothetical Higgs masses well below
the experimental limit are considered in the course of exploring the full parameter-space of the SM must allowances
be made for the treatment of such ZH contributions [29], both in the experimental analyses and in the theoretical
calculations.

1.6. Interpretation and impact of the results

This paper aims to be an authoritative compendium of the properties of the Z boson derived from precise electroweak
measurements performed at LEP-I and SLC. These properties, based on !2 combinations [40] of the results of five
experiments described in detail in this paper, are largely independent of any model, and represent a comprehensive
distillation of our current knowledge of the Z pole.

Since these observed properties are found to be in good agreement with expectations of the SM, we leave theoret-
ical speculations which go beyond the SM context to others. We first focus on comparing the Z-pole data with the
most fundamental SM expectations (lepton universality, consistency between the various manifestations of
sin2 "W, etc.).

We then assume the validity of the SM, and perform fits which respect all the inter-relationships among the mea-
surable quantities which it imposes. These fits find optimum values of the SM parameters, and determine whether
these parameters can adequately describe the entire set of measurements simultaneously. At first we restrict the
set of measurements to the Z-pole results presented here, and later extend the analysis to a larger set of relevant
electroweak results, including the direct measurements of the top quark and W boson masses. This expanded set
of measurements yield the narrowest constraints on the mass of the only particle of the SM not yet observed: the
Higgs boson.

The LEP/SLC era represents a decade of extraordinary progress in our experimental knowledge of electroweak
phenomena. It is the goal of the remainder of this paper to demonstrate in detail how the LEP/SLD measurements
confront the theory of the SM much more precisely than previous experiments. The mass of the Z is now one of the

Electroweak Fits
Electroweak Fits to precision data have a long tradition

‣ Huge amount of work to precisely understand loop corrections in 
the SM - can only outline a few of the recent results here

‣ Most observables known at least in two-loop order, sometimes 
leading order terms of higher order corrections available

‣ Parametrisation of computationally intensive results used in fits

‣ Precision measurements crucial, after the LEP/SLC era results from 
Tevatron and LHC become available

Electroweak Fits routinely performed 
by many groups

• TOPAZ0 (G. Passarino et al.)
• LEP EWWG, using ZFITTER (D. Bardin et al.) 
• GAPP (J. Erler)
• Gfitter (M. Baak et al.)
• ...
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Figure 4: Indirect determination of the Higgs boson mass: ∆χ2 as a function of MH for the standard fit
(top) and the complete fit (bottom). The solid (dashed) lines give the results when including (ignoring)
theoretical errors. Note that we have modified the presentation of the theoretical uncertainties here with
respect to our earlier results [1]. Before, the minimum χ2

min of the fit including theoretical errors was used
for both curves to obtain the offset-corrected∆χ2. We now individually subtract each case so that both ∆χ2

curves touch zero. In spite of the different appearance, the theoretical errors used in the fit are unchanged
and the numerical results, which always include theoretical uncertainties, are unaffected.

EW Fits and the Higgs Boson
Closing in on the Higgs Boson

‣ Final word from LEP/SLC in 2006

‣ Precision data at the Z-pole

‣ Direct limits:  MH > 114.4 GeV (LEP-II)

‣ Indirect determination: 
MH  = 129 +74 GeV

Experimental Limits at high values 
of MH become available

‣ First exclusion limits from the Tevatron

‣ Limits incorporated in EW fits

‣ Indirect determination: 
MH  = 120 +12 GeV

Gfitter group, EPJC 72, 2003 (2012)
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8.7. Discussion

The global #2/dof of the SM fit is 18.3/13, corresponding to a probability of 15%. Predictions for the individual
measurements entering this analysis and the resulting pulls contributing to the global #2 are reported in Table 8.4.
Predictions of many other observables within the SM framework are reported in Appendix G. The pulls of the measure-
ments are also shown in Fig. 8.14. Here, the pull is defined as the difference between the measured and the predicted
value, in units of the measurement uncertainty, calculated for the values of the five SM input parameters in the minimum
of the #2.

The largest contribution to the overall #2, 2.8 standard deviations, has already been discussed in Section 7.3.1,
namely the b quark forward–backward asymmetry measured at LEP-I. Two other measurements, the hadronic pole

The LEP EWWG, Phys. Rep. 427, 257 (2006)
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The Gfitter Project
A Generic Fitter Project for 
HEP Model Testing

Gfitter Software 

‣ Modular framework based on C++, xml, python and ROOT

‣ Core packages for data handling, fitting and statistics tools

Gfitter Features

‣ Consistent treatment of statistical, systematic and theoretical uncertainties 
• correlations and inter-parameter dependencies taken into account
• theoretical uncertainties handled with Rfit prescription: included in χ2 

estimator with flat likelihood in allowed ranges

‣ Several fitting tools available
• Minuit, genetic minimisation, simulated annealing... (via TMVA)

• Full statistical analysis possible
• parameter scans, p-values, MC tests, goodness-of-fit...

www.cern.ch/gfitter

6Roman Kogler The global electroweak SM fit 

[The Gfitter group, EPJ C60, 543 (2009), EPJC 72, 2003 (2012)]

http://www.cern.ch/Gfitter
http://www.cern.ch/Gfitter


The Gfitter SM Package
A Gfitter package for the global 
electroweak fit

‣ Implementation of SM predictions of all available precision observables

‣ State of the art calculations used 
parametrisations: considerable speed improvement, agreement with exact 
calculations to high accuracy 

• The mass of the W boson MW [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]

• The effective weak mixing angle sin2θleff [M. Awramik et al., JHEP 11, 048 (2006), 
M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]

• Partial and total widths of the Z, total width of the W [Cho et. al, arXiv:1104.1769]

• hadronic Z width [P. A. Baikov et al., arXiv:1201.5804]

• Electroweak two-loop corrections to Rb [Freitas et al., arXiv:1205.0299]

‣ Free fit parameters:  MZ, MH, Δαhad(5)(MZ), αs(MZ), mc,  mb,  mt

‣ Scale parameters for theoretical uncertainties:  ΔMW,  Δsin2θleff 

7Roman Kogler The global electroweak SM fit 
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www.cern.ch/gfitter
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Observables and Calculations
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“It doesn't matter how beautiful your theory 
is, it doesn't matter how smart you are. If it 
doesn't agree with experiment, it's wrong.” 

(Richard P. Feynman)



Measurements at the Z-Pole
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Total cross section

‣ Express in terms of partial decay width of initial and final state

�Z
ff̄ = �0

ff̄

s�2
Z

(s�M2
Z)

2 + s2�2
Z/M

2
Z

1

RQED
with �0

ff̄ =
12⇡

M2
Z

�ee�ff̄

�2
Z

Corrected for QED radiation
‣ Full width: �Z = �ee + �µµ + �⌧⌧ + �had + �inv

‣ Highly correlated set of parameters

Less correlated set of parameters

‣ Z mass and width:  MZ ,  ΓZ 

‣ Hadronic pole cross section

‣ Three leptonic ratios (lepton univ.) 

