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A Solar Cell Circuit
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Solar cooling & heating system: demand & supply

EXAMPLE:

Correlation between hot
water demand and
irradiated solar energy
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European - Domestic hot water demand

Solar - Space heating demand

T hermal B, Cooling demand

Industry

Federation Solar thermal can cover a substantial part of the heating and

cooling demand in a typical Central European building.
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Photovoltaic Solar Electricity Potential in European Countries
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Global irradiation and solar electricity potential Croatia
Optimally-inclined photovoltaic modules
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Globalirradiation [Whm-2] ,monthly
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Sunshine duration, monthly, 1981-1990

Izvor podataka: European Solar Radiation Atlas
(ESRA, 2000, Ecole des Mines de Paris), glavnina
podataka za razdoblje 1981-1990.
http://re.jrc.ec.europa.eu/pvgis/




Interactive map for identifying solar
energy potential
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Photovoltaic Geographical Information System - Interactive Maps
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Softwares avaliable for using solar
energy potential
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TSOL Pro and PVSOL Pro (using METEOSyn)

Solar energy consumption as percentage of total consumption
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Frequency

Photovoltaics — impact from CC

Temperature

Number of days under snow cover
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GHI - Global Horizontal Irradiance

Global Horizontal Irradiance

A sum of Direct Normal Irradiance (DNI) and Diffuse
Horizontal Irradiance (DIF)

* Mostly influenced by cloudiness

* Less precipitation (rain and snow) generally leads to lower
cloudiness and more direct irradiation
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Fig L Cloud-cover change (in %) due to climate change in the period between 2011 and 2040 (P1) when compared to 19611990 (P0), for different seasons (DJF: Decem-
ber—February, MAM: March—- May, etc), with A2 IPCC scenario.
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Fig. 4. Change in number of days with snowfall due to climate change in the period
between 2011 and 2040 (P1) when compared to 1961-1990 (P0), for Decem-
ber—February (DJF), with A2 IPCC scenario [8].



PV — temperature impacts
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“Cell temperature coefficients" differ according to technology and producer
(efficiency, power, current, voltage)

For silicon based cells, for each °C temperature rise - efficiency lowers for
0,5%

For thin film technology, this factor is 0,3%
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Summer

Fig. 2 Comparison of the changes in an average temperature between the period 19611990 and period 20412070 [5].



Current standard:
withstand 11
impacts

of 25 mm
hailstones
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Changes in climate extremes
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number of hail days p.a.

Data from southwest Germany
Kuntz & Mohr, 2009

* 26 - 46% increase in hailstorm damage in the Netherlands associated
with a 2°C temperature increase (Botzen et al., 2009)

* No significant change in hailstorm risk for Australia (Niall & Walsh, 2005)



Technical aspects leading to vulnerability: thermal
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Technical aspects leading to vulnerability: thermal

Flat plate

Evacuated tube

Hailstorm vulnerability low (up to 35mm)
Up to 50% loss of efficiency at very low temperatures

Hailstorm vulnerability higher (25mm destroys one third)
20% loss of efficiency at very low temperatures



Technical aspects leading to vulnerability: CSP
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Technical aspects leading to vulnerability: CSP




conclusions

Temperature

For an increase in average temperature of 6°C, the efficiency and production
of energy would decrease 3to 5 %

Global horizontal irradiance

Electricity generation increase by 3% during the summer and 1-2% during
spring and winter months in the period to 2040.

Days under snow cover

An increase in electricity generation due to less snow on the panels.
Extreme weather events

A cautious choice of locations due to strong winds and forest fires.
Hailstorms

Large-size hail stones can damage some types of PVs



