The Abdus Salam
International Centre
for Theoretical Physics
50th Anniversary 1964-2014

Preparatory School to the Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications

3-7 February 2014

REVIEW OF ELECTRODYNAMICS

Imrana Ashraf Zahid
Quaid-i-Azam University
Islamabad
Pakistan

REVIEW OF ELECTRODYNAMICS

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics- Theory, Devices and Applications. $3^{\text {rd }}$ February - $7^{\text {th }}$ February 2014

Layout

- Electrostatic: Revisited
- Magneto- static : Revisited
- Introduction to Maxwell's equations
- Electrodynamics before Maxwell
- Maxwell's correction to Ampere's law
- General form of Maxwell's equations
- Maxwell's equations in vacuum
- Maxwell's equations inside matter
- The Electromagnetic wave
- Energy and Momentum of Electromagnetic Waves

Nomenclature

```
- \(\quad E=\) Electric field
- \(D=\) Electric displacement
■ \(B=\) Magnetic flux density
- \(H=\) Auxiliary field
\(\square \rho=\) Charge density
■ \(j=\) Current density
\(\square \mu_{0}\) (permeability of free space) \(=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}\)
\(\square \varepsilon_{0}\) (permittivity of free space) \(=8.854 \times 10^{-12} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}\)
\(\square \mathrm{c}\left(\right.\) speed of light) \(=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
```


Introduction

■ Electrostatics

- Electrostatic field : Stationary charges produce electric fields that are constant in time. The theory of static charges is called electrostatics.

Stationary charges \square Constant Electric field;

Electrostatic :Revisited

Coulombs Law

$$
\begin{gathered}
\vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}} \hat{r} \\
\varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{N-m^{2}}
\end{gathered}
$$

$$
\rightarrow \underset{\substack{\text { Test } \\ \text { Cource } \\ \text { Charge }}}{Q}
$$

Permittivity of free space

The Electric Field

$$
\begin{aligned}
& \vec{F}=Q \vec{E} \\
& \vec{E}(P)=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i}
\end{aligned}
$$

\vec{E} - the electric field of the source charges.

Physically E(P) Is force per unit charge exerted on a test charge placed at P.

The Electric Field: cont'd

$$
\vec{E}(P)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {Line }} \frac{\hat{r}}{r^{2}} \lambda d l
$$

λ is the line charge density

$$
\vec{E}(P)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {Surfacer }} \frac{\hat{r}}{r^{2}} \sigma d a
$$

σ is the surface charge density

The Electric Field: cont'd

$$
\vec{E}(P)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {Volume }} \frac{\hat{r}}{r^{2}} \rho d \tau
$$

ρ is the volume charge density

Electric Potential

The work done in moving a test charge Q in an electric field from point P_{1} to P_{2} with a constant speed.

$$
\begin{gathered}
W=\text { Force } \bullet \text { dis } \tan c e \\
W=-\int_{p_{1}}^{P_{2}} Q \vec{E} \bullet d \vec{l}
\end{gathered}
$$

negative sign - work done is against the field.
For any distribution of fixed charges.

$$
\oint \vec{E} \bullet d \vec{l}=0
$$

The electrostatic field is conservative

Electric Potential: cont'd

Stokes's Theorem gives

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=0 \\
& \vec{E}=-\vec{\nabla} V
\end{aligned}
$$

where V is Scalar Potential

The work done in moving a charge Q from infinity to a point P_{2} where potential is V

$$
\begin{aligned}
\text { V } & =\text { Work per unit charge } \\
& =\text { Volts }=\text { joules/Coulomb }
\end{aligned}
$$

Electric Potential : cont'd

Field due to a single point charge q at origin

$$
\begin{gathered}
V=\int_{r}^{\infty} \frac{q d r}{4 \pi \varepsilon_{0} r^{2}}=\frac{q}{4 \pi \varepsilon_{0} r} \\
F \propto \frac{1}{r^{2}} \\
E \propto \frac{1}{r^{2}} \\
V \propto \frac{1}{r}
\end{gathered}
$$

Gauss's Law

$$
\oint \vec{E} \bullet d \vec{a}=\frac{1}{\varepsilon_{0}} Q_{e n c}
$$

Differential form of Gauss's Law

$$
\vec{\nabla} \bullet \vec{E}=\frac{\rho}{\varepsilon_{0}}
$$

Poisson's Equation

$$
\nabla^{2} V=-\frac{\rho}{\varepsilon_{0}}
$$

Laplace's Equation

$$
\nabla^{2} V=0
$$

Electrostatic Fields in Matter

Matter: Solids, liquids, gases, metal, wood and glasses behave differently in electric field.

Two Large Classes of Matter
(i) Conductors
(ii) Dielectric

Conductors: Unlimited supply of free charges.
Dielectrics:

- Charges are attached to specific atoms or molecules- No free charges.
- Only possible motion - minute displacement of positive and negative charges in opposite direction.
- Large fields- pull the atom apart completely (ionizing it).