‣ Hadronic width ratios

�0
had = 12⇡/M2

Z · �ee�had/�
2
Z

R0
` = R0

e = �had/�ee

�
= R0

µ = R0
⌧

�

R0
b , R

0
c

The ALEPH, DELPHI, L3, OPAL and SLD Collaborations / Physics Reports 427 (2006) 257 –454 261
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f

Fig. 1.1. The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states, the photon and the Z boson can also be exchanged
via the t-channel. The contribution of Higgs boson exchange diagrams is negligible.
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Fig. 1.2. The hadronic cross-section as a function of centre-of-mass energy. The solid line is the prediction of the SM, and the points are the
experimental measurements. Also indicated are the energy ranges of various e+e− accelerators. The cross-sections have been corrected for the
effects of photon radiation.

centre-of-mass energies of approximately 91 GeV, close to the mass of the Z boson.1 Fig. 1.2 illustrates two prominent
features of the hadronic cross-section as a function of the centre-of-mass energy. The first is the 1/s fall-off, due to
virtual photon exchange, corresponding to the left-hand diagram in Fig. 1.1, which leads to the peak at low energies.
The second is the peak at 91 GeV, due to Z exchange, which corresponds to the right-hand diagram of Fig. 1.1, and
allows LEP and SLC to function as “Z factories”.

The LEP accelerator operated from 1989 to 2000, and until 1995, the running was dedicated to the Z boson region.
From 1996 to 2000, the centre-of-mass energy was increased to 161 GeV and ultimately to 209 GeV allowing the
production of pairs of W bosons, e+e− → W+W−, as indicated in Fig. 1.2. Although some results from this later
running will be used in this report, the bulk of the data stems from the Z period. When needed, the Z period will be
denoted “LEP-I”, and the period beginning in 1996 “LEP-II”. During the seven years of running at LEP-I, the four
experiments ALEPH [7], DELPHI [8], L3 [9] and OPAL [10] collected approximately 17 million Z decays in total,
distributed over seven centre-of-mass energy points within plus or minus 3 GeV of the Z-pole.

The SLC accelerator started running in 1989 and the Mark-II collaboration published the first observations of Z
production in e+e− collisions [11]. However, it was not until 1992 that longitudinal polarisation of the SLC electron
beam was established. By then the SLD detector [12,13] had replaced Mark-II. From 1992 until 1998, when the
accelerator was shut down, SLD accumulated approximately 600 thousand Z decays. Although the data set is much

1 In this report h̄ = c = 1.
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Definition of Asymmetry

‣ Distinguish axial and axial-vector couplings of the Z

Af =
g2L,f � g2R,f

g2L,f + g2R,f

=
2gV,f gA,f

g2V,f + g2A,f

‣ Directly related to sin2 ✓ff̄e↵ =
1

4Qf

✓
1 +Re

✓
gV,f
gA,f

◆◆

Observables

‣ In case of no beam polarisation (LEP) 
use final state angular distribution to 
define forward/backward asymmetry

‣ Polarised beams (SLC): define left/right 
asymmetry

‣ Measurements: 

Af
LR =

Nf
L �Nf

R

Nf
L +Nf

R

1

h|P |ei

Af
FB =

Nf
F �Nf

B

Nf
F +Nf

B

A0,f
FB =

3

4
AeAf

A0,`
FB , A

0,c
FB , A

0,b
FB A`, Ac, Ab

A0
LR = Ae
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[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]
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A Standard Model Formulae

This section gives the relevant formulae for the calculation of the electroweak observables used in
the global electroweak fit. We discuss the scale evolution of the QED and QCD couplings and
quark masses, and give expressions for the electroweak form factors and radiator functions.

A.1 Running QED Coupling

The electroweak fit requires the knowledge of the electromagnetic couping strength at the Z-mass
scale to an accuracy of 1% or better. The evolution of α(s) versus the mass scale-squared s is
conventionally parametrised by

α(s) =
α(0)

1−∆α(s)
, (44)

following from an all-orders resummation of vacuum polarisation diagrams, sole contributors to
the running α. Here α = α(0) = 1/137.035 999 679(94) is the fine structure constant in the long-
wavelength Thomson limit [149], and the term ∆α(s) controls the evolution. It is conveniently
decomposed into leptonic and hadronic contributions

∆α(s) = ∆αlep(s) +∆α(5)
had(s) +∆αtop(s) , (45)

where the hadronic term has been further separated into contributions from the five light quarks
(with respect to MZ) and the top quark. The leptonic term in (45) is known up to three loops in
the q2 " m2

! limit [150]. The dominant one-loop term at the Z-mass scale reads

∆α(1-loop)
lep (M2

Z) = α
∑

!=e,µ,τ

(

−
5

9
+

1

3
ln

M2
Z

m2
!

− 2
m2

!

M2
Z

+O
(

m4
!

M4
Z

))

≈ 314.19 · 10−4 . (46)

Adding the sub-leading loops gives a total of ∆αlep(s) = 314.97·10−4 , with negligible uncertainty.46

The hadronic contribution for quarks with masses smaller than MZ cannot be obtained from per-
turbative QCD alone because of the low energy scale involved. Its computation relies on analyticity
and unitarity to express the photon vacuum polarisation function as a dispersion integral involving
the total cross section for e+e− annihilation to hadrons at all time-like energies above the two-
pion threshold. In energy regions where perturbative QCD fails to locally predict the inclusive
hadronic cross section, experimental data is used. The accuracy of the calculations has therefore
followed the progress in the quality of the corresponding data. Recent calculations improved the
precision by extending the use of perturbative QCD to energy regions of relatively low scales,
benefiting from global quark-hadron duality. For the fits in this paper we use the most recent

value, ∆α(5)
had(M

2
Z) = (276.8 ± 2.2) · 10−4, from Ref. [75]. The error is dominated by systematic

uncertainties in the experimental data used to calculate the dispersion integral. A small part
of the error, 0.14 · 10−4, is introduced by the uncertainty in αS(s) (the authors of [75] used the
value αS(M2

Z) = 0.1176 ± 0.0020 [151]). We include this dependence in the fits via the parameter
rescaling mechanism implemented in Gfitter (cf. Section 3).

46While the two-loop leptonic contribution of 0.78 · 10−4 is significant (roughly one third of the uncertainty in the
hadronic contribution), the third order term, 0.01 · 10−4, is very small,

Running of the EM coupling

‣ The EW fit requires precise knowledge of α(MZ) (better than 1%)

‣ Conventionally parametrised as (α(0) = fine structure constant)
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A Standard Model Formulae

This section gives the relevant formulae for the calculation of the electroweak observables used in
the global electroweak fit. We discuss the scale evolution of the QED and QCD couplings and
quark masses, and give expressions for the electroweak form factors and radiator functions.

