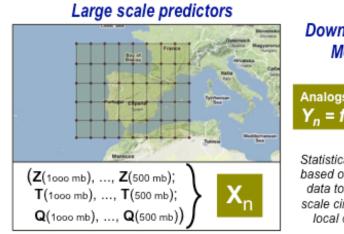
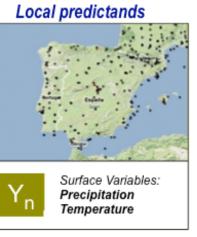


Statistical Downscaling: A user friendly portal



Downscaling Model Analogs, reg., ... $Y_n = f(X_n)$

Statistical methods based on historical data to link large scale circulation to local climates.



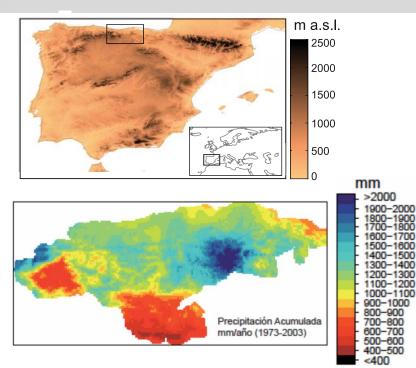
Santander Meteorology Group:

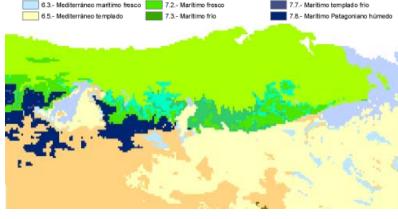
Thanks to: Ana Casanueva Jose Manuel Gutiérrez Sixto Herrera Daniel San Martín Max Tuni

First CLIM-RUN Workshop on Climate Services. Trieste, 15-19 October 2012

- Introduction to statistical downscaling
- **Techniques:** Weather typing, transfer functions and weather generators.
- Validation in perfect model conditions
 - Accuracy
 - Observed-simulated distributional consistency.
 - Stationarity/robustness under climate change conditions.
- The statistical downscaling portal

A multidisciplinary approach for weather & climate

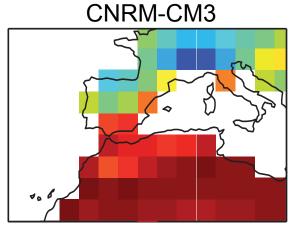


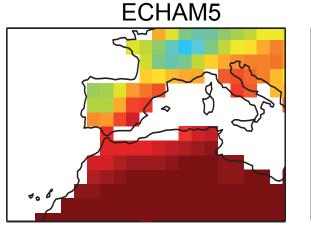


6.6.- Mediterráneo templado fresco

7.1.- Marítimo cálido

The spatial scales at which GCMs produce useful information do not match the scales that many users require.





5.9.- Patagoniano semiárido

6.2.- Mediterráneo marítimo

2000

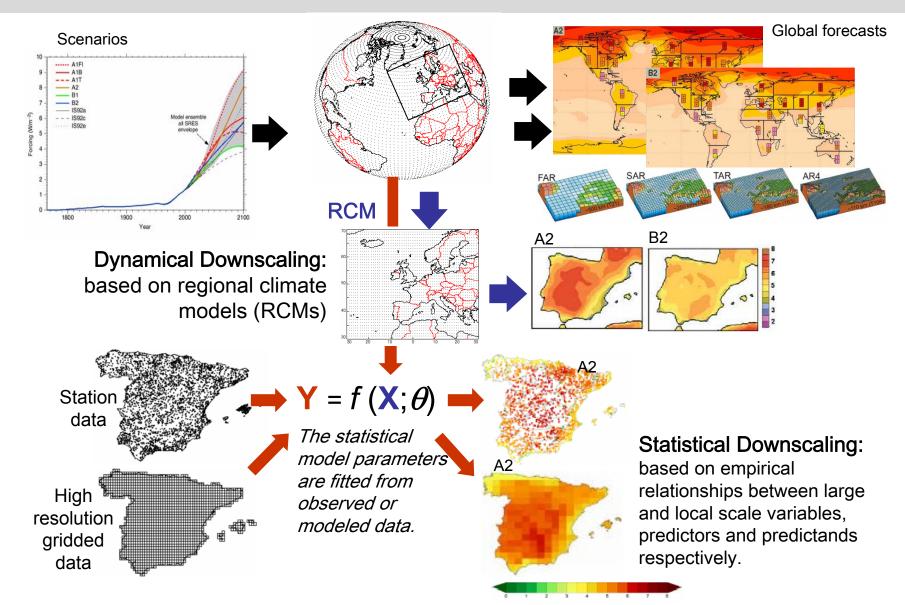
Introduction

7.5.- Maritimo templado cálido

7.6.- Maritimo templado fresco

A multidisciplinary approach for weather & climate

Introduction

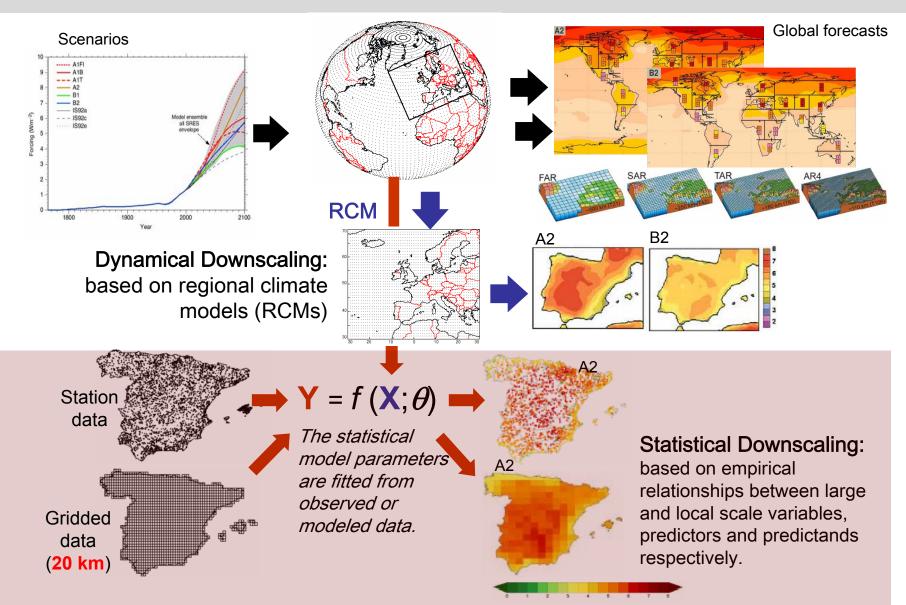


Historical library

Historical library

A multidisciplinary approach for weather & climate

Introduction



Main advantages:

- Less computationally intensive
- SD can be applied to non-climate predictands (e.g. FWI)

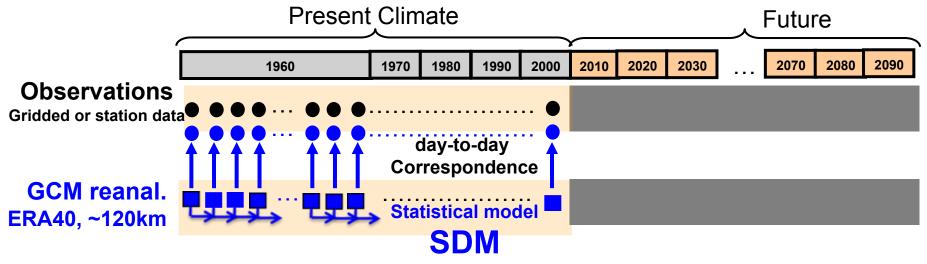
 $\mathbf{Y} = f(\mathbf{X}; \boldsymbol{\theta})$

Perfect Prognosis (Perfect Prog): uses only observations (large scale and local) to train the statistical model, which is later applied to the GCM output, assuming it provides perfect (observed-like) large scale fields. *Model Output Statistics (MOS):* GCM output is directly related to locally observed variables to train a statistical model, which is later applied to future GCM forecasts. Common in weather forecasting.

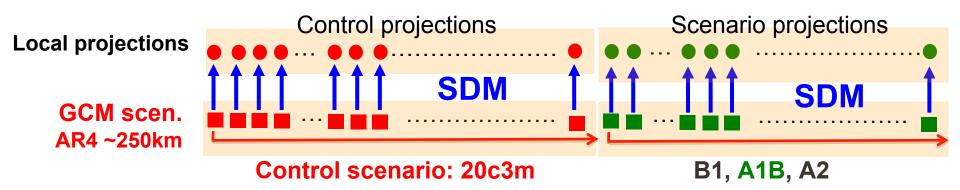
Introduction

The statistical downscaling portal is based on the Perfect Prog idea of developing a statistical model independent of model forecasts.

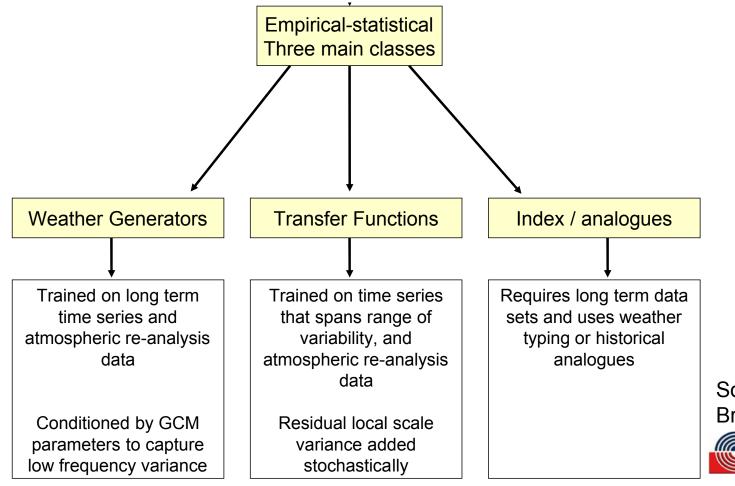
A multidisciplinary approach for weather & climate



- PROBLEM 1: Choosing consistent predictors:
- PROBLEM 2: Stationarity/robustness: SDM SDM



- Introduction to statistical downscaling
- **Techniques:** Weather typing, transfer functions and weather generators.
- Validation in perfect model conditions
 - Accuracy
 - Observed-simulated distributional consistency.
 - Stationarity/robustness under climate change conditions.
- The statistical downscaling portal



Source: Bruce Hewitson

University of Cape Town www.csag.uct.ac.za

Transfer-Function Approaches

Weather typing

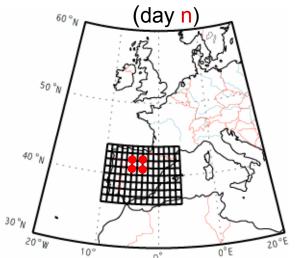
	Advantages	Shortcomings
Linear Regression		
GLMs		
Neural Networks		
Analogs		
Weather Typing		
(k-means, SOM, etc.)		

Statistical

downscaling

methods

Large scale pattern or predictor

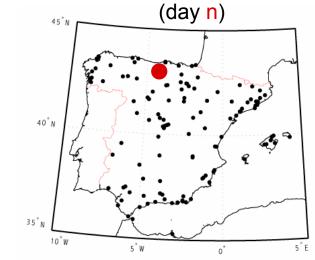


Linear regression

1. Transfer functions:

Huth (2002 and 2004)

