


Lecture outline: 6 Questions

Is the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

Is global warming (and other related climatic changes)
happening?

Is the observed global warming due to increases In
anthropogenic GHG concentrations or to natural factors?

Are climate models good for anything?

What can we expect for the future (climate change
projections)?

What are key uncertainties?
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The Greenhouse Effect

Greenhouse gases absorb the infrared
radiation emitted by the surface of the Earth
thereby warming the atmosphere and oceans
The main GHG are H20, CO2, O3, CH4,N20, CFCs
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The beginning of the story:
C. Keeling' s measurements at
Mauna Loa, Hawalil

C0O2 concentration at
Mauna Loa (Hawaii)
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Variation of greenhouse
gas concentration
In the atmosphere

Trends in the isotopic composition
of CO2 and in the ratio of
oxygen to nitrogen confirm that the
increase in COZ2 is mostly
from fossil fuel burning
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Why does the increase in GHG
concentrations cause global warming?

* Direct radiative forcing by the increased
GHG amounts

Water vapor feedback mechanism

lce-albedo feedback mechanism
Carbon feedback mechanism

Cloud feedback mechanism
negative)
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Evidence I. Observed change in global
surface Warmest 12 years:

1998,2005,2003,2002,2004,2006,

tem pe ratu e 2001,1997,1995,1999,1990,2000

| ! | ! | ! |
® Annual mean

Global mean temperature _inear trends
#” Smoothed series

Period Rate |
50 0.128+0.026
100 0.074+0.018
Years °/decade
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Different datasets show consistent
trends superposed to natural
temporal variability

—GISS ——NCDC ——HadCRU

1880 1900 1920 1940 1960 1980 2000




Putting present temperatures into a

longer term context

The last 50 years are likely the warmest during the past 1300 years

Northern Hemisphere Temperature Reconstructions

Temperature anomaly (°C wrt 1961 -1990)
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Observed temperature trends are not
homogeneous in space (1979-2003)
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Evidence 2: Decrease of sea ice

15 September 1980

A ATE

~ ——09/15/1980

linois - The Cryosphere Toc

I 1 1
©c °o o o
o N o

Ice Extent Anomaly, 108 km?2
1
o
e

1985

1990

15 September 2005

Year

1995

2000

2005

15 September 2007

/

— —09/15/2007

nois - The Cryosphere Today

15 Septe

mber 2008

7

~ _—09/15/2008

111inois - The Cryosphere Today




Evidence 3: Melting of glaciers and snov

Photographed in 1928
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Evidence 4: Ocean warming

Annual Anomalies, 1860 — August 2004 Global Average Temperatures
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Evidence 5:

o
|

Sea level rise

Sea level (mm)
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Figure 7. Sea level trends over 1993-2003 from the T/P mission.
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Figure 5. Global mean sea level variations from T/P and Jason.




Evidence 6: Tropospheric warming
and stratospheric cooling

Seasonal lower tropospheric_
and surface tem 9%ratur ano
DJF 19571 to S

Satellite measurements
since 1979 show a global
tropospheric warming consistent
with the surface warming
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Seasonal lower stra os heric
temperature anomalies,
DJF 1957/1958 to SON 2003

HadRT 4 — 8SSU 15X

Lower stratospheric cooling
IS observed, which is
consistent with the
SO i O effects of increased

o e o GHG concentrations

4 is a retrieval of lower stratospheric le pemluref om Microwave Sounding Units on salellites
RT 4 is the radiosonde temperature equivalent of MSU 4
15X is a retrieval of lower stratospheric temperature from Stratospheric Sounding Unite on satellites
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Observed trends in T
the hydrologic cycle T o
IPCC (2007) ' AL

It rains less frequently-
but more intensely

IPCC 2007: “More intense and longer
droughts have been observed over
wider areas since the 1970s”

IPCC 2007: “The frequency of heavy
precipitation events has increased
over most land areas”
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IPCC-2007

Warming of the climate system is
. as Is now evident
from observations of increases In

global average air and ocean
temperatures, widespread melting
of snow and ice, and rising global
mean sea level







Greenhouse

Radiated

gasest to space

The earth’ s climate
can change because
of anthropogenic or
natural factors
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“Fingerprinting” of the e
anthropogenic effects T
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All Forcings

Identification of
the anthropogenic
effects on

global warming
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|dentification of the anthropogenic
effect on regional and ocean warming
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Anthropogenic and natural forcings
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from 1750 to 2005

Radiative Forcing Components

RF Terms

RF values (W m?)