Polarization

A dielectric with charge displacements or induced dipole moment is said to be polarized.

$$
\text { Induced Dipole Moment } \quad \mathrm{p}=\alpha E
$$

The constant of proportionality α is called the atomic polarizability

$$
P \equiv \text { dipole moment per unit volume }
$$

The Field of a Polarized
 Object

Potential of single dipole p is

$$
\begin{aligned}
& \mathrm{dV}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\hat{\mathrm{r}} \bullet \overrightarrow{\mathrm{p}}}{\mathrm{r}^{2}} \\
& V=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {volume }} \frac{\overrightarrow{\mathrm{P}} \bullet \hat{\mathrm{r}}}{\mathrm{r}^{2}} d \tau \\
& V=\frac{1}{4 \pi \varepsilon_{0}}\left[\int_{\text {surface }} \frac{1}{r} \vec{P} \bullet d a-\int_{\text {votential due to dipoles in the dielectric }} \frac{1}{r}(\vec{\nabla} \bullet \vec{P}) l \tau\right]
\end{aligned}
$$

The Field of a Polarized Object: cont'd

$$
\begin{array}{cc}
\sigma_{b}=\vec{P} \bullet \hat{n} & \text { Bound charges at surface } \\
\rho_{b}=-\vec{\nabla} \bullet \vec{P} & \text { Bound charges in volume } \\
V=\frac{1}{4 \pi \varepsilon_{0}}\left[\int_{\text {surface }} \frac{1}{r} \sigma_{b} d a+\int_{\text {volume }} \frac{1}{r} \rho_{b} d \tau\right]
\end{array}
$$

The total field is field due to bound charges plus due to free charges

Gauss's law in Dielectric

- Effect of polarization is to produce accumulations of bound charges.
- The total charge density

$$
\rho=\rho_{f}+\rho_{b}
$$

$$
\int \vec{D} \cdot d \vec{a}=Q_{f e n c}
$$

From Gauss's law

$$
\varepsilon_{0} \vec{\nabla} \cdot \vec{E}=\rho=\rho_{b}+\rho_{f}
$$

$Q_{\text {fenc }}$-Free charges enclosed
Displacement vector

$$
\vec{\nabla} \cdot \overrightarrow{\mathrm{D}}=\rho_{\mathrm{f}}
$$

$$
\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}
$$

Magnetostatics: Revisited

- Magnetostatics
- Steady current produce magnetic fields that are constant in time. The theory of constant current is called magnetostatics.

Steady currents \longrightarrow Constant Magnetic field;

Magnetic Forces

Lorentz Force

$$
\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]
$$

- The magnetic force on a segment of current carrying wire is

$$
\begin{aligned}
& F_{m a g}=\int(\vec{I} \times \vec{B}) d l \\
& F_{m a g}=\int I(d \vec{l} \times \vec{B})
\end{aligned}
$$

Equation of Continuity

The current crossing a surface s can be written as

$$
\begin{gathered}
I=\int_{s} \vec{J} \cdot d \vec{a}=\int_{v}(\vec{\nabla} \cdot \vec{J}) d \tau \\
\int_{v}(\vec{\nabla} \cdot \vec{J}) d \tau=-\frac{d}{d t} \int^{v} \rho d \tau=-\int\left(\frac{\partial \rho}{\partial t}\right) d \tau
\end{gathered}
$$

Charge is conserved whatever flows out must come at the expense of that remaining inside - outward flow decreases the charge left in v

$$
\vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t}
$$

This is called equation of continuity

Equation of Continuity 1

In Magnetostatic steady currents flow in the wire and its magnitude I must be the same along the line- otherwise charge would be pilling up some where and current can not be maintained indefinitely.

$$
\frac{\partial \rho}{\partial t}=0
$$

In Magnetostatic and equation of continuity

$$
\vec{\nabla} \cdot \vec{J}=0
$$

Steady Currents: The flow of charges that has been going on forever never increasing-never decreasing.

Magnetostatic and Current Distributions

Biot and Savart Law

$$
\vec{B}(p)=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{I} \times \vec{r}}{|\vec{r}|^{3}} d l
$$

$d l$ is an element of length.

