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Exploring the phase space: fundamentals of statistical mechanics



A note on notations in the different talks: 
 
 
 

Quantity  This  Talk Alessandro Julian 

Free energy    

Configuration, 
point in the space 
of relevant 
coordinates 

   

Collective 
variables, order 
parameters 
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Microstates Macrostate 

Ensemble of ,  ,  

Statistical Mechanics 
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Microscopic view Macroscopic view 

Ludwig Boltzmann 
1844 – 1906 

Josiah Willard Gibbs 
1839 – 1903 
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Microstates Macrostate 

,  ,  
 degrees of freedom  degrees of freedom 8 



Characterizing a microstate 

Atom  has position  and momentum  

A system of  atoms is described by a point in  dimensional space  

1D Harmonic oscillator, 2D phase space: ;  

Source: Wikipedia 
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Characterizing a microstate 

Why is thinking in terms of the phase space useful? 

Phase space density  for a single microstate of  particles 

 

 
 

 

 

 

Dirac  function  

Note that 10 



Characterizing two microstates 

Why is thinking in terms of the phase space useful? 

Mixture of two single microstates: a statistical ensemble 
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Characterizing an ensemble of microstates 

      

 

 

 

 
 

 

Why is thinking in terms of the phase space useful? 

Mixture of an infinite number of microstates 

Useful to think about a single 
particle in 1 dimension first 
 

 

 

 

Observables are obtained as phase-space (ensemble) averages 
 

 

 

 is called a phase variable 
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Time evolution of : the Liouville theorem 

Hamilton’s equations of motion: 

 

 
 

 

Probability conservation  gives rise to the 
continuity equation 

 

 

From this we can derive the Liouville theorem 

 

  and   (   and  ) 
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e.g. harmonic 
oscillator 

The microcanonical ensemble: Equilibrium  

Equilibrium is stationary:  

 

 
 

 

 

 

Derivative vanishes if phase-space 
density is constant on 
 

 

All points in phase-space have equal 
weight 

   

Derivative, projected onto the 
surface of constant energy 
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The microcanonical ensemble: Equilibrium  

Equilibrium is stationary:  

This means: All points in phase-space have equal weight 
 
 

 

  

Phase space volume 

 

15 



Entropy 

All points in phase space have equal weight because we do not know 
anything about our system, except the total energy  

Is it possible to quantify our amount of knowledge? 

Entropy 
   
Properties: 1) Maximum for equal probabilities, 2) Not affected by 
states with zero probability, 3) Conditional probabilities 

 

Equilibrium phase-space density maximizes  under the constraint 
 

Equilibrium entropy:  
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Entropy 

Ensemble of a single harmonic oscillator  
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For the ideal gas  

In  dimension  equally weighted: 

 

 

 

 

 
 

 

In 2 dimensions  
 

 

The microcanonical ensemble: The ideal gas 
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The microcanonical ensemble: The ideal gas 

Two particles: 
Integrate out  

 

 

 

 

 

 
 

Not extremely useful for few 
degrees of freedom 

 

 

 

 

 

 

 

         

19 



The microcanonical ensemble: Coarse graining 

 particles: 

 

 
Find the probability distribution for  

Average over ; compute marginal probability distribution 

 

 

 
 

We get  
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Entropy depends on the observer! Divide the system into two parts 

 

 
 

 

 

 

 

Temperature, pressure, and chemical potential 

 

Energy , 
Volume ,

 particles 

 

 

 

Energy , 
Volume ,

 particles 

B A 
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Entropy depends on the observer! Divide the system into two parts 

 

 
 

 

 

 

 
 

Generally: 
 

 

B A 

 

Energy , 
Volume ,

 particles 

 

 

 

Energy , 
Volume ,

 particles 

 

 

Temperature, pressure, and chemical potential 
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Entropy depends on the observer! Divide the system into two parts 

 

 
 

 

 

 

 
 

Maximize  with respect to  

B A 

 

Energy , 
Volume ,

 particles 

 

 

 

Energy , 
Volume ,

 particles  

 

 

Temperature, pressure, and chemical potential 
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Probability densities 

Important: Carefully distinguish 

  

 

Phase space density 

Probability density that the system is in the particular 

state given by positions and momenta  

Marginal probability distribution 

Probability density that system is in any of the many 

states where the first particle has momentum   

 

Equilibrium phase space density 

Probability density that a system with energy  is in 

the state given by positions and momenta  

eq. 
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Probability densities and entropies 

Important: Carefully distinguish 

  

 

Nonequilibrium entropy 

 

Marginal probability distribution 

 

  

 

Equilibrium entropy 

 

 

 

eq. 
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The canonical ensemble 

Consider just a small part A of a large 
system A  B (i.e. ) 

Average over the boring part B 
 
 

 

Ideal gas: Marginal probability density for A 
 

 
 

 

Possible to show that generally  

 

 

 , B is the heat bath 

B 

A 
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Canonical ensemble averages 

 where  is a marginal prob. density 

 

Canonical ensemble averages: Average with weight  
 
 
 
 
 
 

 

 

Why is the normalization factor  useful? Can be used to compute many 
statistical quantities. 
 