A.1 Running QED Coupling

The electroweak fit requires the knowledge of the electromagnetic couping strength at the Z-mass
scale to an accuracy of 1% or better. The evolution of α(s) versus the mass scale-squared s is
conventionally parametrised by

α(s) =
α(0)

1−∆α(s)
, (44)

following from an all-orders resummation of vacuum polarisation diagrams, sole contributors to
the running α. Here α = α(0) = 1/137.035 999 679(94) is the fine structure constant in the long-
wavelength Thomson limit [149], and the term ∆α(s) controls the evolution. It is conveniently
decomposed into leptonic and hadronic contributions

∆α(s) = ∆αlep(s) +∆α(5)
had(s) +∆αtop(s) , (45)

where the hadronic term has been further separated into contributions from the five light quarks
(with respect to MZ) and the top quark. The leptonic term in (45) is known up to three loops in
the q2 " m2

! limit [150]. The dominant one-loop term at the Z-mass scale reads
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∑
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Z
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≈ 314.19 · 10−4 . (46)

Adding the sub-leading loops gives a total of ∆αlep(s) = 314.97·10−4 , with negligible uncertainty.46

The hadronic contribution for quarks with masses smaller than MZ cannot be obtained from per-
turbative QCD alone because of the low energy scale involved. Its computation relies on analyticity
and unitarity to express the photon vacuum polarisation function as a dispersion integral involving
the total cross section for e+e− annihilation to hadrons at all time-like energies above the two-
pion threshold. In energy regions where perturbative QCD fails to locally predict the inclusive
hadronic cross section, experimental data is used. The accuracy of the calculations has therefore
followed the progress in the quality of the corresponding data. Recent calculations improved the
precision by extending the use of perturbative QCD to energy regions of relatively low scales,
benefiting from global quark-hadron duality. For the fits in this paper we use the most recent

value, ∆α(5)
had(M

2
Z) = (276.8 ± 2.2) · 10−4, from Ref. [75]. The error is dominated by systematic

uncertainties in the experimental data used to calculate the dispersion integral. A small part
of the error, 0.14 · 10−4, is introduced by the uncertainty in αS(s) (the authors of [75] used the
value αS(M2

Z) = 0.1176 ± 0.0020 [151]). We include this dependence in the fits via the parameter
rescaling mechanism implemented in Gfitter (cf. Section 3).

46While the two-loop leptonic contribution of 0.78 · 10−4 is significant (roughly one third of the uncertainty in the
hadronic contribution), the third order term, 0.01 · 10−4, is very small,

‣ Evolution with renormalisation scale

‣ Leptonic term known up to three loops for q2 ≫ ml

‣ Top quark contribution known up to two loops, small:  −0.7⋅10−4

‣ Hadronic contribution difficult, cannot be obtained from pQCD alone

‣ analysis of low energy e+e− data

‣ usage of pQCD if lack of data

[M. Steinhauser, 
Phys. Lett. B429, 158 (1998)]
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Fig. 9 Compilation of recent results for aSM
µ (in units of 10−11),

subtracted by the central value of the experimental average [12, 68].
The shaded vertical band indicates the experimental error. The SM
predictions are taken from: this work (DHMZ 10), HLMNT (un-
published) [69] (e+e− based, including BABAR and KLOE 2010
π+π− data), Davier et al. 09/1 [15] (τ -based), Davier et al. 09/1 [15]
(e+e−-based, not including BABAR π+π− data), Davier et al.
09/2 [10] (e+e−-based including BABAR π+π− data), HMNT 07 [70]
and JN 09 [71] (not including BABAR π+π− data)

τ → π−π0ντ spectral function,9 while the four-pion cross
sections, obtained from linear combinations of the τ− →
π−3π0ντ and τ− → 2π−π+π0ντ spectral functions,10 are
only evaluated up to 1.5 GeV with τ data. Due to the lack of
statistical precision, the spectrum is completed with e+e−

data between 1.5 and 1.8 GeV. All the other channels are
taken from e+e− data. The complete lowest-order τ -based
result reads

ahad,LO
µ [τ ] = 701.5 ± 3.5 ± 1.9 ± 2.4 ± 0.2 ± 0.3, (23)

where the first error is τ experimental, the second estimates
the uncertainty in the isospin-breaking corrections, the third
is e+e− experimental, and the fourth and fifth stand for the
narrow resonance and QCD uncertainties, respectively. The
τ -based hadronic contribution deviates by 9.1 ± 5.0 (1.8σ )
from the e+e−-based one, and the full τ -based SM predic-
tion aSM

µ [τ ] = 11 659 189.4 ± 5.4 deviates by 19.5 ± 8.3
(2.4σ ) from the experimental average. The new τ -based re-
sult is also included in the compilation of Fig. 9.

9Using published τ → π−π0ντ spectral function data from
ALEPH [79], Belle [80], CLEO [81] and OPAL [82], and using the
world average branching fraction [62] (2009 PDG edition).
10Similar to Footnote 2, coarse isospin-breaking corrections with
100% uncertainty are applied to the four-pion spectral functions from
τ decays [16].

Fig. 10 Standard Gfitter electroweak fit result [66] (light shaded band)
and the result obtained for the new evaluation of ∆αhad(M

2
Z) (solid

(red) curve). The legend displays the corresponding five-quark contri-
bution, ∆α

(5)
had(M

2
Z), where the top term of −0.72 · 10−4 is excluded.

A shift of +12 GeV in the central value of the Higgs boson is observed

Running electromagnetic coupling at M2
Z The sum of all

hadronic contributions from Table 2 gives for the e+e−-
based hadronic term in the running of α(M2

Z)

∆αhad(M
2
Z) = (274.2 ± 1.0) · 10−4, (24)

which is, contrary to the evaluation of ahad,LO
µ , not dom-

inated by the uncertainty in the experimental low-energy
data, but by contributions from all energy regions, where
both experimental and theoretical errors have similar magni-
tude.11 The corresponding τ -based result reads ∆αhad(M

2
Z)

= (275.4 ± 1.1) · 10−4. As expected, the result (24) is
smaller than the most recent (unpublished) value from the
HLMNT group [69] ∆αhad(M

2
Z) = (275.2 ± 1.5) · 10−4.

Owing to the use of perturbative QCD between 1.8 and
3.7 GeV, the precision in (24) is significantly improved com-
pared to the HLMNT result, which relies on experimental
data in that domain.12

Adding the three-loop leptonic contribution, ∆αlep(M
2
Z)

= 314.97686 · 10−4 [83], with negligible uncertainties, one
finds

α−1(M2
Z

)
= 128.962 ± 0.014. (25)

The running electromagnetic coupling at MZ enters at
various levels the global SM fit to electroweak precision

11In the global electroweak fit both αS(MZ) and ∆αhad(M
2
Z) are

floating parameters (though the latter one is constrained to its phe-
nomenological value). It is therefore important to include their mu-
tual dependence in the fit. The functional dependence of the central
value of ∆αhad(M

2
Z) on the value of αS(M

2
Z) approximately reads

0.37 · 10−4 × (αS(M
2
Z) − 0.1193)/0.0028.

12HLMNT use perturbative QCD for the central value of the contribu-
tion between 1.8 and 3.7 GeV, but assign the experimental errors from
the BES measurements to it.



‣ Partial widths are defined inclusively: they contain QCD and QED 
contributions

Radiator Functions
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‣ Corrections can be expressed as radiator functions RA,f and RV,f

�ff̄ = Nf
c
GFM3

Z

6
p
2⇡

�
|gA,f |2RA,f + |gV,f |2RV,f

�2

‣ High sensitivity to the strong 
coupling αs

‣ Recently full four-loop calculation of 
QCD Adler function became 
available (N3LO)

‣ Much reduced scale dependence
‣ Theoretical uncertainty of 0.1 MeV, 

compare to experimental 
uncertainty of 2.0 MeV [P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]

[P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

3

with s2W = 0.231. The three terms in the brackets dis-
play separately non-singlet, axial singlet and vector sin-
glet contributions.

