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Molecular Interactions

Molecular Interactions

Molecular dynamics: numerical, step-by-step, solution
of the classical equations of motion.

Newton’s or Hamilton’s Equations

mr̈  = ƒ  or

!

ṙ  = p/m

ṗ = ƒ 
where ƒ  = −

∂

∂r 
U = −∇U

System of coupled ordinary differential equations.

Need to be able to calculate the forces ƒ 
usually derived from a potential energy U(r)

r = r1, r2, . . . rN = {r } are atomic coordinates
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Molecular Interactions

Non-bonded Interactions

The non-bonded potential energy Unb is traditionally
split into 1-body, 2-body, 3-body . . . terms:

Non-bonded Potential

Unb(r) =
∑



(r ) +
∑

,j>

(r , r j) +
∑

jk

(r , r j, rk) + . . . .

The external field or container walls
usually dropped for simulations of bulk systems

The interatomic pair potential

Usually neglect higher order interactions.

There is an extensive literature on the experimental
determination of these potentials.
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Molecular Interactions

Lennard-Jones Potential

Sometimes sufficient to use the simplest models
that faithfully represent the essential physics.

The Lennard-Jones potential is the most commonly
used form, developed for studies of inert gases.

Lennard-Jones
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Molecular Interactions

Electrostatics

Electrostatic charges interact via long-ranged potentials

Coulomb Potential

qq(r) =
q1q2

4πε0r

q1, q2 are the charges

ε0 is the permittivity of free space.

The correct handling of long-range forces provokes
much discussion in the literature.

Interactions involving dipole moments and
higher-order multipoles expressed in similar way.
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Molecular Interactions

Atoms to Molecules

For molecular systems, we simply build the
molecules out of Lennard-Jones site-site potentials,
or similar.

Typically, a single-molecule quantum-chemical
calculation may be used to estimate the electron
density throughout the molecule.

This may then be modelled by a distribution of
partial charges,

or more accurately by a distribution of electrostatic
multipoles.
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Molecular Interactions

Bonding Potentials

Lengths and Angles

3

1

2

4

r23

ϕ1234

θ234

For molecules we must also
consider the intramolecular
bonding interactions.
Consider this geometry of
an alkyl chain (just showing
the carbons).

interatomic distance r23

bend angle θ234

torsion angle ϕ1234
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Molecular Interactions

Bonding Potentials

A very simple example:

Intramolecular Bonding Potentials

Uint =
1
2

∑

bonds

kr
j

'

rj − req
(2

+ 1
2

∑

bend
angles

kθ
jk

'

θjk − θeq
(2

+ 1
2

∑

torsion
angles

∑

m

k
ϕ,m
jkℓ

)

1+ cos(mϕjkℓ − γm)
*

Packaged force fields specify kr
j
, kθ

jk
, k

ϕ,m
jkℓ , req, θeq, γm

or similar parameters.
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Molecular Interactions

Bond Stretching Potentials

Harmonic Potential

1
2
kr
j

'

rj − req
(2

The “bonds” involve separations rj = |r  − r j|
between atoms in a molecular framework.

We assume a harmonic form with specified
equilibrium separation - not the only possibility.

Deriving forces from this is straightforward.

Vibration frequencies relatively high
E.g. for C—H bonds, period ∼ 10fs
in a step-by-step solution of the equations of
motion, need timestep Δt ≈ 5fs.
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Molecular Interactions

Bond Angle Bending Potentials

Quadratic Approximation or Trigonometric Form

1
2
kθ
jk

'

θjk − θeq
(2

or 1
2
kθ
jk

+

1− cos2
'

θjk − θeq
(

,

The “bend angles” θjk are between successive
bond vectors such as r  − r j and r j − rk.

Therefore, they involve three atom coordinates:

Bend Angle Definition

cosθjk = r̂ j · r̂ jk =
'

r j · r j
(−1/2'

r jk · r jk
(−1/2'

r j · r jk
(

Derived forces affect all three atoms.
Calculated using the chain rule.
Angle-bend timescales, e.g. in H2O, are ∼ 20fs.
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Molecular Dynamics Algorithms
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Molecular Dynamics Algorithms

The MD Algorithm

Calculating forces is expensive, typically a pairwise sum
over atoms, so we need to perform this as infrequently
as possible.

Wish to make the timestep as large as possible.
Hence, simulation algorithms tend to be low order
(i.e. do not use high derivatives of r);
this allows the time step to be increased as much as
possible without jeopardizing energy conservation.

Cannot accurately follow true trajectory for very
long times trun.