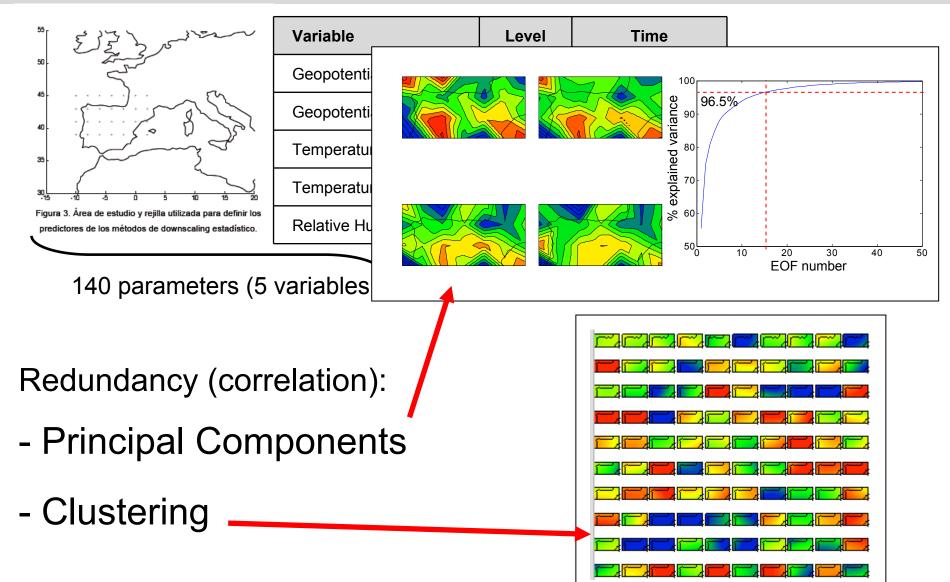
Local data or predictand



(T(1000 mb),..., T(500 mb);Z(1000 mb),..., Z(500 mb);; H(1000 mb),..., H(500 mb)) = X_n Y_n Linear Regression $\widehat{Y}_n = a X_n + b$

A multidisciplinary approach for weather & climate

Redundancy: EOF & Clustering



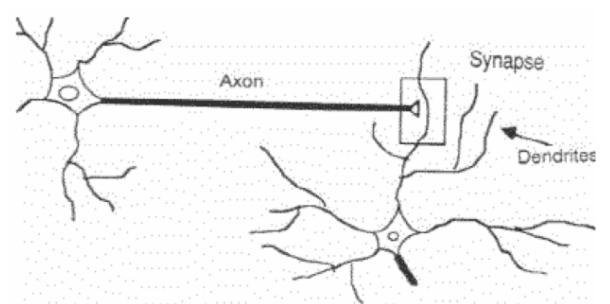
Artificial Neural Networks are inspired in the structure and functioning of the **brain**, which is a collection of **interconnected neurons** (the simplest computing elements performing information processing):

- \checkmark Each neuron consists of a cell body, that contains a cell **nucleus**.
- ✓ There are number of fibers, called **dendrites**, and a single long fiber called **axon** branching out from the cell body.

1. Transfer functions:

Neural Networks

- \checkmark The axon connects one neuron to others (through the dendrites).
- ✓ The connecting junction is called synapse.

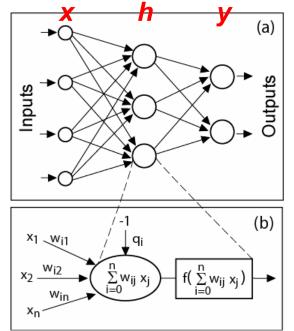


1. Transfer functions: Neural Networks

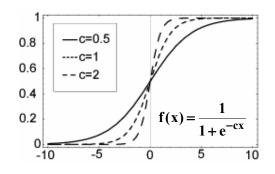
Santander Meteorology Group

A multidisciplinary approach for weather & climate

Trigo and Palutikov (1999); Huang et al (2004)



The neural activity (output) is given by a non-linear function.



$$y_{j} = f\left(\sum_{i} \beta_{ji} f\left(\sum_{k} \alpha_{ik} x_{kp}\right)\right)$$

$$i \qquad k \qquad \text{Inputs } \{x_{1p}, \dots, x_{mp}\}$$

$$Outputs\{y_{1p}, \dots, y_{np}\}$$

$$E(\alpha, \beta) = \frac{1}{2} \sum_{j,p} (y_{jp} - f\left(\sum_{i} \beta_{ji} f\left(\sum_{k} \alpha_{ik} x_{kp}\right)\right)\right)^{2}$$

$$= \sum_{p} ||\mathbf{y}_{p} - f\left(\beta^{T} f\left(\alpha^{T} \mathbf{x}_{p}\right)\right)||$$

$$Gradient$$

$$descent$$

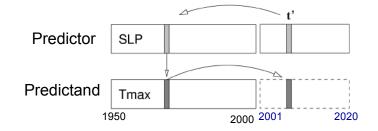
$$\Delta\beta_{ik} = -\eta \frac{\partial E}{\partial\beta_{ik}}; \ \Delta\alpha_{kj} = -\eta \frac{\partial E}{\partial\alpha_{kj}},$$

Init the neural weights with random values
 Select the input and output data and train it
 Compute the error associated with the output and update the neural weight according to these values.

Analogs Zorita and von Storch (1999)

2. Weather typing:

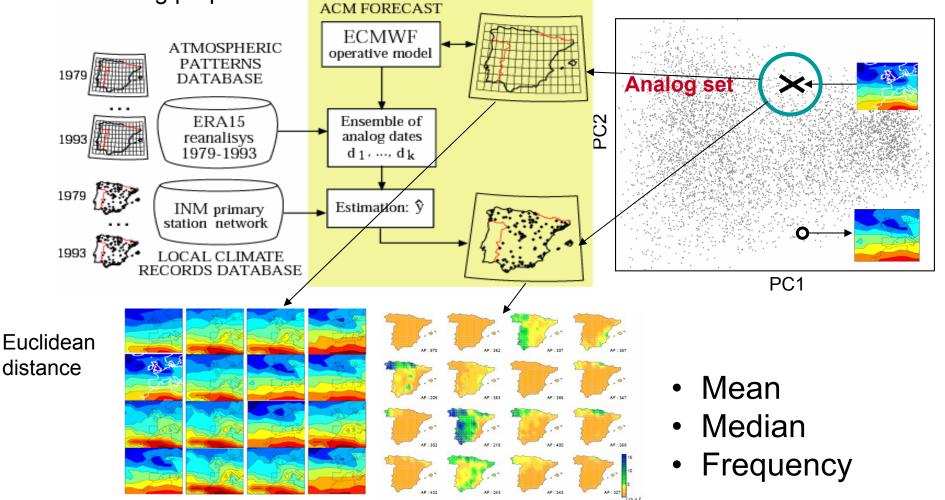
The analog method (nearest neighbour) was introduced by E. Lorenz (1969) and has been considered in different applications, in particular in statistical downscaling purposes.