Spatial scale

~

Long-lived ‘
greenhouse gases

Ozone

Stratospheric water
vapour from CH,

Surface albedo

( Direct effect

Total )
Aerosol | Cloud albedo

. effect

Linear contrails

Siratospheric

Land use

"o

N,O

|

I-o‘-l Halocarbo
|
|

|
Tropospheric

Black carbon
on snow

S

1.66 [1.49 to 1.83]
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0.01 [0.003 to 0.03]

Global

Global

Continental
to global

Global
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continental
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to global
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Continental

Solar irradiance

0.12 [0.06 to 0.30]

Global

Total net
anthropogenic

-1

0

1.6 [0.5 to 2.4]
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IPCC-2007
Most of the observed increase
In globally averaged temperature
since the mid-20" century is
due to the observed
iIncrease in anthropogenic

greenhouse gas concentrations.
Discernible human influences now
extend to other aspects of climate,
Including ocean warming, continental
average temperatures,
temperature extremes and wind patterns.







The Global Climate System

Global Climate System Components

Changes in the
Hydrological

an«! the Land Surface;
aplyy, Land Use,

Circulation, Biogeochemistry Vegetation, Ecosystems



The equations of an atmospheric model

o My me om Conservation
+V - VV=—-"—-20xV +g+Fy
p of momentum

1dp
— — 17‘

Conservation
of mass

Conservation
of water

Equation of state




The equations of a climate model cannot be solved
analytically and therefore they are discretized on
a three-dimensional grid, where all the model
variables are defined (wind, temperature etc.)

ON The distance between
o2t w\\\ grid points determines

L sk 1, W the model resolution.
SERRAREH g ot \f[y_’f/’ 4 Processes occurring

‘ I } at scale smaller than
N , this distance are not
——— 7/ 7 74l resolved explicitly and
e must be “parameterized”




The importance of resolution

_Ax =r300 Ax = 300 km

= Ax=30km Ax = 30 km



The model resolution depends on the availability of computer
resources. The resolution of global climate models has
increased from about 500 km in the 80s to about 100 km today
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Regional Climate Modeling

Motivation: The resolution of
is still too coarse to
capture regional and local climate
processes (e.g. topography,
coastlines s ==
) IS

Technique: A limited area P k.
: s nested” WV WP < AN

within a GCM in order to locally / KSR LT NS
increase the model resolution.

— Initial conditions (IC) and lateral
boundary conditions (LBC) for
the RCM are obtained from the
GCM

Strategy: The GCM simulates the
response of the general circulation to
the large scale forcings (e.g. GHG),
the RCM simulates the effect of sub-
GCM-grid scale forcings and
provides fine scale regional
iInformation




The World in Global Climate Models
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The evolution of
global model
complexity
in the last
decades




Performance of AOGCMs
Annual precipitation, 20 models

Observations Model ensemble mean




Global Performance of AOGCMs
CMIP3 models

All Seasons Climatology
global statistics
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Question 5:

What .‘c}an we expect




Greenhouse gas emission and
concentration scenarios (IPCC-2000)

CO2 emissions
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IPCC — 2007: Global temperature
change projections for the 215t century
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Corresponding changes in sea level rise are 19-58 cm




Different models respond differently to the same
greenhouse gas concentration increase because of
different parameterizations of physical processes. This
characteristics of models is called “climate sensitivity”

£

W = BCC-CM1

[£)

BCCR-BCMZ.0

F — CGCM3.1(T47)

[ o]

— CGCM3.1(T63)

u—y

= CNRM-CM3

Temperature Chaonge(°C)

— CSIRO-MK30

, Precipitation Chonge(%)

000 2010 2020 2030 2040 2050 2060 2070 2080 2090 O 0-~CMZ0
—— GFDL—-CMZ2.1

w

A1B(21) GISS-AOM

GISS-EH

ATB(21)

E-

ol
o

GISS-ER

] —FGoALS-g1.0

[\
[T

— NM=CM3.0

(=]

= IPSL-CM4

—

— MIROC3.2(hires)

Temperature Change(°C)
, Frecipitation Change(%)

()

T T T T T T T T T T MIROC3.2(medres)
000 2010 2020 2030 2040 2050 2080 2070 2080 2090

()

= ECHO-G

0w

B1(19) —— ECHAM /MPI-OM

g

B1(21)

3 »

| — MRI-CGCMZ.3.2
—— CCSM3

— PCM

[ o]
T

UKMO=HadCM3

| —— UKMO-HodGEM1

—y
T

== Ensemble ovg

Temperature Change(°C)

Precipitation Change(%)

%m 2010 2020 2030 2040 2050 2060 2070 2080 2080 _320'm 2010 2020 2030 2040 2050 2060 2070 2080 2080
Year Year




Regional distribution of projected

temperature and precipitation change
(A1B scenario, 2090-2100)

Temperature change DJF Prec;|p|tat|on change DJF

Temperature chahge JJA
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Precipitation change, CMIP3
A1B Scenario, 20 AOGCMs
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The summers we can expect in Europe?
Summer of 2003

Alpine glacier annual mass changes (1980-2003

M Thickness loss
@ Thickness gain
L L L 1
1981 1986 1901 1996 2001

Mass balance based on 10 alpine glaciers: St. Sorlin, Sarennes, Silvretta, Gries,Sonnblickkees,
Vernagtferner, Kesselwandferner, Hintereis-ferner, Careseér.