Let us now evaluate the impact of the newly calcu-
lated terms on the αs-determination from Z-decays. Fol-
lowing our approach for the non-singlet terms (where
a shift δαs = 0.0005 had been obtained [3], consis-
tent with an analysis [31] based on results of the elec-
troweak working group [1] and a modified interface to
ZFITTER v. 6.42 [32, 33] and confirmed by the G-fitter
collaboration [32,30,31]), we consider the quantity Rnc

as “pseudo-observable”. With a starting value Rnc =
20.9612, if evaluated for αs = 0.1190 and without the α4

s

singlet terms, a shift δαs = −0.00008 is obtained after
including the newly calculated contributions.

As discussed in [3], the non-singlet α4
s term leads to a

considerable stabilization of the theory prediction, and,
correspondingly, to a reduction of the theory error. A
similar statement holds true for the singlet contribution.
To illustrate this aspect, the dependence on the renor-
malization scale µ is shown in Fig. 2 for rNS, rVS and
rAS;t,b. The relative variation is significantly reduced in
all three cases. In particular for the vector singlet case
we observe a shift of the result by about a factor 1.45
(for µ = MZ) and a considerable flattening of the result.
Using for example the Principle of Minimal Sensitivity
(PMS) [35] as a guidance for the proper choice of scale,
µ = 0.3MZ seems to be favoured, leading to an amplifi-
cation of the LO result by a factor 1.68 (if the latter is
evaluated for µ = MZ , as done traditionally).

Let us assume that the remaining theory uncertainties
from rNS, rVS and rAS;t,b can be estimated by varying µ be-
tween MZ/3 and 3MZ and using the maximal variation
as twice the uncertainty δr. This leads to δΓNS = 0.101
MeV, δΓV

S = 0.0027 MeV and δΓA
S = 0.042 MeV. Even

adding these terms linearly, they are far below the exper-
imental error of δΓexp = 2.0 MeV [36]. In combination
with the quadratic and quartic mass terms, which are
known to O(α4

s) and O(α3
s) respectively, this analysis

completes the QCD corrections to the Z decay rate.

Let us also comment on the impact of the α4
s singlet

result on the measurement of Rem at low energies, i.e. in
the region accessible at BESS or at B-factories, say be-
tween 3 GeV and 10 GeV. Considering the large luminosi-
ties collected at these machines, a precise αs determina-
tion from Rem seems possible [38]. In the low energy re-
gion only rVS and rVNS contribute. Since

∑

f=u,d,s qf = 0,
the singlet contribution vanishes in the three flavour case.
If we consider the region above charm and below bottom
threshold, say at 10 GeV, only u, d, s and c quarks con-
tribute, the relative weight of the rVS in eq. (1) is given by
(
∑

qf )2/(
∑

q2f ) = 2/5, and thus is fairly suppressed. At
energy of 10 GeV, in the absence of open bottom quark
contribution, it seems appropriate to analyze the results

in an effective four flavour theory with

rVS = −0.41318 a3s(µ)− (5.1757 + 2.5824 lnµ2/s) a4s(µ).

As shown in Fig. 3, it is evident that the scale depen-
dence is softened in NLO. Again a scale µ around 0.3
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FIG. 2: Scale dependence of (a) non-singlet rNS, (b) vector
singlet r

V
S and (c) axial vector singlet r

A
S;t,b. Dotted, dash-

dotted, dashed and solid curves refer to O(αs) up to O(α4
s)

predictions. αs(MZ) = 0.1190 and nl = 5 is adopted in all
these curves.

O(αs3) O(αs4)

O(αs)

O(αs2)

[D. Bardin, G. Passarino, “The Standard 
Model in the Making”, Clarendon Press (1999)]



‣ Full EW one- and two-loop 
calculation of fermionic and bosonic 
contributions

‣ One- and two-loop QCD 
corrections and leading terms of 
higher order corrections

‣ Results for Δr include terms of order 
O(α), O(ααs), O(ααs2), O(α2ferm), 
O(α2bos), O(α2αsmt4), O(α3mt6)

‣ Uncertainty estimate:
• missing terms of order O(α2αs): 

about 3 MeV (from O(α2αsmt4))
• electroweak three-loop 

correction O(α3): < 2 MeV
• three-loop QCD corrections 

O(ααs3): < 2 MeV
• Total: δMW ≈ 4 MeV

Calculation of MW
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[M Awramik et al., Phys. Rev. D69, 053006 (2004)]

[M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ε-tensor contribution, which results, after contrac-
tion with the ε-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .
As mentioned above, we perform the renormaliza-

tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγZ and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].
2 An alternative way of achieving that the gauge-fixing sector

does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.
Concerning the mass renormalization of unstable

particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃
for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by

δ !M2
W,(2) =Re

{
ΣW
T,(2)

(
M2
W

)}
− δM2

W,(1) δZ
W
(1)

(5)+ Im
{
ΣW′
T,(1)

(
M2
W

)}
Im

{
ΣW
T,(1)

(
M2
W

)}
,

δ !M2
Z,(2) =Re{ΣZZ

T,(2)
(
M2
Z
)} − δM2

Z,(1) δZ
ZZ
(1)

+ M2
Z
4

(
δZ

γZ
(1)

)2 +
(
Im

{
Σ

γZ
T,(1)

(
M2
Z
)})2

M2
Z

(6)+ Im
{
ΣZZ′
T,(1)

(
M2
Z
)}
Im

{
ΣZZ
T,(1)

(
M2
Z
)}

,

where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

A. Freitas et al. / Physics Letters B 495 (2000) 338–346 343

contains the following contributions

!r = !r(α) + !r(ααs) + !r(αα2s )

(9)+ !r(Nfα
2) + !r(N2

f α
2),

where !r(α) is the one-loop result, Eq. (3), !r(ααs)

and !r(αα2s ) are the two-loop [10] and three-loop [11]
QCD corrections, while !r(Nfα

2) is the new elec-
troweak two-loop result. The notation (Nfα

2) symbol-
izes the contribution of all diagrams containing one
fermion loop, where Nf stands both for the top/bottom
contribution and for all light-fermion species. The
term !r(N2

f α
2) contains the pure fermion-loop contri-

butions in two-loop order. Since the pure fermion-loop
contributions in three- and four-loop order have been
found to be numerically small, as a consequence of
accidental numerical cancellations, with a net effect of
only about 1 MeV in MW (using the real-pole defi-
nition of the gauge-boson masses) [17], we have not
included them here.
In Fig. 3 the different contributions to!r are shown

as a function of MH. Here MW is kept fixed at its
experimental central value, MW = 80.419 GeV, and
mt = 174.3 GeV [34] is used. The effects of the QCD

corrections, of the two-loop corrections induced by a
resummation of !α, and of the purely electroweak
fermionic two-loop corrections are shown separately.
The purely electroweak two-loop contributions are
sizeable and amount to about 10% of the one-loop
result. We have compared the Higgs-mass dependence
of !r with the result previously obtained in Ref. [15]
and found perfect agreement.
The prediction for MW is obtained from the input

parameters by solving Eq. (2). Since!r itself depends
on MW this is technically done using an iterative
procedure. The prediction forMW based on the results
of Eq. (9) is shown in Fig. 4 as a function of MH
for mt = 174.3± 5.1 GeV [34] and !α = 0.05954±
0.00065 [35]. The current experimental value,Mexp

W =
80.419 ± 0.038 GeV [4], and the experimental 95%
C.L. lower bound on MH (MH = 107.9 GeV [36])
from the direct search are also indicated. The plot
shows the well-known preference for a light Higgs
boson within the SM. Confronting the theoretical
prediction (allowing a variation ofmt, which at present
dominates the theoretical uncertainty, and !α within
1σ ) with the 1σ region of M

exp
W and the 95% C.L.

lower bound on MH, only a rather small region in the

Fig. 3. Different contributions to !r as a function of MH. The one-loop contribution, !r(α) , is supplemented by the two-loop and three-loop
QCD corrections, !r

(α)
QCD ≡ !r(ααs) + !r(αα2s ), and the fermionic electroweak two-loop contributions, !r(α2) ≡ !r(Nfα

2) + !r(N2f α2). For

comparison, the effect of the two-loop corrections induced by a resummation of !α, !r
(α2)
!α , is shown separately.