Analogs Zorita and von Storch (1999)

2. Weather typing:

The analog method (nearest neighbour) was introduced by E. Lorenz (1969) and has been considered in different applications, in particular in statistical downscaling purposes.

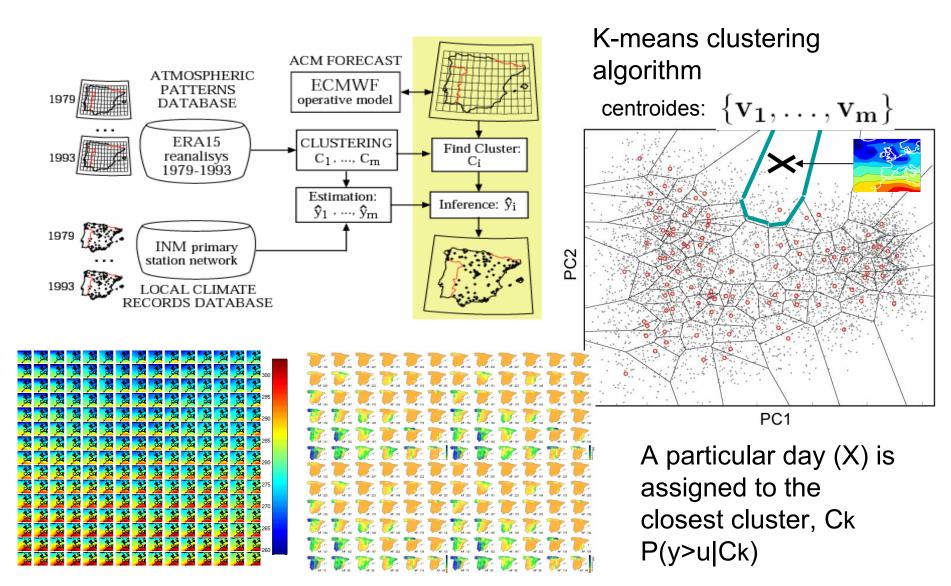


A multidisciplinary approach for weather & climate

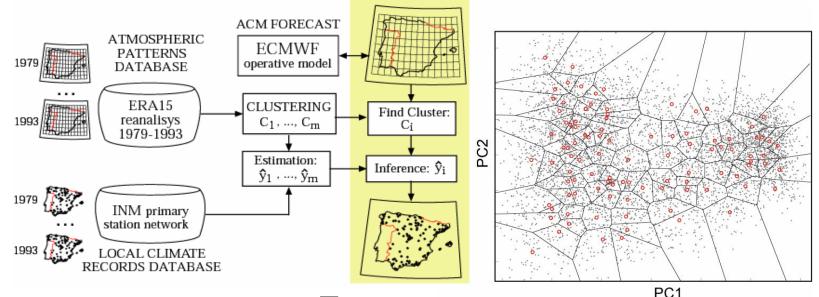
Gutierrez et al (2004), Huth (2010)

K-means

2. Weather typing:

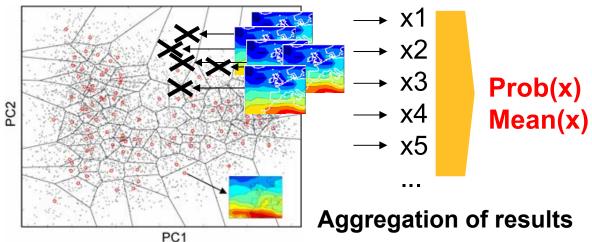


A multidisciplinary approach for weather & climate



Pforecast (precip > u) = $\Sigma_{Ck} P(\text{precip > u | Ck}) P_{\text{forecast}(Ck)}$

The application to an EPS requires applying the method to each of the ensemble members:



2. Weather typing:

K-means

Transfer-Function Approaches

Weather typing

	Advantages	Shortcomings
Linear Regression	Simple	Linear assumption
GLMs	Easy to interpret	Spatially inconsistent
		Selection of predictors
Neural Networks	Nonlinear	Complex blackbox-like
	"Universal" interpolator	Optimization required
		Selection of predictors
Analogs	Nonlinear	Algorithmic. No model.
	Spatial consistency	Difficult to interpret
Weather Typing	Nonlinear	Loss of variance
(k-means, SOM, etc.)	Easy to interpret	Problem with borders
	Spatial consistency	

Statistical

downscaling

methods

A multidisciplinary approach for weather & climate

Monthly Weather Review (2004)

Clustering Methods for Statistical Downscaling in Short-Range Weather Forecasts

J. M. GUTIÉRREZ AND A. S. COFIÑO

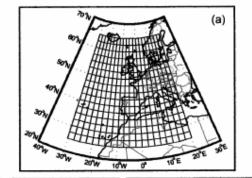
Department of Applied Mathematics, E.T.S.I. Caminos, University of Cantabria, Santander, Spain

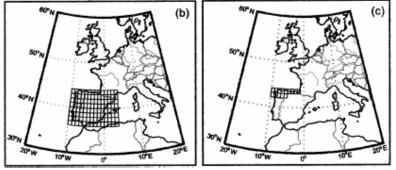
R. CANO

Instituto Nacioal de Meteorología, CMT/CAS, Santander, Spain

M. A. RODRÍGUEZ

Instituto de Física de Cantabria, CSIC, Santander, Spain





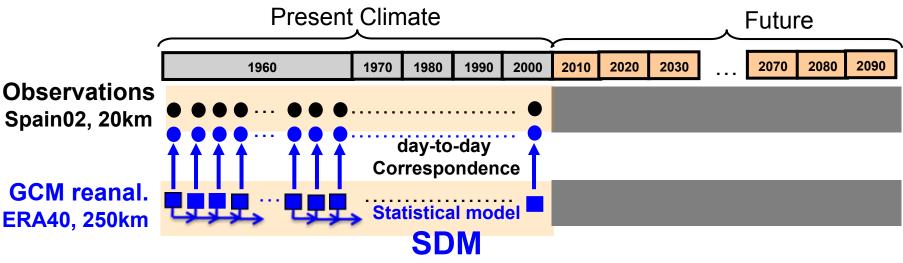
F10. 2. Maps of the model grid domains used in this study: (a) large-scale macro- β grid considered for model 1, (b) meso- α grid covering the peninsula for model 2, and (c) meso- β model 3 grid for the northern basin. (Twelve different grids were considered, one for each basin of the Iberian Peninsula. For the sake of clarity only the north basin is shown.)

