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AOGCM: status of the art

Coupled AOGCMs are the modelling tools
traditionally used for generating projections of
climatic changes due to anthropogenic forcings.
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AOGCM: status of the art

Coarse resolution AOGCMs (100-200 Km)
simulate atmospheric general circulation
features well in general. At the regional scale
the models display area-average biases that
are highly variable from region-to-region and
among models, with sub-continental area-
averaged seasonal temperature biases.

A correction is needed to apply these AOGCM
outputs



AOGCM: status of the art

Furthermore, regional climate is often
affected by forcings and circulations that
occur at the sub-AOGCM horizontal grid
scale (e.g., Giorgi and Mearns, 1991).
Consequently, AOGCMs cannot explicitly
capture the fine-scale structure that
characterises climatic variables in many
regions of the world and that is needed for
Impact assessment studies



The ‘Mismatch’ of Scale Issue

Most GCMs neither incorporate nor provide information on
scales smaller than a few hundred kilometers. The effective
size or scale of the ecosystem on which climatic impacts
actually occur is usually much smaller than this. We are
therefore faced with the problem of estimating climate changes
on a local scale from the essentially large-scale results of a
GCM.”

“One major problem faced in applying GCM projections to
regional impact assessments is the coarse spatial scale of the
estimates.”

,<downscaling techniques are commonly used to address the
scale mismatch between coarse resolution GCMs ... and the
local catchment scales required for ... hydrologic modeling”



Downscaling

Bridge mismatch of spatial scale between
the scale of global climate models and the
resolution needed for impacts assessment

GCMs impacts
_\_/
downscaling



End user needs

Depending on the actual application, the end user needs a reliable
representation of

event intensities

temporal variability and time scales
spatial coherence and event size

y ¥ ¥ 9

physical consistency

In many cases, these are required for climate change scenarios.

Maraun et al., Rev. Geophys., 2010



RCMs and SD

RCMs and SD improve the spatial detail of
simulated climate compared to General
Circulation Models (GCMs). RCMs driven by
observed boundary conditions show area-
averaged temperature biases generally within
2°C and precipitation biases within 30%-50% of
observations. Statistical downscaling
demonstrates similar performance, although
greatly depending on the methodological
Implementation and application.



DOWNSCALING - approaches

dynamical (regional climate models)

statistical
= “In a narrow sense’
= stochastic models — weather generators etc.



Statistical downscaling vs RCMs

comparable performance

+ of statistical downscaling:
= computationally simple
= provides local information

+ of RCMs:
= physical consistency among variables



Statistical downscaling vs RCMs

not competing, but complementary
techniques

both have caveats that are frequently
= not admitted
= not reconciled



statist. downscaling: HISTORY

beginnings: 1950’s
weather prediction

NWP in similar state to present climate
modelling — unable to provide regional /
local details

‘specification’ of sfc. weather from large-
scale circulation

pioneering work by W.H. Klein



statist. downscaling: HISTORY

18t climate application: Kim et al. (1984)
‘climate inversion’

since ~1990 a boom € need for a local
climate change information



statist. downscaling: BASICS

statistical relationships

» large scale / free atmosphere variables
X

> regional / local scale surface variables

identified in real world (observed data)

applied to model world (control +
perturbed GCM simulations)



statist. downscaling: ASSUMPTIONS

SD makes sense if local climate variable

(predictand) is simulated incorrectly by a
GCM

There Is a strong correlation between local
climate and large scale parameter
(predictand/predictor relationship)

AOGCMs simulate well large scale
parameter (predictors)



statist. downscaling: ASSUMPTIONS

predictor simulated successfully by GCM

predictor explains large enough portion of
predictand’s variance

predictor x predictand relationship is
constant in time

predictor x predictand relationship holds in
future climate



Climate regionalization (or downscaling): from
global scale to local scale

European Regional
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statist. downscaling: PREDICTANDS

commonly downscaled variables:
temperature, precipitation amount

others:

cloudiness, sunshine duration, cloud ceiling
height, humidity variables, sea level, show
cover, wind speed & direction, precipitation
probability, extreme values & various
distributional characteristics,...