A Freitas et al., Phys. Lett. B495, 338 (2000)]

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.
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‣ Effective mixing angle:

‣ Two-loop EW and QCD correction 
to Δκ known, leading terms of higher 
order QCD corrections

‣ fermionic two-loop correction about 
10−3, whereas bosonic one 10−5

‣ Uncertainty estimate obtained with 
different methods, geometric 
progression:
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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(a)

γ,Z
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W

(b)

W
W

W
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(c)
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(d)

γ,Z,W

Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θlept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.

– 4 –
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eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3
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s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results
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been known previously. Concerning the expansion in mt, the formally leading term of
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µm4
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Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θlept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θlept
eff will be discussed.

The quantum corrections to sin2 θlept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop
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JHEP11(2006)048

Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θlept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH
[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],
as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).
(b) Convergence of the expansion in m−2

t for the two-loop diagrams with top propagators. Here
∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and
the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-
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Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θlept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the
error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z ,

(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs =

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)
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rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.
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‣ Calculation of sin2θeff  for b-quarks 
more involved, because of top quark 
propagators in the Z→bb vertex

‣ Investigation of known discrepancy 
between sin2θeff from leptonic and 
hadronic asymmetry measurements

‣ Two-loop EW correction only 
recently completed, effect of O(10−4)

‣ Now sin2θbbeff known at the same 
order as sin2θeff for leptons and light 
quarks

‣ Uncertainty assumed to be of same 
size as for sin2θeff :
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Fig. 1. Set of Feynman diagrams required for the calculation of the fermionic two-loop corrections to the Zbb̄ vertex, but
absent in the sin2 θ

lept
eff case. Thick solid lines denote top-quark propagators, while thin lines represent light fermions.

For any two-loop problem, there are four regions to consider. Let k1 and k2 represent the internal
momenta in the loops and p stand for any external momentum, while m generically denotes all
masses that are small compared to mt , m < mt . In our case, m = MW,MZ . Then the four regions
can be identified as follows:

(1) k1 ∼ mt and k2 ∼ mt (expansions in small parameters: p and m),
(2) k1 ∼ m and k2 ∼ mt (expansions in small parameters: p, k1 and m),
(3) k1 ∼ mt and k2 ∼ m (expansions in small parameters: p, k2 and m),
(4) k1 ∼ m and k2 ∼ m (expansions in small parameters: p, k1, k2 and m).

This method allows us to represent two-loop vertex diagrams by a sum of simpler integrals,
namely two-loop propagator and vacuum integrals, plus one-loop integrals. However, higher
orders in the expansion lead to higher powers of propagator denominators in these integrals.
This is not a problem for one-loop or vacuum integrals, as analytic relations are well known;
for relations and references, see, for example, Ref. [16]. For two-loop propagator integrals, we
employ the Laporta algorithm, as proposed in Ref. [22]. This algorithm allows us to automatically
reduce complicated multi-loop integrals with non-trivial numerators to a smaller set of master
integrals with unit numerators. In addition to the well-known integration by parts relations [23],
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New Calculation of R0b

Full two-loop calculation of Z→bb̄

‣ The branching ratio R0b:  partial decay width of Z→bb and Z→qq¯ ¯
The branching ratio Rb is defined as the ratio of the partial decay widths of the Z-boson

decay into bottom quarks and into all quarks:

Rb ≡
Γb

Γhad
=

Γb

Γd + Γu + Γs + Γc + Γb
=

1

1 + 2(Γd + Γu)/Γb
, (3)

where Γf stands for the partial decay width into the f f̄ final state. In the last step in (3), the
relationships Γu ≈ Γc and Γd ≈ Γs have been used, which hold to very good approximation.

Up to next-to-next-to-leading order (q = u, d),
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with
G(n)

q = a(0)q a(n)q + v(0)q v(n)q , R(n)
q = (a(0)q )2R(n)

q,A + (v(0)q )2R(n)
q,V. (5)

Here R(n)
q,V and R(n)

q,A incorporate the n-loop QED and QCD corrections to the vector and
axial-vector form factors, which have been calculated already several years ago [23, 24], see
also Ref. [25]. The relevant parts for this calculation are given by
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‣ Two-loop corrections are comparable to experimental uncertainty (6.6⋅10−4)

MH O(α) + FSR1−loop O(α2
ferm) O(α2

ferm) + FSR>1−loop O(ααs,αα2
s)

[GeV] [10−3] [10−4] [10−4] [10−4]

100 −3.632 −6.569 −9.333 −0.404

200 −3.651 −6.573 −9.332 −0.404

400 −3.675 −6.581 −9.331 −0.404

600 −3.690 −6.580 −9.325 −0.404

1000 −3.711 −6.568 −9.306 −0.403

Table 3: Results for electroweak one- and two-loop corrections to Rb, as defined in eqs. (3,4),
for different values of MH. The other input values are taken from Tab. 1, with a fixed value
for MW. Also shown are the effects of two- and three-loop QCD corrections to the final state
(fourth column) and to gauge-boson selfenergies (fifth column). Here “FSR” stands for the
final-state radiative QCD and QED corrections described by the radiator functions R(n).

tree-level +O(α) O(α2
ferm) + FSR>1−loop

MH + FSR1−loop +O(ααs,αα2
s) total

[GeV] [10−4]

100 0.21562 −8.739 0.21475

200 0.21564 −8.706 0.21477

400 0.21565 −8.671 0.21479

600 0.21566 −8.655 0.21480

1000 0.21567 −8.640 0.21481

Table 4: Results for Rb, as in Table 3, but now with MW calculated from Gµ using the SM
prediction. The other input values are taken from Tab. 1.

by a simple parametrization formula:

Rb = R0
b + c1LH + c2L

2
H + c3L

4
H + c4(∆

2
H − 1) + c5∆α

+ c6∆t + c7∆tLH + c8∆αs
+ c9∆Z ,

(21)

with

LH = ln
MH

100 GeV
, ∆H =

MH

100 GeV
, ∆t =

( mt

173.2 GeV

)2
− 1,

∆α =
∆α

0.05900
− 1, ∆αs

=
αs(MZ)

0.1184
− 1, ∆Z =

MZ

91.1876 GeV
− 1. (22)

The numerical coefficients are determined by a fit to the full numerical result, which includes
all radiative corrections mentioned above: the complete O(α) and fermionic O(α2) contri-
butions to the Zff̄ vertex form factors, as well as virtual O(ααs) and O(αα2

s ) corrections
and final-state radiation of order O(αn

s ), (n = 1, 2, 3) and O(ααs). For the W -boson mass

8

1-loop EW and 
QCD correction 

to FSR

2-loop EW 
correction

2-loop EW and 
2+3-loop QCD 

correction to FSR

1+2-loop QCD 
correction to gauge 
boson selfenergies

[A. Freitas et al., JHEP 1208, 050 (2012)]
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‣ Contribution of same terms as in the calculation of sin2θbbeff 

→ cross-check the two results, found good agreement
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“There's two possible outcomes: if the 
result confirms the hypothesis, then you've 
made a discovery. If the result is contrary 
to the hypothesis, then you've made a 
discovery.” 