$$\mathbf{x}_{12} = (T_{12}^{1000}, \dots, T_{12}^{300}, H_{12}^{1000}, \dots, H_{12}^{300}, \dots, V_{12}^{300}),$$
$$\mathbf{x} = (\mathbf{x}_{06}, \mathbf{x}_{30}).$$
$$\mathbf{x} = (\mathbf{x}_{06}, \mathbf{x}_{12}, \mathbf{x}_{18}, \mathbf{x}_{24}, \mathbf{x}_{30}).$$

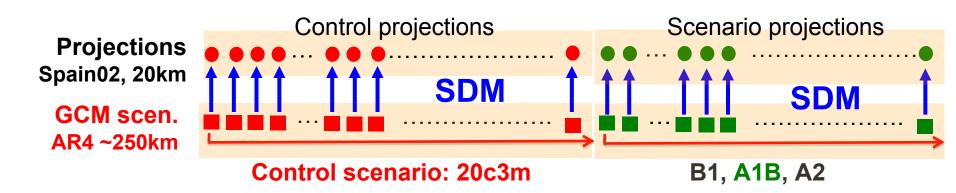
Domain selection

Fore-	Annual spatial av	eraged RSA	>0.1 mm	tation
cast	Method	1	2	3
D + 1	Analog	0.647	0.750	0.791
	Cluster	0.538	0.682	0.744
	WCluster	0.597	0.733	0.783
D + 2	Analog	0.633	0.737	0.771
	Cluster	0.523	0.669	0.716
D + 3	WCluster	0.588	0.711	0.763
	Analog	0.572	0.693	0.734
	Cluster	0.449	0.640	0.678
	WCluster	0.542	0.680	0.726

- Introduction to statistical downscaling
- **Techniques:** Weather typing, transfer functions and weather generators.
- Validation in perfect model conditions
 - Accuracy
 - Observed-simulated distributional consistency.
 - Stationarity/robustness under climate change conditions.
- The statistical downscaling portal



- PROBLEM 1: Choosing consistent predictors:
- PROBLEM 2: Stationarity/robustness: SDM SDM



Journal of Climate 2012 ; e-View

doi: http://dx.doi.org/10.1175/JCLI-D-11-00687.1

Reassessing statistical downscaling techniques for their robust application under climate change conditions

Spanish Regional

Program: PNACC 2012

Climate Change

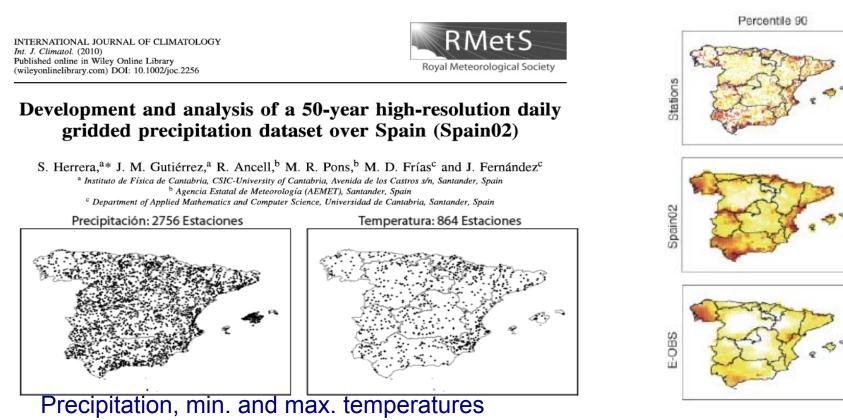
mm

16

16

J. M. Gutiérrez,* D. San-Martín, S. Brands, R. Manzanas, and S. Herrera

Instituto de Físisca de Cantabria (UNICAN-CSIC), Santander, Spain



A multidisciplinary approach for weather & climate

Geographical domains ⁶⁰ Z1 55 79 50 45 40 35 30 25 20 -30 -20 -10 10 20 27.5 0

Consistent Predictors

Calibration and

SD Methods

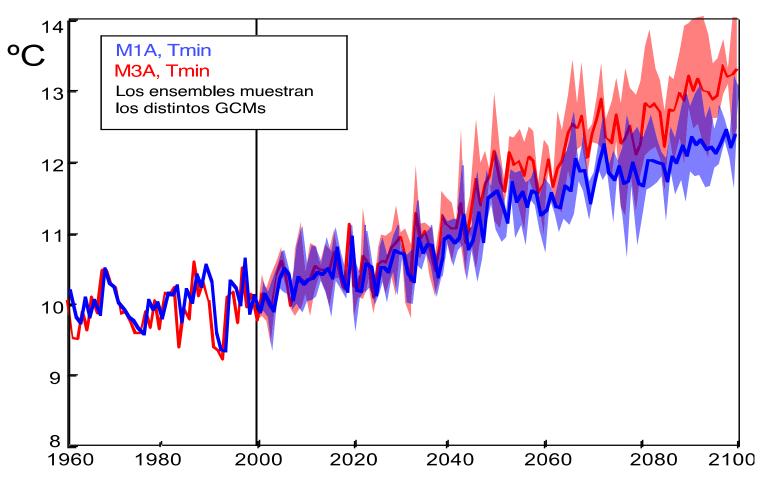
Selection of

Code	Predictor variables
P1–P1d	SLP, T850, Q850, U500, V500
P2-P2d	SLP, T850, Q850, Z500
P3–P3d	SLP, T850, Q850
P4–P4d	SLP, T850
P5	SLP, T2m
P6-P6d	T 850
$\mathbf{P7}$	T2m
P8	Tx
P9	Tn

SD Methods

Code	Type	Method and Predictor Field
M1a	AM	Nearest neighbour (1 analogue)
M1b	AM	Mean of 5 neighbours
M1c	$\mathbf{A}\mathbf{M}$	One out of 15 neighbors, random selection
M2a	WT	100 WTs (k-means), mean of the observations
M2b	WT	100 WTs (k-means), random selection
M ₂ c	WT	100 WTs (k-means), simulation from gaussian distribution
M3a	LR	Linear regression with n PCs (95% variance)
M3b	LR	Local predictor values in the nearest grid box
M3c	LR	15 PCs + Nearest grid box
M4a	LR-WT	M3c conditioned on 10 WTs (k-means)
M4b	LR-WT	M3b conditioned on 10 WTs (k-means)
M4c	LR-WT	M3b (T,Q) conditioned on 10 WTs (SLP)

The lack of robustness can lead to wrong future projections. In the example below the difference between two SD methods is much larger than inter-GCM variability.