Courtesy: Regula Frauenfelder (World Glacier Monitoring Service, Zarich)
glaciers in the Alps. In 2003 alone, the total glacier volume loss in the
Alps corresponds to 5-10% (probably closer to 10%) of the remaining
ice volume. Alpine glaciers had already lost more than 25% of their
volume in the 25 years before 2003, and roughly two-thirds of their
original volume since 1850 (see figure to left). At such rates, less than
50% of the glacier volume still present in 1970/80 would remain in
2025 and only about 5% in 2100.

Average mass balance (mm water equiv.)

Impact of the summer 2003 heat wave and drought
on agriculture and forestry in 5 selected countries

Country Casualties B i

France 14 082 ; IS YA Py Wit
Germany 7 000 » TR aoes AR
Spain 4 200 | e ) \ngza; Spain 810 Mio
Italy 4 000 : .- : =/
UK 2 045 Italy 4-5 000 Mio
Netherlands 1400 e R
Portugal 1300
Belgium 150 France 4 000 Mio

(1 500 Mio only for the beef sector)

Germany 1 500 Mio

INSERM: "Surmortalité liée a la canicule

de I'été 2003", AP September 25, 2003 o % A 0%
Data source: COPA-COGECA 2003




The summer of 2003 may become the
norm in the future

Summer Temperatures

Gridpoint near
Domain Mean (F, parts of D and CH) Zurich
Simulated:
T=15.8°C
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0=0.94°C
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Inter-model uncertainty can be large
at the regional scale

Regional precipitation vs. temperature change

Mediterranean warm season West Africa monsoon season

S Eurcpe, N Africa, JJA, SRESATB vs 20C3M Western Africa, JJA, SRESATB vs 20C3M
1 1 1 1 1 1 1 l 1 | | | | | | | | |

Precipitation Change (pct)

o]

40 6.0 ¥ X X 40 0
Temperature Change (C) Temperature Change (C)

TS{rn,mx) = 2.6126, 6.4895 TS({rn,mx) = 1.4943, 4.6247
PR{rn,mx) = —53.237, -2.1439 PR(mn,mx») = —18.619, 16.24
AVG(ts,pr) = +.3439, —24.845 AVG(ts,pr) = 3.217, 1.4677




Changes in precipitation characteristics

Precipitation intensity Frost days
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Another glimpse of the future?
August 2010
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Sustained warming beyond the 21st century
might lead to semi-irreversible changes
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Sustained warming beyond the 21st century
might lead to semi-irreversible changes

Melting of Greenland and the
West Antarctica ice sheet
(sea level rise > 12 m)

2002: Collapse
of the Larsen-B
Ice-Shelf

Weddell Sea

Larsen B ice shelf

ANTARCTIC PENINSULA
ANTARCTICA

Southern
Ocean







Effects of clouds, aerosols
and tropical convection
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Land use change and
carbon cycle




Sea level rise

GREENLAND 2005 MELT EXTENT PRI

2005 MELT EXTENT
s MEAN MELT EXTENT

AASIAAT Y R Surface
KANGERLUSSUAQ - mass
5\ sisiMiuT ’# &5 balance is
\ s \ . negative’
NUUK . (=25 m)

nce 1990

£
=
il
g
T
Ts
=
]
S(
=
£
<

PAAMIUT

O N
QAQORTOQ NARSARSUAQ

Sea level (mm)

e

T T T l T
1900 1920 1940 1960 1980 2000

year




Greenhouse gas
emission scenarios




Projections at regional to local scales

Globale

Regionale
———




| ecture outline: 6 Answers

 |s the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?




| ecture outline: 6 Answers

 |s the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

 Is global warming (and other related climatic changes)
happening?




| ecture outline: 6 Answers

 |s the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

 Is global warming (and other related climatic changes)
happening?

* Is the observed global warming due to increases in
anthropogenic GHG concentrations or to natural factors?




| ecture outline: 6 Answers

Is the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

|s global warming (and other related climatic changes)
happening?

Is the observed global warming due to increases In
anthropogenic GHG concentrations or to natural factors?

Are climate models good for anything?




| ecture outline: 6 Answers

Is the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

|s global warming (and other related climatic changes)
happening?

Is the observed global warming due to increases in
anthropogenic GHG concentrations or to natural factors?

Are climate models good for anything?

What can we expect for the future (climate change
projections)?




| ecture outline: 6 Answers

Is the atmospheric concentration of greenhouse gases
(GHG) increasing because of human activities and why
should this cause global warming?

|s global warming (and other related climatic changes)
happening?

Is the observed global warming due to increases in
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Are climate models good for anything?

What can we expect for the future (climate change
projections)?

What are key uncertainties?