statist. downscaling: PREDICTANDS

spatial resolution
= station (site-specific)
= well defined area (river basin)

= gridbox (of various size)

= more successful (€ reduced variability by
spatial averaging)

= ‘incomplete’ downscaling



statist. downscaling: TIME SCALES

daily = monthly - seasonal

subdaily (hourly) — limited by data
availability



statist. downscaling: PREDICTORS

3 basic approaches — may be combined

= multiple variables at multiple levels at
closest / a few close gridpoint(s)

= same variable as predictand on a large-
scale grid

= one (a few) large-scale upper-air field(s)



statist. downscaling: PREDICTORS

different predictands require different
predictors

frequently — preprocessing by PCA



statist. downscaling: USE OF
CLASSIFICATIONS

mean values attributed to each type
= only works for circulation-induced changes

frequency of types as a predictor for
monthly / seasonal values

stratification of data; downscaling
performed in each type separately
= improvement due to stratification not

quantified yet = invitation to almost
closing presentation (Friday before noon)



statist. downscaling: METHODS

linear — in large majority of studies

m regression

= canonical correlation / covariance (SVD)
analysis

nonlinear

= esp. neural networks

= are nonlinear methods superior? — not
confirmed yet = invitation to almost
closing presentation (Friday before noon)



statist. downscaling:
REPRODUCTION of VARIANCE

underestimated variance in downscaled
data

two ways of reproduction of variance

= inflation (enhancement of anomalies by a
constant factor)

» physically questionable € all forcing comes
from large-scales

= adding noise
= White noise
m regression residuals

= noise with pre-specified statistical
characteristics



statist. downscaling:
REPRODUCTION of VARIANCE

VWA

observed
downscaled: stddev = 58% obs

downscaled inflated



statist. downscaling:
REPRODUCTION of VARIANCE

AN

observed

white noise
downscaled with added white noise



statist. downscaling:
REPRODUCTION of VARIANCE

added

white n.

correlation
with OBS 1.000 0.826 0.826 0.598

obs down infl

autocorrel.  0.587 0.619 0.619 0.305



statist. downscaling: VALIDATION

majority of studies: only fit to observed
data

= rmse, correlation
mean, std.deviation — easy to reproduce

by definition (in most cases) —
unnecessary to validate



statist. downscaling: VALIDATION

seldom, but potentially important in
various applications

= higher-order statistical moments, extreme
values, distribution tails

= time structure

= spatial structure

= intervariable relationships

= trends / contrasting climatic states



statist. downscaling: EXAMPLE

39 European stations
DJF

1982/83 — 1989/90
daily mean temperature
cross-validation



SD: EXAMPLE - rmse

Kmse
Mo, of siepwise  areal mean rmse
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statist. downscaling: SCENARIO
CONSTRUCTION

observed relationships applied to
perturbed GCM runs

problem: extremely high sensitivity to
= method

= predictors
= parameters (no. of PCs, canonical pairs,...)



Z5T8 P
Z5T8 P12 -
Z5T8 P40 -
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6 8 10 12

TEMPERATURE CHANGE (°C)

dT increases with
increasing number of PCs

dT changes with
changing number of
canonical pairs

1000 hPa heights as only
predictor lead to
negligibly low dT
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Z5T8_P12 -
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Z5T8_F3 -
Z5T8_F5 -
Z5T8_F7 -
Z5T8_F11 -
Z5T8_S7 -
Z5T8_S11 -
Z5T8 C1 -
Z5T8_C2
Z5T8_C3
Z5T8 _C4 -
Z5T8_C5
Z5T8_C6
Z5T8_C7
Z5TH_P -
Z5TH_F3 -
Z5TH_F5 -
Z5TH_F7 -
Z5TH_F11 -
Z5 P -

Z5 F4 -

Z5 F7 -

Z5 F11 -
Z0 P -

Z0 F4 -

Z0 F7 -
Z0_F10 -

Z5+T8

pointwise

-
HH
—IH
HIH

2 0 2 4 6 8 10 12
DATI IR [0}

all models are good In
terms of rmse

mean temperature
change varies from
+0.5to +8.5deg. C

s0 which model to
prefer???