Calibration and Selection of SD Methods

M4

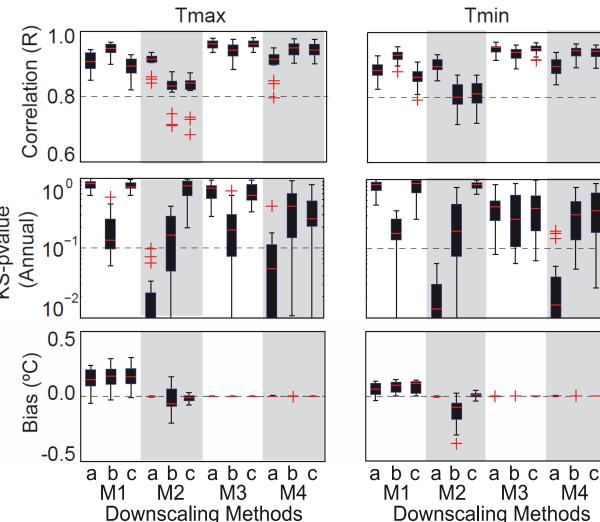
Santander Meteorology Group

A multidisciplinary approach for weather & climate

Code	Type	Method and Predictor Field
M1a	$\mathbf{A}\mathbf{M}$	Nearest neighbour (1 analogue)
M1b	AM	Mean of 5 neighbours
M1c	AM	One out of 15 neighbors, random selection
M2a	WT	100 WTs (k-means), mean of the observations
M2b	WT	100 WTs (k-means), random selection
M ₂ c	WT	100 WTs (k-means), simulation from gaussian distribution
M3a	LR	Linear regression with n PCs (95% variance)
M3b	LR	Local predictor values in the nearest grid box
M ₃ c	LR	15 PCs + Nearest grid box
M4a	LR-WT	M3c conditioned on 10 WTs (k-means)
M4b	LR-WT	M3b conditioned on 10 WTs (k-means)
M4c	LR-WT	M3b (T,Q) conditioned on 10 WTs (SLP)

pvalue Differences in terms of accuracy, distributional similarity and robustness are much larger among the predictors than \dot{b} among the geographical domains, with \mathbf{X} optimum results for 2T, as compared to T850, and small geographical domains.

With an appropriate predictor selection, all methods exhibits a good performance in terms of correlation. However some of them suffers significant distributional from inconsitencies indicating that could not be suitable for climate change applications.



Geography Compass 5/6 (2011): 275–300, 10.1111/j.1749-8198.2011.00425.x

Climate Scenario Development and Applications for Local/Regional Climate Change Impact Assessments: An Overview for the Non-Climate Scientist

Donwscaling General

overview

Part I: Scenario Development Using Downscaling Methods

Julie A. Winkler¹*, Galina S. Guentchev², Perdinan¹, Pang-Ning Tan³, Sharon Zhong¹, Malgorzata Liszewska⁴, Zubin Abraham³, Tadeusz Niedźwiedź⁵ and Zbigniew Ustrnul⁶

¹Department of Geography, Michigan State University

²UCAR CLIVAR Postdocs Applying Climate Expertise (PACE) Program

³Department of Computer Science and Engineering, Michigan State University

⁴Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

⁵Department of Climatology, University of Silesia

⁶Department of Climatology, Jagiellonian University

Part II: Considerations When Using Climate Change Scenarios

Julie A. Winkler¹*, Galina S. Guentchev², Malgorzata Liszewska³, Perdinan¹ and Pang-Ning Tan⁴

¹Department of Geography, Michigan State University

²UCAR CLIVAR Postdocs Applying Climate Expertise (PACE) Program

³Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

⁴Department of Computer Science and Engineering, Michigan State University

Statistical vs. Dynamical Downscaling

28

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Consideration	Why important?	Regional climate models (dynamic downscaling)	Analogs (empirical- dynamic downscaling)	Perfect Prog transfer functions with circulation	Transfer functions (disaggregation downscaling)	Spatial interpolation (disaggregation downscaling)	Weather generators
Spatial resolution	For some impact assessments, it is essential to capture the influence of local site characteristics on climate, whereas for other applications regional-scale variations in climate are sufficient	Not appropriate for point (station) scale; multiple-nested RCMs can be used to obtain scenarios on a fine (1–10 km) mesh grid; single nested RCMs are usually used to obtain scenarios on a 25–50 km grid	Can be used for a range of spatial scales, but most often used to obtain scenarios at a point (station) scale	Can be used for a range of spatial scales, but most often used to obtain scenarios at the point (station) scale	Can be used for a range of spatial scales. Frequently used to obtain scenarios for a station or for grid points (the latter requires that observed gridded fields of the climate variable are available)	Not appropriate for point (station) scale; frequently used to obtain scenarios at a fine (1–10 km) resolution grid	Point (station) scale
Temporal resolution	Scenarios often serve as input to ecological, process, or activity models. The time step used in these models often determines the temporal resolution required for the climate scenarios	Sub-daily	Typically daily	Scenarios can be generated at sub-daily, daily, monthly and longer temporal aggregations	Most appropriate for monthly or longer temporal aggregations	Most appropriate for monthly or longer temporal aggregations	Daily (some attempts have been made to develop weather generators for sub-daily time steps)

- Introduction to statistical downscaling
- **Techniques:** Weather typing, transfer functions and weather generators.
- Validation in perfect model conditions
 - Accuracy
 - Observed-simulated distributional consistency.
 - Stationarity/robustness under climate change conditions.
- The statistical downscaling portal

ENSEMBLES Downscaling Portal (version 2)

http://ensembles-eu.metoffice.com

Santander Meteorology Group

ENSEMBLES Project (2004-2009)

Develop an ensemble prediction system for climate change and linking the outputs to a range of applications.