Classical trajectories are ‘ergodic’ and ‘mixing’;
trajectories diverge from each other exponentially;
however long-term energy conservation is possible.
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Molecular Dynamics Algorithms

The Verlet Algorithm

There are various, essentially equivalent, versions of
the Verlet algorithm, including this one:

Velocity Verlet Equations

p(t + 1
2
Δt) = p(t) + 1

2
Δt ƒ (t)

r(t + Δt) = r(t) + Δtp(t + 1
2
Δt)/m

p(t + Δt) = p(t + 1
2
Δt) + 1

2
Δt ƒ (t + Δt)

r = {r } (all coordinates), p = {p} (all momenta) and
ƒ = {ƒ } (all forces).
After the middle step, a force evaluation is carried out,
to give ƒ (t+Δt) for the last step. This scheme advances
the coordinates and momenta over a timestep Δt.
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Molecular Dynamics Algorithms

The Verlet Algorithm

A piece of pseudo-code illustrates how this works:

Velocity Verlet Algorithm

do step = 1, nstep
p = p + 0.5*dt*f
r = r + dt*p/m
f = force(r)
p = p + 0.5*dt*f

enddo

The force routine carries out the time-consuming
calculation of all the forces, and potential energy U.

The kinetic energy K can be calculated after the
second momentum update.

At this point the total energy is U+ K.
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Molecular Dynamics Algorithms

The Verlet Algorithm

Important features of the Verlet algorithm are:
1 it is exactly time reversible;
2 it is symplectic (to be discussed later);
3 it is low order in time, permitting long timesteps;
4 it requires just one force evaluation per step;
5 it is easy to program.
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Molecular Dynamics Algorithms

Propagators and Molecular Dynamics

Formally, for A = r, p, or any A(r,p):

Ȧ = iLA (Liouville operator);

A(t + Δt) = eiLΔtA(t) (propagator).

Useful approximations arise from splitting iL in two:

Split Propagator

iL = iLp + iLr

iLp = ƒ ·
∂

∂p
eiLpΔtp = p+ ƒΔt kick

iLr = m−1p ·
∂

∂r
eiLrΔtr = r +m−1pΔt drift
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Molecular Dynamics Algorithms

Propagators and the Verlet Algorithm

The following approximation is asymptotically exact in
the limit Δt→ 0.

Symmetric Splitting

eiLΔt = e(iLp+iLr)Δt ≈ eiLpΔt/2 eiLrΔt eiLpΔt/2

For nonzero Δt this is an approximation to eiLΔt

because in general iLp and iLr do not commute,

but it is still exactly time reversible and symplectic.
Symplectic (roughly) implies conserving phase
space volume dr(t + Δt)dp(t + Δt) = dr(t)dp(t).

It is then easy to see that the three successive steps
embodied in the above equation, with the above choice
of operators, generate the velocity Verlet algorithm.
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Molecular Dynamics Algorithms

Propagators and the Verlet Algorithm

The trajectories generated by the above scheme
are approximate, and will not conserve the true
energy H.

Nonetheless, they do exactly conserve a
“pseudo-hamiltonian” or “shadow hamiltonian” H‡

H and H‡ differ from each other by a small amount,
H‡ = H+O(Δt2).

This means that the system will remain on a
hypersurface in phase space which is “close” to the
true constant-energy hypersurface.

Such a stability property is extremely useful in MD,
since we wish to sample constant-energy states.
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Molecular Dynamics Algorithms

Example

Consider a simple harmonic oscillator, of natural
frequency ω, representing perhaps an interatomic bond
in a diatomic molecule. The equations of motion and
conserved hamiltonian are

Harmonic Oscillator Equations

ṙ = p/m , ṗ = −mω2r , H(r, p) = p2/2m+ 1
2
mω2r2

For this system, velocity Verlet exactly conserves:

The Shadow Hamiltonian

H‡(r, p) = p2/2m+ 1
2
mω2r2
'

1− (ωΔt/2)2
(
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Molecular Dynamics Algorithms

Example

Harmonic Oscillator
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In a “phase portrait”,
the simulated system
remains on the
constant-H‡ ellipse
(dashed line) which
differs only slightly
(for small ωΔt) from
the true constant-H
ellipse (full line), e.g.
here for ωΔt = π/3.
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Molecular Dynamics Algorithms

Multiple Timesteps

One approach to handling the fast bond vibrations is to
use a shorter timestep for them.

Use Liouville operator formalism to generate
time-reversible Verlet-like multiple-timestep
algorithm.