WHICH MODEL?

one clear fact: degree of fit with
observed data (whatever measure is
used) cannot be the only criterion!!!

corr = 0.95




PRINCIPAL PROBLEM of
statistical downscaling

Models are fitted to variability on
time scales much shorter than on
which climatic change proceeds



PRINCIPAL PROBLEM of
statistical downscaling

possible REMEDY:

= validate trends (but recent and future
trends may result from different
mechanisms!)

= check ability to simulate contrasting
climatic states (cold / warm; dry / wet
years) (similar objection)

= verify consistency with driving GCM (but
GCM may be wrong!)



AOGCM->SD->Impact Study—->Adaptation Policy

Top-down approach

Global
World de\fopment
Global greelhouse gases
Global cIimfte models
Regionﬁlisation
.................................................... Impacts
Climate v
N adaptation Local
Vulnerability )
policy VvV .
Indicators base on:
Economic resources TeCh'?OIOQV .
Infrastructure Informatlor-1 & skills
Institutions Equity
Bottom-up approach
>

Past Present Future



Warning !! We we have a chain of uncertainty to
take into account...

- A

GHG
emissions

Climate
model

Regional
scenario

The cascade of uncertainty

Adaptation
responses

The envelope of uncertainty >



Downscaling methods:

= Dynamical downscaling:
extracting local-scale information by developing and using regional climate models
(RCMs) with the coarse GCM data used as boundary conditions.

— Statistical downscaling:
« Parameterization » of local scale information (Predictand) from larger scale Predictors

Scenarios N 7 52 2 375
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Weather
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RCM and SD

RCMs- High resolution numerical
models nested in AOGCM
(Dynamic Downscaling)

1

resolution 50 - 25 Km

Statistical Downscaling - SD

|

resolution: grid — point (a), station (b)
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SD vs RCMs: “ advantage “ and “ disadvantage *

O get information at station level,

a used to derive variables not available
from RCMs/GCM (frequency of extreme

Advantage events);

\,EI SD are computationally inexpensive.

a SD need long and homogeneous
observational time series for fitting and

Disadvantage validating the statistical relationship.

\ U 4



SD methods

2 basic approach: linear and non-linear models.

Linear models:

simple/multiple regressions (Johansson and Chen, 2003; Hanssen-
Bauer et al., 2003; Matulla et al., 2003; Huth,2004);

canonical correlation analysis (CCA) (von Storch et al., 1993; Busuioc
et al., 2008; Huth, 2004;

singular-value decompositions (e.g. Huth, 2002; Widmann et al., 2003).

Nonlinear models

weather classification/analogue method (Zorita and von Storch, 1999;
Palutikof et al.,2002);

neural networks/self-organizing maps (e.g. Trigo and Palutikof, 2001;
Cavazos et al., 2002;

weather generators/stochastic models (Palutikof et al., 2002; Busuioc
and von Storch, 2003; Katz et al., 2003;.



The basic idea

Mapping between a large (or larger) scale predictor X and the
expected value of a local-scale predictand Y

E(Y|X) = f(X. 3)

& vector of unknown parameters
Variability not explained by X can be modelled as noise .

Observed X for calibration = Perfect Prog (PP);
Modelled X for calibration = Model Output Statistics (MOS).



Predictor Choice
Predictors are required to be

» informative
» stationary relationship with predictand
» capturing long term variability
» well represented by GCMs
Predictors need to capture
» atmospheric circulation (pressure fields, airflow indices, weather types)
» temperature
» moisture

Predictors are often transformed, e.g., by PCA, “physical” transformations or

cluster analysis.

Charles et al., Clim. Res., 1999; Wilby et al.. J. Hydrol., 1998, Wilby & Wigley, Int. J. Climatol., 2000,
Maraun et al., Rev. Geophys., 2010



Linear Model

K

E(yi) =pi=Po+ Y BrXik
k=1

unexplained variability is modelled (here: added) by Gaussian noise;
x predictors, y predictands, K number of predictors.