A multidisciplinary approach for weather & climate

- RCM simulations.
- Statistical Downscaling.
- Gridded observations: E-OBS

Meteolab: an open-source Matlab toolbox http://www.meteo.unican.es/en/software/meteolab

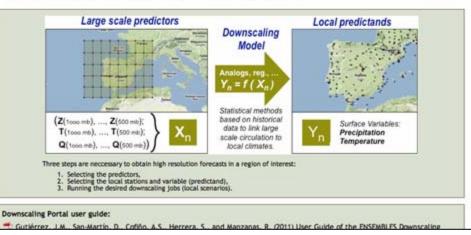
The statistical downscaling portal is a free tool for user-friendly downscaling.

http://www.meteo.unican.es/ensembles

ENSEMBLES Downscaling Portal (version 2)

One of the goals of the <u>ENSEMBLES project</u> is maximizing the exploitation of the results by linking the outputs of the ensemble prediction system (multi-model climate change global simulations) to a range of applications, including agriculture, health, food security, energy, water resources, and insurance, which use high resolution climate inputs to feed their models. The downscaling portal allows end-users to calibrate/downscale the coarse model outputs in the region of interest using historical observed records. The portal includes public observation datasets (e.g. GSOD) and allows uploading new historical data (including private datasets, not available for other users).

This Statistical Downscaling portal provides user-friendly web access to different statistical downscaling techniques and works transparently with the observations, reanalysis and global climate simulations (see the common list of <u>variables</u> available for all models in the portal), obtaining the resulting **outputs in simple formats (e.g., text files)**.



Currently, the ENSEMBLES datasets included in the portal contain only Climate Change Scenarios data. Data from seasonal experiments (multi-model simulations) will be included soon.

Observations:

- •ECA stations •E-OBS 50km
- •E-OBS 25km

- + GSOD + Spain02
- Reanalysis (global coverage):
- •ERA40
- •NCEP

GCM scenarios (global coverage):

- •ENSEMBLES Stream1 (CMIP3):
 - BCM2.0, CNRM-CM3, ECHAM5, ECHO-G, HADGEM, IPCM4
- •ENSEMBLES Stream2:
 - CNRM-CM33, ECHAM5c, HADCM3C, HADGEM2, IPCMv2

Downscaling

Portal:

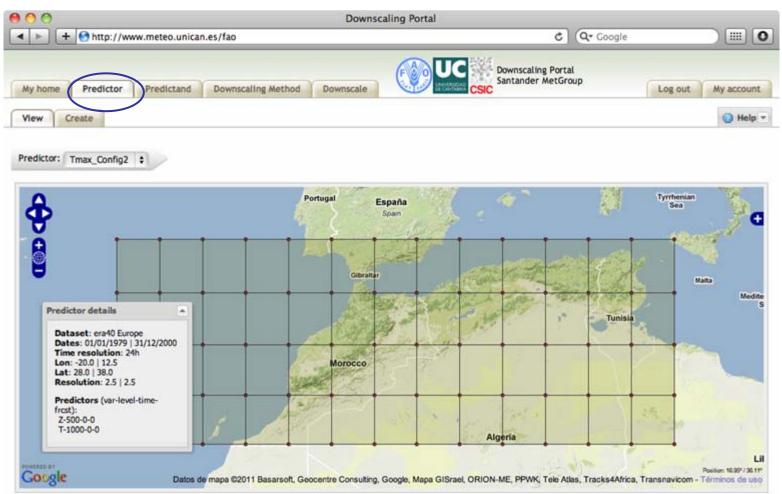
Datasets

Portal: Follow-on Activities

Downscaling

The activities started in ENSEMBLES have a follow on in several EU-funded and international projects, involving different impact communities, and dealing with different CORDEX-related activities.

The SDS Portal allows creating downscaling experiments selecting a region of interest and the predictors to be used (Z500 and T1000 in this example).



SD Portal:

Predictors

SD Portal: Local predictands

It also allows selecting a local variable of interest (e.g. max. Temp.) in a number of stations from any of the available historical datasets (in this case a dataset developed for the project *FAO_Marocco*).

000	Downscaling Portal					
◄ ► 4 Shttp://www.meteo.unican.es/fao			c Q	• Google		
My home Predictor Predictand Downsca View Create	aling Method Downscale	Downscalin Santander	ng Portal MetGroup	Lo	g out My a	ccount
Zone: Tmax_Config2 + Predictand: Tmax	Portugal España	4		Tym	tienian Sea	Res.
Predictand details	Span	r nastri 199		a de la	and i	G
Variable: Tmax Points: 10 (+ info)	e e	Stations Info	and the second	A. Pa	Malta	* X .
	A State State	Stations for: Tr	nax			0
	1 37 8 M	Name	Height	Longitude	Latitude	
*. + _ f	Morocco	TANGER AL-HOUCEIMA KENITRA IFRANE KHOURIBGA SAFI RACHIDIA MARRAKECH AGADIR INZG TAN-TAN	15 12 5 1.664 785 34 1.037 464 23 45	-5,9 -3,85 -6,6 -5,17 -6,9 -9,21 -4,4 -8,03 -9,57 -10,93	35,72 35,18 34,3 32,88 32,32 31,93 31,62 30,38 28,17)) + +
Google Datos de mapa 620	11 Basarsoft, Geocentre Consulting, Google, Mapa GISrael				Pop-U;	

A multidisciplinary approach for weather & climate

It also allows selecting a particular downscaling algorithm from the different families of methods:

- Analogs

- Regression + GLMs
 - From CPs
 - From grid-points
- Neural Network
- K-means weather types
- Weather generators

and defining a particular configuration:

- Number of analogs
- Number of CPs.
- etc.