(Enrico Fermi)
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γγ→H
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 = 125.5 GeVH m

Figure 19: Values of s/sSM for the combination (solid vertical line) and for individual decay
modes (points). The vertical band shows the overall s/sSM value 0.87 ± 0.23. The symbol
s/sSM denotes the production cross section times the relevant branching fractions, relative to
the SM expectation. The horizontal bars indicate the ±1 standard deviation uncertainties on the
s/sSM values for individual modes; they include both statistical and systematic uncertainties.

This Year’s Discovery
ATLAS and CMS have reported the 
discovery of a new boson

‣ The cross section and branching ratios are 
compatible with the SM Higgs boson

‣ Measured mass:
ATLAS: 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV
CMS:    125.3 ± 0.4 (stat) ± 0.4 (sys) GeV

‣ Assume that it is the Higgs boson, then
MH = 125.7 ± 0.4 GeV

‣ Difference between fully uncorrelated and 
fully correlated systematic uncertainties: 
uncertainty on MH 0.4 → 0.5 GeV
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150 GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

The best-fit signal strength µ̂ is shown in Fig. 7(c) as
a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126 GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126 GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.

In order to test which values of the strength and
mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while

)µSignal strength (

    
   -1     0     1

    

Combined

 4l→ (*) ZZ→H 

γγ →H 
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Figure 10: Measurements of the signal strength parameter µ for
mH=126 GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .

Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-
tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.

The probability for a single Higgs boson-like particle
to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.

The contributions from the different production
modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.

Since there are four Higgs boson production modes at
the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µt  tH have been grouped together as they
scale with the t  tH coupling in the SM, and are denoted

19

The SM is for the first time fully 
overconstrained → test its consistency
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[ATLAS, Phys. Lett. B, 761, 1 (2012)]

[CMS, Phys. Lett. B, 761, 30 (2012)]



Experimental Input
Free Fit result Fit result Fit result incl. MHParameter Input value in fit incl. MH not incl. MH but not exp. input in row

MH [GeV](◦) 125.7± 0.4 yes 125.7± 0.4 94+25
−22 94+25

−22

MW [GeV] 80.385± 0.015 – 80.367± 0.007 80.380± 0.012 80.359± 0.011

ΓW [GeV] 2.085± 0.042 – 2.091± 0.001 2.092± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1878± 0.0021 91.1874± 0.0021 91.1983± 0.0116

ΓZ [GeV] 2.4952± 0.0023 – 2.4954± 0.0014 2.4958± 0.0015 2.4951± 0.0017

σ0
had [nb] 41.540± 0.037 – 41.479± 0.014 41.478± 0.014 41.470± 0.015

R0
! 20.767± 0.025 – 20.740± 0.017 20.743± 0.018 20.716± 0.026

A0,!
FB 0.0171± 0.0010 – 0.01627± 0.0002 0.01637± 0.0002 0.01624± 0.0002

A!
(") 0.1499± 0.0018 – 0.1473+0.0006

−0.0008 0.1477± 0.0009 0.1468± 0.0005(†)

sin2θ!eff(QFB) 0.2324± 0.0012 – 0.23148+0.00011
−0.00007 0.23143+0.00010

−0.00012 0.23150± 0.00009

Ac 0.670± 0.027 – 0.6680+0.00025
−0.00038 0.6682+0.00042

−0.00035 0.6680± 0.00031

Ab 0.923± 0.020 – 0.93464+0.00004
−0.00007 0.93468± 0.00008 0.93463± 0.00006

A0,c
FB 0.0707± 0.0035 – 0.0739+0.0003

−0.0005 0.0740± 0.0005 0.0738± 0.0004

A0,b
FB 0.0992± 0.0016 – 0.1032+0.0004

−0.0006 0.1036± 0.0007 0.1034± 0.0004

R0
c 0.1721± 0.0030 – 0.17223± 0.00006 0.17223± 0.00006 0.17223± 0.00006

R0
b 0.21629± 0.00066 – 0.21474± 0.00003 0.21475± 0.00003 0.21473± 0.00003

mc [GeV] 1.27+0.07
−0.11 yes 1.27+0.07

−0.11 1.27+0.07
−0.11 –

mb [GeV] 4.20+0.17
−0.07 yes 4.20+0.17

−0.07 4.20+0.17
−0.07 –

mt [GeV] 173.18± 0.94 yes 173.52± 0.88 173.14± 0.93 175.8+2.7
−2.4

∆α(5)
had(M

2
Z)

(#$) 2757± 10 yes 2755± 11 2757± 11 2716+49
−43

αS(M2
Z) – yes 0.1191± 0.0028 0.1192± 0.0028 0.1191± 0.0028

δthMW [MeV] [−4, 4]theo yes 4 4 –
δth sin2θ!eff

(#) [−4.7, 4.7]theo yes −1.4 4.7 –
(◦)Average of ATLAS (MH = 126.0± 0.4 (stat)± 0.4 (sys)) and CMS (MH = 125.3± 0.4 (stat)± 0.5 (sys)) measurements
assuming no correlation of the systematic uncertainties. (!)Average of LEP (A" = 0.1465 ± 0.0033) and SLD (A" = 0.1513 ±
0.0021) measurements, used as two measurements in the fit. (†)The fit w/o the LEP (SLD) measurement givesA" = 0.1474+0.0005

−0.0009

(A" = 0.1467+0.0006
−0.0004).

(#)In units of 10−5. ($)Rescaled due to αS dependency.

LHC

Tevatron

Tevatron

LEP

LEP

SLC

SLC

Free fit parameters:

‣ MZ,  MH,  Δαhad(5)(MZ),  αs(MZ),  
mc,  mb,  mt

‣ Scale parameters for theoretical 
uncertainties
δMW (4 MeV),  δsin2θleff (4.7･10-5)

——

Observables:

‣ Z-pole observables: LEP/SLD results
[ADLO+SLD, Phys. Rept. 427, 257 (2006)]

‣ MW and ΓW: LEP/Tevatron [arXiv:1204:0042]

‣ mt : Tevatron [arXiv:1207:1069]

‣ Δαhad(5)(MZ) [M. Davier et al., EPJC 71, 1515 (2011)]

‣ mc, mb: world averages 
[PDG, J. Phys. G33, 1 (2006)]

‣ MH : LHC [arXiv:1207.7214 , arXiv:1207.7235]

——
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Free Fit result Fit result Fit result incl. MHParameter Input value in fit incl. MH not incl. MH but not exp. input in row

MH [GeV](◦) 125.7± 0.4 yes 125.7± 0.4 94+25
−22 94+25

−22

MW [GeV] 80.385± 0.015 – 80.367± 0.007 80.380± 0.012 80.359± 0.011

ΓW [GeV] 2.085± 0.042 – 2.091± 0.001 2.092± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1878± 0.0021 91.1874± 0.0021 91.1983± 0.0116