Suppose there are “slow” F, and “fast” ƒ , forces.

Momentum satisfies ṗ = F+ ƒ .

Break up Liouville operator iL = iLp + iℓp + iLr:

Multiple Timestep Liouville Operator

iLp = F ·
∂

∂p
, iℓp = ƒ ·

∂

∂p
, iLr = m−1p ·

∂

∂r
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Molecular Dynamics Algorithms

Multiple Timesteps

The propagator approximately factorizes

Long Timestep Splitting

eiLΔt ≈ eiLpΔt/2 e(iℓp+iLr)Δt eiLpΔt/2

where Δt represents a long time step. The middle part
is then split again, using the conventional separation as
usual, iterating over small time steps δt = Δt/n:

Short Timestep Splitting

e(iℓp+iLr)Δt ≈
+

eiℓpδt/2 eiLrδt eiℓpδt/2
,n

Fast-varying forces computed at short intervals.

Slow forces computed once per long timestep.
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Molecular Dynamics Algorithms

Multiple Timesteps

Multiple Timestep Algorithm

do STEP = 1, NSTEP
p = p + (DT/2)*F
do step = 1, n

p = p + (dt/2)*f
r = r + dt*p/m
f = force(r)
p = p + (dt/2)*f

enddo
F = FORCE(r)
p = p + (DT/2)*F

enddo

Some pseudo-code
illustrates how simple
this is.
The simulation run
consists of NSTEP long
steps, of length DT, each
consisting of n sub-steps
of length dt, where
DT = n*dt.
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Molecular Dynamics Algorithms

Multiple Timesteps

Non-bonded interactions may be calculated more
efficiently this way too. A typical approach is to split the
interatomic force law into a succession of components
covering different ranges:

the short-range forces change rapidly with time and
require a short time step,

the long-range forces vary more slowly, so we use a
longer time step and less frequent evaluation.

Multiple-time-step algorithms are still under active
study, and there is some concern that resonances may
occur between the natural frequencies of the system
and the various timesteps used in schemes of this kind.
The area remains one of active research.
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Periodic Boundaries: Short and Long-Ranged Forces

Periodic Boundary Conditions

Cubic System

488

10x10x10=1000
8x8x8= 512

Consider N = 103 atoms
arranged in a cube.

Nearly half the atoms
are on the outer faces,

will have a large effect
on the measured
properties.

Even for
N = 1003 = 106 atoms,
6% of atoms are on
surface.
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Periodic Boundaries: Short and Long-Ranged Forces

Periodic Boundary Conditions

Periodic Boundaries Surround the cube with
replicas

For short-range potentials,
adopt the minimum image
convention: each atom
interacts with the nearest
atom or image in the
periodic array.

If an atom leaves the
basic simulation box,
attention can be switched
to the incoming image.
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Periodic Boundaries: Short and Long-Ranged Forces

Neighbour Lists

For short-range potentials (r) = 0, r > rcut, speed up
search for those interactions which are in range.

Cell Structure Divide L× L× L simulation
box into n× n× n sub-cells

Side of the cell

ℓ = L/n ≥ rcut

In searching for atoms within
range, examine the atom’s
own cell, and nearest
neighbour cells.
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Periodic Boundaries: Short and Long-Ranged Forces

Long-range forces

In periodic systems, the evaluation of the Coulomb
interactions is non-trivial.

U =
N
∑

=1

∑

j>

qqj

4πϵ0rj

 and j vary over all ions in all cells: no cutoff

Formally, this sum is only conditionally convergent
the result depends on the ordering of the terms

There are some subtleties associated with the
dielectric medium assumed to be “outside” the
infinitely periodic system
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Periodic Boundaries: Short and Long-Ranged Forces

Ewald Sum

Ewald Sum

position

ch
ar

ge

Point charges
Shielding
Compensation

A trick allows us to evaluate
the sum. Add to the system
of point charges a set of
positive and negative
Gaussian distributions.

Real Space and Reciprocal Space Terms

Ur-space =
∑

=1

∑

j>

qqj

4πϵ0rj
erfcαrj

Uk-space =
1

2Vϵ0

∑

k

e−k
2/4α2

k2

-

-

-

-

-

∑

j

qje
−ik·r j

-

-

-

-

-

2
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Periodic Boundaries: Short and Long-Ranged Forces

Ewald Sum

The Coulomb energy is thus transformed into

a real-space sum, involving the much
shorter-ranged screened Coulomb interaction

a reciprocal-space sum, i.e. a sum over
wave-vectors k, involving the interaction between
Gaussian charge clouds

some correction terms handling the self-interaction
between the added Gaussians

Smoothed Particle-Mesh Ewald

Mapping onto a regular grid by interpolation.