 

  

 with                                                                 the partition function 
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Canonical ensemble: The free energy 

Canonical probability density  

 

Canonical entropy  

 

Maximize , constraints  and  

 

 

 

Identical to minimizing        subject to  

 

 

 with  

This is the free energy  
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Example: Ideal gas 

Hamiltonian: 

 

 
Partition function: 

 

 

Free energy: 

 
 

Important because for many Hamiltonians : 

 

 

 

 

 

with , the de Broglie wavelength 
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Example: Heat capacity of solids 

Einstein solid: Independent 3D quantum harmonic oscillators 

 

Quantum harmonic oscillator:  

 

Partition function:  with  

 

Energy  

 

Heat capacity 
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Microcanonical and canonical ensembles 
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The canonical ensemble: 
Alternative derivation 

Probability for small part A of A  B 
to be in state with energy  

 

 
 

B 

A 
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The grand canonical ensemble 

Allow variation in the number of particles  

 

 
 

 

 

 

 
 

 

 

Grand canonical partition function  

B 

A 
 

 

 

if  and  
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Ergodicity 

Ergodicity: “The trajectory of almost every 
point in phase space passes arbitrarily close 
to every other point on the surface of 
constant energy.”1 

 

This implies: Time averages equal microcanonical ensemble averages 
 
 
 
 
 

 

Difficult (impossible?) to show for 
most system, it’s usually assumed. 

 

1 see e.g. Sethna p. 66 

 

  

 

 

where  
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Computing free energies 

Oldest: Monte-Carlo sampling of  

 

i.e. Metropolis algorithm 
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The Jarzynski equation 

Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) 

Perform work  on system, ask 
how free energy changes  

 

 
But 

 

 

 

Work is easy to measure, computations are usually 
not adiabatic 

 

 

 
 

 

Park, Khalili-Araghi, Tajkhorshid, Schulten, 
J. Chem. Phys. 119, 3559 (2003) 
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Internal constraints: Free energy landscapes 

Remember: Integrating out the bath variables 

 

 
 

“Bath” can be anything 
 
 
e.g. integrate out water, 
keep ions 

 

 ions:  
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Constraints and order parameters: Free energy landscapes 

Formally:  are constraints, usually called order parameters  or 
phase variable or collective variable 
 

Minimize  with  and  

 

 

 

Constraints can be complex, 
e.g. center of mass of polymer beads 

 

Actual computation of
 is complex 

 Fritz, Harmandaris, Kremer, van der Vegt, 
Macromolecules 42, 7579 (2009) 38 



Free energy landscapes 

Example: Na-Cl in water 

 

Assume pair potential: 
 

Constrain ion-ion distance, 
measure constraint force 

Hess, Holm, van der Vegt, 
PRL 96, 147801 (2006) 

Lyubartsev, Laaksonen, PRE 52, 3730 (1995) 

Fit to ion-ion pair 
distribution 
functions 
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Free electronic download of 1st edition: 
http://rsc.anu.edu.au/~evans/evansmorrissbook.php 

http://epress.anu.edu.au/?p=47571 
 
 

Free electronic version at: 
http://pages.physics.cornell.edu/~sethna/StatMech/ 
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Slide 12: 

- Local current  
- Total current  out of volume  with surface :  where  is surface normal 

- Gauss theorem:  

- But:  

- But  

- Liouville theorem follows 
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- The Liouville operator: 

 

- Time evolution: 

 

with formal solution 
 

- Time evolution of a point  in space-space: 

 

reduces to Hamilton’s equation of motion 
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- Property 1): Maximize  with constraint  

 
- Property 2) trivial 
- Property 3): see Sethna p. 89 
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- Equilibrium phase space density:  
- If  are the roots of , then 

 

-  if  
- Hence 
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- In N dimensions: Equilibrium phase-space density  

 

- Integration with rotational symmetry:  (Note that  
here is the -function and not a phase-space coordinate). 

- Normalization:  

 

- Prefactor: 

 

- Marginal distribution: 
 

- Hence 

 

- Now let ,  then 

 

- Using  and  we find 
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- Ideal gas 
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- e.g. observable: . Trick: 
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- Why is ? Remember  

- Use  that minimizes the respective variational expression 

- Then: 

 

- And hence  or  
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- Partition function (Snuck in a  there. This comes from quantum statistical mechanics and 
makes  dimensionless): 



 

- Here,  is the De Broglie wavelength. 
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- Remember: , , ,  if  

- Partition function for : 
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- Particle number not fixed in grand canonical ensemble 
- Average number of particles: 

 

- Fluctuation of particle numbers: 
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-  
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- Free energy:    

 

- Dervative of delta function: 
 

- Force on constraint 1: 



 

- For the latter average we invoke ergodicity 
- Pair distribution function: 

 