Weather Types

p = 1(Xk)

xx categorical weather type,
k=1.K K<N
1(Xx ) mean rainfall

SLP patterns associated with extreme winter precipitation in the
western Mediterranean;

Toreli ef al, NHESS, 2010



Further Methods

Nonlinear Regression
» e.g., artificial neural networks (ANNSs)

Analogue Method
» weather typing with N weather types

yi = y(analog(x;))

x; weather situation at day /;
y; downscaled precipitation at day /;

y(analog(x;)) precipitation at analogue.



Work done at ARPA-SIMC

A) SD at ARPA-SIMC;

B) Statistical Downscaling Model (SDM) and data used:
e (alibration ;
e Validation (SDM skill);
« Evaluation of Uncertanties of SDM

C) Climate Change of TMIN, TMAX and PRECIP over selected
areas 1n Italy (Agroscenari results)

 Present climate;
e Climate change scenario for 2021-2050; ES: A1B



SD at ARPA-SIMC

At ARPA-SIMC we developed a SD technique
since 2002 within:

Stardex project - EU-fp5

http://www.cru.uea.ac.uk/projects/stardex/

Ensembles project - EU fp6-
CIRCE - EU' fp6 — http://www.cmcc.it/it/projects/circe

http://www.ensembles

u.org

Helimater

changet

bndH

Hheld

Hesearch

Impact

Mmediterraneandenvironment

Agroscenari
project funded by MiPaf finalyzed to study
the impact of climate change and propose
adaptation action in Agriculture

http://www.agroscenari.it/ - an Ita“an
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Activity performed

Climate Change (CC) scenarios of seasonal Tmin, Tmax and Precipitation over
different Italian areas, period 2021-2050 against 1961-1990 are assessed.

Relevant impacts of CC on local agricultural practises are present in these areas
(Padano-Veneta plain, Marche, Beneventano, Destra Sele, Oristano, Puglia and
Sicilia).

A SD technique is applied to ENSEMBLES global climate simulations (STREAM1),
scenario A1B. The SD consists of a Multivariate Regression (MR) based on Canonical
Correlation Analysis (CCAReg) constructed using large scale fields (predictors)
derived from ERA40 ECMWF Reanalysis and seasonal Tmin, Tmax and Precipitation
(predictands), derived from observed daily gridded data (resolution around 35km)
belonging to CRA-CMA

The observed period used to set-up the statistical downscaling scheme is 1958-
2002. Once the most skilfull statistical downscaling scheme has been selected for
each season and variables using ERA40, this is then applied to the predictors derived
from the ENSEMBLES models experiments, A1B scenario, in order to construct
climate change scenario at each grid point over 2021-2050 period



... Data-set (I)

Local Scale (Predictand)

(Agroscenari project)

f‘ /Padano-Veneta plain
GT5 o e arche

) :

’ = ‘ Beneventano

Oristano




... Data-set (II)

WINDOW: 90°W-90°E and 0°-90°N

Period: mid-1957 (September) to mid-2002 (August).
GCM simulations: ENSEMBLES model fields , archived in
the Climate and Environmental Retrieval and Archive
(CERA data base) of the World Data Center System for
Climate (WDC) http://ensembles.wdc-climate.de.
STREAM1 simulations, (http://wwwi]
bcmdi.linl.gov/ipcc/about _ipcc.php.
Emission scenario: A1B

Control run: referred to 1961-1990, extracted from the
historical simulation 1860-2000,

Scenario: referred to the periods: 2021-2050 and 2070-
2099. Simulations produced by the following modelling

groups have been analysed: INGV, NERSC, FUB, IPSL,
METOHC (2 runs), MPIMET+DMI.

Large Scale (Predictor)



http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
http://data.ecmwf.int/data/
http://data.ecmwf.int/data/
http://ensembles.wdc-climate.de/
http://ensembles.wdc-climate.de/
http://ensembles.wdc-climate.de/

Rationale the SD scheme 1

SDs skill depends on predictors (type, domain, filtering of data) as
well as on the predictands (quality of input data, filtering of data).

The skill analysis is done most commonly through “cross-validation”
or “calibration-validation” with observed data.

The second method has been used in the present paper, nhamely
calibration-validation. In order to do this the whole interval was
divided into two homogeneous (including positive and negative
anomalies) sub-intervals: 1958-1978 together with 1996-2002, and
1979-1995 which alternatively considered as fitting and validation.