ΓZ [GeV] 2.4952± 0.0023 – 2.4954± 0.0014 2.4958± 0.0015 2.4951± 0.0017

σ0
had [nb] 41.540± 0.037 – 41.479± 0.014 41.478± 0.014 41.470± 0.015

R0
! 20.767± 0.025 – 20.740± 0.017 20.743± 0.018 20.716± 0.026

A0,!
FB 0.0171± 0.0010 – 0.01627± 0.0002 0.01637± 0.0002 0.01624± 0.0002

A!
(") 0.1499± 0.0018 – 0.1473+0.0006

−0.0008 0.1477± 0.0009 0.1468± 0.0005(†)

sin2θ!eff(QFB) 0.2324± 0.0012 – 0.23148+0.00011
−0.00007 0.23143+0.00010

−0.00012 0.23150± 0.00009

Ac 0.670± 0.027 – 0.6680+0.00025
−0.00038 0.6682+0.00042

−0.00035 0.6680± 0.00031

Ab 0.923± 0.020 – 0.93464+0.00004
−0.00007 0.93468± 0.00008 0.93463± 0.00006

A0,c
FB 0.0707± 0.0035 – 0.0739+0.0003

−0.0005 0.0740± 0.0005 0.0738± 0.0004

A0,b
FB 0.0992± 0.0016 – 0.1032+0.0004

−0.0006 0.1036± 0.0007 0.1034± 0.0004

R0
c 0.1721± 0.0030 – 0.17223± 0.00006 0.17223± 0.00006 0.17223± 0.00006

R0
b 0.21629± 0.00066 – 0.21474± 0.00003 0.21475± 0.00003 0.21473± 0.00003

mc [GeV] 1.27+0.07
−0.11 yes 1.27+0.07

−0.11 1.27+0.07
−0.11 –

mb [GeV] 4.20+0.17
−0.07 yes 4.20+0.17

−0.07 4.20+0.17
−0.07 –

mt [GeV] 173.18± 0.94 yes 173.52± 0.88 173.14± 0.93 175.8+2.7
−2.4

∆α(5)
had(M

2
Z)

(#$) 2757± 10 yes 2755± 11 2757± 11 2716+49
−43

αS(M2
Z) – yes 0.1191± 0.0028 0.1192± 0.0028 0.1191± 0.0028

δthMW [MeV] [−4, 4]theo yes 4 4 –
δth sin2θ!eff

(#) [−4.7, 4.7]theo yes −1.4 4.7 –
(◦)Average of ATLAS (MH = 126.0± 0.4 (stat)± 0.4 (sys)) and CMS (MH = 125.3± 0.4 (stat)± 0.5 (sys)) measurements
assuming no correlation of the systematic uncertainties. (!)Average of LEP (A" = 0.1465 ± 0.0033) and SLD (A" = 0.1513 ±
0.0021) measurements, used as two measurements in the fit. (†)The fit w/o the LEP (SLD) measurement givesA" = 0.1474+0.0005

−0.0009

(A" = 0.1467+0.0006
−0.0004).

(#)In units of 10−5. ($)Rescaled due to αS dependency.
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Free Fit result Fit result Fit result incl. MHParameter Input value in fit incl. MH not incl. MH but not exp. input in row
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Global Fit: Results

Pull values after the fit

‣ Pull defined as 

‣ No pull value exceeds deviations of more 
than 3σ (good consistency of SM)

‣ Small values for MH, Ac, R0c, mc and mb 
indicate that their input accuracies exceed 
the fit requirements

‣ Largest deviations in the b-sector:
A0,bFB and R0b with 2.5σ and -2.4σ

P =
Ofit �Omeas

�meas

χ2min/ndf = 21.8/14 → p-value = 0.08

‣ large value of χ2min not due to inclusion of 
MH measurement

‣ without MH measurement: 
χ2min /ndf = 20.3/13 → naive p-value = 0.09
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Goodness of Fit
Toy analysis with 20000 toy experiments

‣ p-value: probability for getting χ2min, toy larger than χ2min from data

‣ p-value: probability for wrongly rejecting the SM: 0.07 ± 0.01 (theo)
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Global Fit: Results
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Scan of the Δχ2 profile versus MH

‣ blue line: full SM fit 

‣ grey band: fit without MH measurement

‣ fit without MH input gives 
MH = 94 +25 GeV 

‣ consistent within 1.3σ with measurement
−22

Tension (2.5σ) between A0,bFB, 
Alep(SLD) and MW visible

fit includes only the given observable

Determination of MH 

removing all sensitive 
observables except the given 
one: 
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0
hadσ and 0

l
SM fit with minimal input and R

 decays at 3NLO [Eur.Phys.J.C56,305 (2008)]τ from sα

αs(MZ) from Z→hadrons
‣ Determination of αs 

at NNNLO

‣ most sensitivity 
through total hadronic 
cross section σ0had 
and the partial 
leptonic width R0l

‣ Theory uncertainty 
obtained by scale 
variation, per-mille 
level

Improvement in precision only with ILC/GigaZ expected

↵s(MZ) = 0.1191 ± 0.0028 (exp.) ± 0.0001 (theo.)
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‣ Good agreement with value from τ decays, also at N3LO



Indirect Determination: W Mass
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G fitter SM

Sep 12Scan of the Δχ2 profile 
versus MW

‣ MH measurement allows for 
precise constraint of MW 

‣ also shown: SM fit with 
minimal input: 
MZ, GF, Δαhad(5)(MZ), αs(MZ), 
MH, mc, mb, mt

‣ Consistency between total fit and SM fit with minimal input

‣ Fit result for the indirect determination of MW:

3 Results 6
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Figure 2: Left: pull comparison of the fit results with the direct measurements in units of the experimental
uncertainty. Right: determination of MH excluding the direct MH measurements and all the sensitive
observables from the fit, except the one given. Note that the fit results shown are not independent.

The fit indirectly determines the W mass (cf. Fig. 3 – bottom left, blue band) to be

MW = 80.3593± 0.0056mt ± 0.0026MZ
± 0.0018

�↵had (2)

± 0.0017↵S ± 0.0002MH
± 0.0040

theo

, (3)

= 80.359± 0.011
tot

, (4)

which exceeds the experimental world average in precision. The di↵erent uncertainty contribu-
tions originate from the uncertainties in the input values of the fit as given in the second column
in Table 1. The dominant uncertainty is due to the top quark mass. Due to the weak, logarith-
mic dependence on MH the contribution from the uncertainty on the Higgs mass is very small
compared to the other sources of uncertainty. Note that in the Rfit scheme [17, 18] the treatment
of the theoretical uncertainty as uniform likelihood corresponds a linear addition of theoretical
and experimental uncertainties. Quadratic addition would give a total uncertainty in the MW

prediction of 0.008.