The primary mathematical operation may now be
performed by Fast Fourier Transform

Greatly speeds up biological simulations
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Thermostats
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Thermostats

Constant-Temperature Dynamics

How to simulate systems at given T by MD?

Andersen Thermostat

Periodically reselect atomic velocities at random
from the Maxwell-Boltzmann distribution.

Like occasional random coupling with thermal bath.

The resampling may be done to individual atoms,
or to the entire system.

Simple to implement and reliable.

Proven to sample the canonical ensemble
if MD is accurate!

HC Andersen, J. Chem. Phys., 72, 2384 (1980).
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Thermostats

Constant-Temperature Dynamics

An alternative, deterministic, approach:

Nosé-Hoover Equations

ṙ =  = p/m ṗ = ƒ − ξ

ξ̇ = M−1
.∑

2 − gkBT/m
/ ∑

2 ≡
∑

α

2
α

ξ: friction coefficient, allowed to vary in time;

M is a thermal inertia parameter, determining a
relaxation rate for thermal fluctuations;

g ≈ 3N is the number of degrees of freedom.

If the system is too hot (cold), then ξ will tend to
increase (decrease) tending to cool (heat) the system.
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Thermostats

Hoover Derivation

WG Hoover, Molecular dynamics, Springer Berlin (1987).

Assumed Equations of Motion

ṙ = p/m , ṗ = ƒ (r)− ξ , ξ̇ = G(r,p)

G(r,p) is the object of the derivation.

Ansatz: G(r,p) depends only on r, p, not ξ.

Generalized Liouville Equation

∑ ∂

∂r
·
'

ρṙ
(

+
∑ ∂

∂p
·
'

ρṗ
(

+
∂

∂ξ

'

ρξ̇
(

= 0

Follows from continuity dϱ/dt = 0, and stationarity
∂ϱ/∂t = 0 of phase space distribution function ϱ(r,p, ξ).
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Thermostats

Canonical Distribution

Try: ρ(r,p, ξ) ∝ exp
0

−H(r,p)/kBT
1

exp
0

− 1
2
Mξ2/kBT
1

Required Form of G

G(r,p) = M−1
∑



2

p

m

·   − kBT
∂

∂p
·  

3

= M−1
∑



.

2

− 3kBT/m
/

M arbitary constant (thermal inertia)

Term in square brackets vanishes if averaged over
canonical momentum distribution.
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Thermostats

The Configurational Temperature

JO Hirschfelder, J. Chem. Phys., 33, 1462 (1960).

LD Landau and EM Lifshitz, Statistical Physics (1958).

Based on hypervirial theorem in canonical ensemble.

Configurational and Kinetic Temperature

kBTc =

4

'

∂H/∂rα
(2
5

6

∂2H/∂r2α
7

,  = 1 . . . N, α = , y, z

kBTk =
6

p2
α
/m
7

Both sides may be averaged over  and α.
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Thermostats

The Configurational Temperature

The configurational temperature is useful:

to define T in the microcanonical ensemble

HH Rugh, Phys. Rev. Lett., 78, 772 (1997).

as a test for simulation nonequilibrium

BD Butler, et al, J. Chem. Phys., 109, 6519 (1998).

in experiments on colloidal suspensions

YL Han, DG Grier, Phys. Rev. Lett., 92, 148301
(2004);

As the basis of a thermostat in MD.

C Braga and KP Travis, J. Chem. Phys., 123, 134101
(2005).
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Thermostats

Configurational Nosé-Hoover Thermostat

C Braga and KP Travis, J. Chem. Phys., 123, 134101
(2005).

Equations of Motion

ṙ = p/m+ μƒ , ṗ = ƒ

μ̇ = M−1







∑

j

-

-

-

-

-

∂H

∂r j

-

-

-

-

-

2

− kBT
∂

∂r j
·
∂H

∂r j







μ is a dynamical “mobility” coefficient.

The driving force is related to Tc.
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Thermostats

Summary

We have discussed the fundamentals of classical MD:

specifying the molecular model;

a good algorithm to advance the system in time;

some techniques to improve efficiency;

modifications for different physical conditions.

We have not discussed:

how to analyse the results
structural and dynamical properties

how to efficiently use different hardware
parallel computers or GPUs

the relation between MD and Monte Carlo
Hybrid Monte Carlo, Brownian/Langevin Dynamics
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