My home Predictor Predictand Downscaling Method Downscale
View Create
Predictor: Iberia_demo 💠 Predictand: Tmax_5cities 🛊
Wheather typing Transfer functions Wheather generator
Analogues Weather types
Downscaling method properties Number of analogues 1
Inference method Mean 💠
Description: This is the default method of the statistical downscaling portal
Downscaling method name: default
Create new Method

35

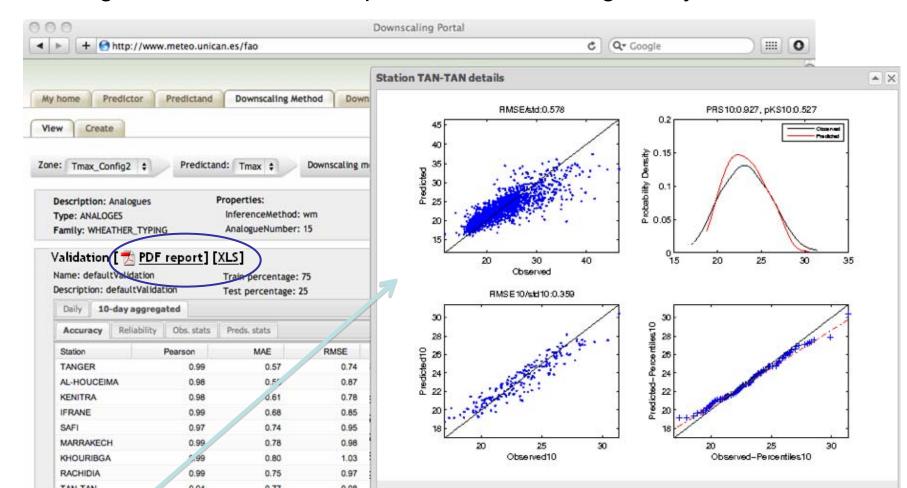
SD Portal:

Downscaling

Method

Finally, it allows selecting a downscaling method (from the list of available ones, including regression, analogs, weather typing, etc.) and

obtaining a cross-validation in present climate using renalysis data.



SD Portal:

Calibration & validation

Once the method is defined and validated it can be used to downscale GCM models for future scenarios decade by decade.

000		Downscal	ing Portal			8
< ► (Ħ ¥ +	Https://www.meteo.unican	.es/ensembles		¢]	Qr Google	
	fatlab http://dipos_z-nieto.pd	lf http://wwwl/13648152 Sc	ienceDirec lef network	ScienceDiren Swaziland	Accuracy of tes of t	ruth 30
My home Predictor		Method Downscale		Downscaling Portal Santander MetGroup	Admin Log out	
View Create (1)					🙆 Jobs info
Predictor: [lberia_demo	¢ Predictand: Tmax_Sci	ties + Downscaling method:	Analogues (default) \$	Scenario: A1B +		
	BCM2	CNCM3	(3)	HADGEM2	MPEH	i
2001 - 2010					0	
2011 - 2020	0			0	8	
2021 - 2030				0		
2031 - 2040				٥		
2041 - 2050						
2051 - 2060 (4)				Ð		
2061 - 2070	D	D		0	0	
2071 - 2080				0	0	
2081 - 2090					۵	
2091 - 2100	0	0		0	2	(5)

Developed by: 💮 predict la

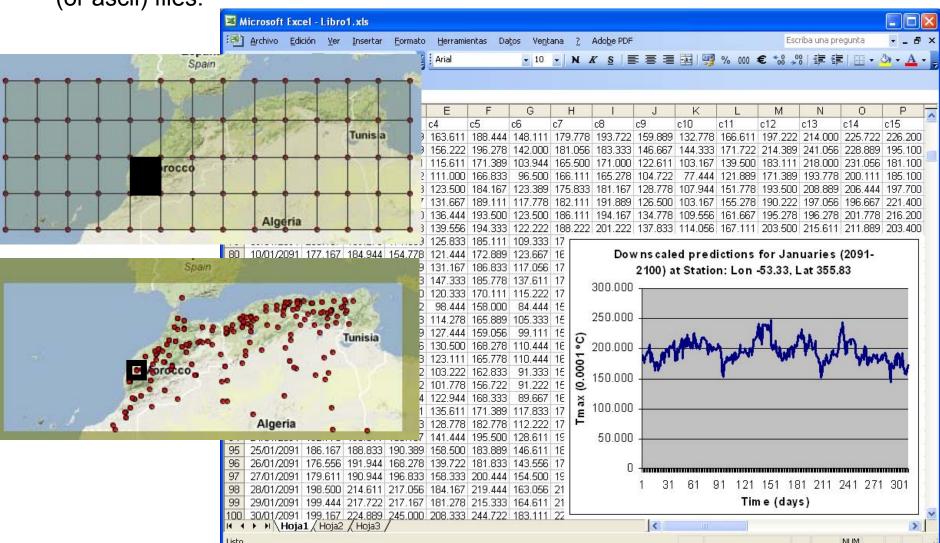
Run selected downscalings

(6)

SD Portal:

PRODUCTION

The resulting daily locally projected simulations can be downloaded as Excel (or ascii) files.



SD Portal:

Friendly Output

These portals **should not be used as a black-box tool (particularly the downscaling portal)** to avoid wrong applications and errors. Some background knowledge is required and the limitations should be known (e.g. the different assumptions of the statistical downscaling methodology). The users are requested to collaborate with downscaling experts. In some cases of mutual interest we provide support and/or training.

User tutorials, indications and **recommendations for downscaling** are provided and referred to, e.g. in the ENSEMBLES web site.

Technical Notes Santander Meteorology Group (CSIC-UC) *SMG:2.2011*

Recommendations

and Support for

End-Users

User Guide of the ENSEMBLES Downscaling Portal (version 2)

J.M. Gutiérrez¹, D. San Martín^{1,2}, A.S. Cofiño³, S. Herrera^{1,2}, R. Manzanas¹, M.D. Frías³
 ¹Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Santander, Spain.
 ² Predictia Intelligent Data Solutions, Santander, Spain.
 ³ Dpto. Matemática Aplicada y C.C. Universidad de Cantabria. Santander, Spain
 correspondence: gutierjm@ifca.unican.es, daniel@predictia.es, cofinoa@unican.es

version: v3–November 2012