The indirect determination of the e↵ective weak mixing angle (cf. Fig. 3 – bottom right, blue

More precise than the direct measurements
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The Effective Weak Mixing
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LEP/SLD average [arXiv:0509008]

G fitter SM

Sep 12Scan of the Δχ2 profile 
versus sin2θleff
‣ all observables sensitive to 

sin2θleff removed from fit

‣ MH measurement allows for 
precise constraint of sin2θleff 

‣ also shown: SM fit with 
minimal input
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Figure 3: ��2 profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W
boson mass (bottom left) and the e↵ective weak mixing angle (bottom right). The data points placed along
��2 = 1 represent direct measurements of the respective observable and their ±1� uncertainties. The grey
(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.
For the blue bands as a function of mt, MW and sin2✓`

e↵

the direct measurements of the observable have
been excluded from the fit in addition (indirect determination). The solid black curves in the lower plots
represent the SM prediction for sin2✓`

e↵

and MW derived from the minimal set of input measurements, as
described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)
theoretical uncertainties in the fit.

band) gives

sin2✓`
e↵

= 0.231496± 0.000030mt ± 0.000015MZ
± 0.000035

�↵had (5)

± 0.000010↵S ± 0.000002MH
± 0.000047

theo

, (6)

= 0.23150± 0.00010
tot

, (7)

which is compatible and more precise than the average of the LEP/SLD measurements [9]. The
total uncertainty is dominated by that from �↵

had

and mt, while the contribution from the uncer-
tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties
would lead to a total uncertainty in the sin2✓`

e↵

prediction of 0.00007.

Finally, the top quark mass, cf. Fig. 3 (top right, blue band), is indirectly determined to be

mt = 175.8+2.7
�2.4 GeV , (8)

in agreement with the direct measurement and cross-section based determination (cf. Footnote 5).

More precise than the direct determination from LEP/SLD measurements
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‣ consistency with direct measurements

‣ MH measurement allows for better constraint of mt

3 Results 7
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Figure 3: ��2 profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W
boson mass (bottom left) and the e↵ective weak mixing angle (bottom right). The data points placed along
��2 = 1 represent direct measurements of the respective observable and their ±1� uncertainties. The grey
(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.
For the blue bands as a function of mt, MW and sin2✓`

e↵

the direct measurements of the observable have
been excluded from the fit in addition (indirect determination). The solid black curves in the lower plots
represent the SM prediction for sin2✓`

e↵

and MW derived from the minimal set of input measurements, as
described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)
theoretical uncertainties in the fit.

band) gives

sin2✓`
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= 0.231496± 0.000030mt ± 0.000015MZ
± 0.000035

�↵had (5)

± 0.000010↵S ± 0.000002MH
± 0.000047

theo

, (6)

= 0.23150± 0.00010
tot

, (7)

which is compatible and more precise than the average of the LEP/SLD measurements [9]. The
total uncertainty is dominated by that from �↵

had

and mt, while the contribution from the uncer-
tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties
would lead to a total uncertainty in the sin2✓`

e↵

prediction of 0.00007.

Finally, the top quark mass, cf. Fig. 3 (top right, blue band), is indirectly determined to be

mt = 175.8+2.7
�2.4 GeV , (8)

in agreement with the direct measurement and cross-section based determination (cf. Footnote 5).

Indirect Determination: Top Mass
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Scan of the Δχ2 profile versus mt

(Tevatron average: mt = 173.2 ± 0.9 GeV)

27Roman Kogler The global electroweak SM fit 



W and Top Mass
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68% and 95% CL contours of fit without using MW, mt (and MH)

‣ Impressive consistency of the SM

28Roman Kogler The global electroweak SM fit 



Oblique Parameters
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“A man should look for what is, and not 
for what he thinks should be.” 

(Albert Einstein)



Beyond the SM

62 Higgs Hunting – Orsay 2010 Andreas Hoecker   –   Electroweak Constraints on Higgs Boson 

At low energies, BSM physics appears 
dominantly through vacuum polarisation 
•  Aka, oblique corrections 

•  Direct corrections (vertex, box, brems-
strahlung) generally suppressed by mf / Λ 

Oblique corrections reabsorbed into 
electroweak parameters Δρ, Δκ, Δr  

Electroweak fit sensitive to BSM physics 
through oblique corrections 
•  In direct competition                                      

with Higgs loop                                    
corrections Z 

H 

Z 

µ

 A

ν

 B   
=  iΠAB={W ,Z ,γ }

µν (q)

•  Oblique corrections from New Physics  
described through STU parameters 
 [Peskin-Takeuchi, Phys. Rev. D46, 381 (1992)] 

•  Also considered: correction to Z → bb  
coupling, and extended parameters (VWX) 
 [Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)] 

 Omeas = OSM,ref(MH,mt) + cSS + cTT + cUU 

S :   (S+U) New Physics contributions  
 to neutral (charged) currents 

T :   Difference between neutral and  
  charged current processes –   
  sensitive to weak isospin violation 

U :   Constrained by MW and ΓW. Usually 
very small in NP models (often: U=0) 
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Constraints on S, T and U
S, T, U obtained by fit to EW 
observables

‣ SM reference chosen to be
MH,ref = 126 GeV
mt,ref  = 173 GeV

‣ this defines (0, 0, 0)

‣ S, T depend logarithmically on MH

‣ Fit result:
S = 0.03 ± 0.10
T = 0.05 ± 0.12
U = 0.03 ± 0.10
with large correlation between S and T

‣ Stronger constraints from fit with U=0

No indication of new physics
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The Future
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“Prediction is very difficult, especially
 if it concerns the future.”

(Niels Bohr)



ILC with GigaZ
A future linear collider would tremendously improve the precision of 
electroweak observables
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‣ Z peak measurements

• polarised beams, uncertainty δA0,fLR: 10−3 →10−4

translates to δsin2θleff : 10−4 → 1.3⋅10−5

• high statistics: 109 Z decays: δR0lep : 2.5⋅10−2 → 4⋅10−3

‣ tt threshold

• obtain mt indirectly from production cross section: δmt  = 1 → 0.1 GeV

—

‣ WW threshold

• from threshold scan: δMW  = 15 → 6 MeV
‣ Low energy data

• Δαhad: more precise cross section data for low energy 
(√s < 1.8 GeV) and around cc resonance (BES-III), 
improved αs, improvements in theory: 10−4 → 4.7⋅10−5

—



Prospects for ILC with GigaZ
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 = Rfit)theoδSM fit prediction using current uncertainties (

 = Rfit)theoδSM fit prediction using estimated GigaZ uncertainties (

 = Gauss)theoδSM fit prediction using estimated GigaZ uncertainties (

-3 10× = 4 lep
0Rδ,  -5 10×) = 1.3 2

eff
θsin(δ,  -5 10× = 4.7 hadαΔδ = 0.1 GeV,  tmδ = 6 MeV,  WMδFor GigaZ used: 

G fitter SM

N
ov 12

MHexp

in brackets 
the 4σ values

‣ no theory uncertainty:  MH = 94.2 +5.3 (+22.7 ) GeV

‣ Rfit scheme:                 MH = 92.3 +16.6 (+36.3) GeV −11.6

−5.0 −18.7

−23.3

αs(MZ) = 0.1190 ± 0.0005(exp) ± 0.0001(theo)‣ strong coupling:



Summary

Assuming the newly discovered boson is the SM Higgs

‣ all fundamental parameters of the SM are known

‣ possibility to overconstrain the SM at the electroweak scale

‣ global EW fit has been redone, with a p-value of 0.07

‣ small p-value comes mostly from R0b and A0,bFB 

Knowledge of MH allows for precision determinations of

‣ W mass, top mass, effective weak mixing angle sin2θleff

‣ detailed information in arXiv:1209.2716 and updates on 
www.cern.ch/gfitter

EW Fit allows to constrain many BSM models

‣ no signs of new physics from oblique parameters

‣ stay tuned for more results
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