Then, the most skilful model has been retained in order to construct
climate change projections at station level. The skill of the
downscaling model is quantified at grid point level in terms of
Spearman rank-correlation coefficient, BIAS, root-mean square-error
(RMSE).



Rationale the SD scheme 11

Need to choice the BEST predictors and a strong, stable
and physically meaningful predictor-predictand
relationships (ERA40 reanalysis);

How to do that ?

Testing different domains and predictors
Testing different number of EOFs in CCA

Construction of the SDMs on different period (i.e.inverse
the period of validation/calibration; cross validation &
jacknife tech.etc...)



Uncertainty: how to manageit ?

l—
l—
l—

ILsolutions?

o

Use of many
models

|

EM and PDF




Predictors — Circulation indices deduced by ERA40
and AOGCMs — Uncertainty due to different

[ ) \/|
A Ensembles project — INSTITUTIONS Resolution AGCM OGCM
(STREAM1)

FUB-EGMAM Freie Universitaet 3.75°%3.75° ECHAMA4 (T30L39) HOPE-G (T42 with
Berlin(Germany) equatorial refinement,
L20)
METO-HC Met Office's Hadley 1.875°x1.875° HadGAMI( includes HadGOMI( includes
(HADGEM1) Centre (UK) land and river routing sea ice components)
components)
IPSL-CM4 Inst.Pierre Somon 3.75°%3.75° LMDZ (96x72x19) OPAS.2
Laplace (France)
ECHAM5 MPI OM Max-Planck 1.875°%1.875° ECHAMS.2.02 MPI-OM Vers. 1.0
Institute(Germany) (T63L31) (GR1.51L.40)
INGV-SINTEX-G INGV-Italy 1.125°x1.125° ECHAMA4 (T106L19) OPA 8.2
modello riscluzione modello risoluzione modello risoluzione
CMCC — Med ~ 22 .
(NEY) ECHAM 21 il vortical OFAS2 Cogﬁ?feﬂqnuaaToergto MFS 71 vl vortica
31 livelli werticali

>Emission Scenario: A1B




Set-up SD

k Calibrazione Validazione Calibrazione 4

A _‘

1960 1978 1994 2002
skill - SDs

 correlation coefficient (Spearman coefficient)- R;

° BIAS= <i naex o > verification <i ndexob5> verification

e RMSE= |~  Xlindex,,(i)~index,i)-BIASF

N ieverificationperiod




... skill SDM ( fase di validazione)...

Confronto tra il valore osservato e output SDM-

punto di griglia 1411 (Val Padana)

°C

- v/l = = = = = = -

—e— Tmin_DJF_1411_UCEA
—=— Tmin_DGF_1411_DS

—_ e v v v v e = ==

Confronto tra il valore osservato e output SDM-
punto di griglia 1118 (Oristano)

30 T

Tmax(°C)
N
O

26

Andamento della Tmax estiva-osservata e simulata(DS)

—— 1118_TMAX_GLA_osservato
= 1118_TMAX GLA_DS

1979

1981 1983 1985
anni

1987 1989 1991

1993




Comparison obs-mod Tmax summer Po Valley
(average over all grid points)

Mean (1961-1990)

" Padana I‘

Variance (1961-1990)

266
26.55
265

26.45 /
O 4 /
8 535
£ 263

2625 /

62

2615

mechamd megmam! oegnam? oing: mipsl ometohc mclima

Varianze('C*2)

Nota: Good reproduction of mean values, under and over reproduction of variance
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Selection of predictorsand
results from validation

correlation coef.

Skill of Tmin and Tmax computed between observed and downscaled

1.00

data (mean overall grid points)

period : 1979-1995 (validation period )

0.90 -

significant correlation at 0.05

0.80
0.70 -
0.60 A
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -

significant correlation at 0.1

0.00

O Tmin

DJF

MAM JJA SON
O Tmax seasons

°C

BIAS computed between observed and downscaled data
(mean over all grid points), period:1979-1995

0.9 A

0.7 1

0.5 1

0.3 A

0.1 1

-0.1 4

-0.3 4

DJF MAM JJA

[ —
SON

seasons

-0.5

OTnav N_Italy O Tnav_N_italy

Best predictors selected taking into account different indices of performance: BIAS, RMSE and rank correlation as
indices of performance.

T850 is the best predictor for minimum and maximum temperature,
MSLP is in generally the best predictor for cumulated precipitation.

Good performances obtained for both minimum and maximum temperatures during all seasons. Regarding
precipitation good performances are obtained during winter and autumn seasons, while during spring and summer
the performance is smaller.




Scenario results

The SD technique have been then applied to the
predictors simulated by the GCMs to construct
future projections at local scale.

Results presented also as Probability Density
Function (PDF) or maps of changes, constructed for
each model or for the Ensemble Mean (EM). In this
way an information concerning uncertainty is
available

Temperature (min & max): Possible increase over all
analysed areas, in all seasons, during the period
2021-2050 with respect to 1961-1990.
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Projected changes (mean over all areas) and standard deviation
of winter Tmin obtained by the SDs applied to different
AOGCMs: period 2021-2050, scenario A1B

INGV BCCR EGMAM_ EGMAM_ ECHAM5 METO_HC IPSL EM
Run1 Run2
AT(°C) 0.9 0.8 1.5 0.9 0.9 1.2 1.7 1.1
St. 0.9 1.1 1 1 0.9 0.8 1.2 1.1
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SD - Scenario results- Tmax
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Cambiamenti Tmax (°C) — Ensemble Mean
2021-2050 rispetto al 1961-1990, scenario A1B
(un punto di griglia per ogni area)

Scenario A1B (2021:2050-1961:1990) Ensemble Mean (solid line) and present
climate,(dashed line) -winter Tmax (DJF)
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Scenario A1B (2021:2050-1961:1990) Ensemble Mean (solid line) and present
climate (dashed line) -Spring Tmax (MAM)
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Scenario A1B (2021:2050-1961:1990) Ensemble Mean (solid line) and present
climate (dashed line) -summer Tmax (JJA)
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Scenari di cambiamento climatico — precipitazioni (%)
2021-2050 rispetto al 1961-1990, scenario A1B

Po Valley region( 1410 grid point)
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Scenario results - Precipitation

changes prec. (%)
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SD techn. show a pattern of changes more complex, different from season to season and over the areas. Future changes
[(2021-2050)-(1961-1990)] of seasonal precipitation are expressed in % (with respect to 1960-1990), in one grid point that
belongs to Po valley and to Oristano. Outputs obtained by applying the CCAReg to: ECAHMS, EGMAM runs, INGV,

IPSL and METO_HC, and also the Ensemble Mean (EM).

A small decrease of precipitation in winter. During spring, only the grid point that belong to Po Valley shows a possible
increase, around 15%-EM, while for the grid point that belong to Oristano area a possible decrease is projected. Summer is
the season where the signal of changes goes in the same direction for all grid points: a possible decrease of amount of
precipitation, more pronounced at Oristano region. As concerns autumn only the grid point from the Po Valley shows a
possible increase




Application: Climate change impacts on water
demand (tomato irrigation) over Po Valley
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Conclusion

Statistical downscaling scheme allows to construct climate projections at local scale for Tmin,
Tmax and Prec. over different areas from the Italian peninsula.

Uncertainty can be evaluated by using changing SD method and GCMs
Results obtained can be used as input for impact studies in different sectors

Concerning the scenario obtained: increases in Tmin and Tmax over the studied areas in all
seasons, for the period 2021-2050 with respect to 1961-1990, A1B scenario;

The Ensemble Mean computed using all simulations for each season, shows a change in the
mean of the PDFs of minimum and maximum temperature, between 1.5- 2°C. The peak of
changes is projected during summer for both, minimum and maximum temperature.

A shift of the PDFs to warmer value is projected to occur for both Tmin and Tmax in all
seasons. This shift is more pronounced in the upper tails and higher magnitude have been
found during summer (up to 3°C with respect to present climate);

A reduction of precipitation could be expected to occur during summer season, period 2021-
2050, more pronounced in the areas situated in the central and southern part of Italian
peninsula.
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