\vec{r} vector from source to point p.
$\mu_{0} \quad$ Permeability of free space.
Unit of $B=N / A m=T e s l a(T)$

Biot and Savart Law for Surface and Volume Currents

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0}}{4 \pi} \int \frac{\vec{K} \times \vec{r}}{|\vec{r}|^{3}} d a \quad \text { For Surface Currents } \\
\vec{B} & =\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J} \times \vec{r}}{|\vec{r}|^{3}} d \tau \quad \text { For Volume Currents }
\end{aligned}
$$

Force between two parallel wires

The magnetic field at (2) due to current I_{1} is

$$
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi d} \quad \text { Points inside }
$$

Magnetic force law

$$
d F=\int I_{2}\left(d \vec{l}_{2} \times \vec{B}_{1}\right)
$$

$$
\mathrm{dF}=\int \mathrm{I}_{2}\left(\mathrm{~d}_{2} \times \frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \mathrm{~d}} \hat{\mathrm{k}}\right)
$$

(1)
(2)

Force between two parallel wires

$$
d F=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d} d l_{2}
$$

The total force is infinite but force per unit length is

$$
\frac{d F}{d l_{2}}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d}
$$

If currents are anti-parallel the force is repulsive.

Straight line currents

The integral of B around a circular path of radius s , centered at the wire is

$$
\oint \vec{B} \cdot d \vec{l}=\oint \frac{\mu_{0} I}{2 \pi s} d l=\mu_{0} I
$$

For bundle of straight wires. Wire that passes through loop contributes only.

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}
$$

Applying Stokes' theorem

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
$$

Divergence and Curl of B

Biot-Savart law for the general case of a volume current reads

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(r^{\prime}\right) \times \vec{r}}{r^{3}} d \tau^{\prime}
$$

$$
\begin{gathered}
\mathbf{B} \text { is a function of }(x, y, z), \\
\mathbf{J} \text { is a function of }\left(x^{\prime}, y^{\prime}, z^{\prime}\right), \\
\vec{r}=\left(x-x^{\prime}\right) \hat{\mathbf{x}}+\left(y-y^{\prime}\right) \hat{\mathbf{y}}+\left(z-z^{\prime}\right) \hat{\mathbf{z}}, \\
d \tau^{\prime}=d x^{\prime} d y^{\prime} d z^{\prime} \\
\vec{\nabla} \bullet \vec{B}=0 \text { and } \quad \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
\end{gathered}
$$

Ampere's Law

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J} \quad \text { Ampere's law }
$$

Integral form of Ampere's law

Using Stokes' theorem

$$
\begin{gathered}
\int(\vec{\nabla} \times \vec{B}) \cdot d \vec{a}=\oint \vec{B} \cdot d \vec{l}=\mu_{0} \int \vec{J} \cdot d \vec{a} \\
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}
\end{gathered}
$$

Vector Potential

The basic differential law of Magnetostatics

$$
\begin{gathered}
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J} \\
\vec{\nabla} \cdot \vec{B}=0
\end{gathered}
$$

B is curl of some vector field called vector potential $A(P)$

$$
\begin{gathered}
\vec{B}(P)=\vec{\nabla} \times \vec{A}(P) \\
\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\mu_{0} J
\end{gathered}
$$

Coulomb's gauge

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{A}=0 \\
\nabla^{2} A=-\mu_{0} J
\end{gathered}
$$

Magnetostatic Field in Matter

$>$ Magnetic fields- due to electrical charges in motion.
$>$ Examine a magnet on atomic scale we would find tiny currents.
$>$ Two reasons for atomic currents.

- Electrons orbiting around nuclei.
- Electrons spinning on their axes.
$>$ Current loops form magnetic dipoles - they cancel each other due to random orientation of the atoms.
$>$ Under an applied Magnetic field- a net alignment of - magnetic dipole occurs- and medium becomes magnetically polarized or magnetized

Magnetization

If m is the average magnetic dipole moment per unit atom and \mathbf{N} is the number of atoms per unit volume, the magnetization is define as

$\overrightarrow{\mathrm{M}}=\mathrm{N} \overrightarrow{\mathrm{m}}$
 $\overrightarrow{\mathrm{m}}=\mathrm{I} \overrightarrow{\mathrm{a}}=\mathrm{Am}^{2}$

or

$$
m=M d \tau
$$

Magnetic Materials

Paramagnetic Materials

The materials having magnetization parallel to B are called paramagnets.

Diamagnetic Materials

The elementary moment are not permanent but are induced according to Faraday's law of induction. In these materials magnetization is opposite to B.

Ferromagnetic Materials

Have large magnetization due to electron spin. Elementary moments are aligned in form of groups called domain

The Field of Magnetized Object

Using the vector potential of current loop

$$
\begin{gathered}
\overrightarrow{\mathrm{A}}=\frac{\mu_{0}}{4 \pi} \frac{\overrightarrow{\mathrm{~m}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}} \\
\vec{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{M} \times \hat{n}}{r} d a+\frac{\mu_{0}}{4 \pi} \int \frac{\vec{\nabla} \times \vec{M}}{r} d \tau \\
\overrightarrow{\mathrm{~K}_{\mathrm{b}}}=\overrightarrow{\mathrm{M}} \times \hat{\mathrm{n}} \quad \text { Bound Surface Current } \\
\overrightarrow{\mathrm{J}_{\mathrm{b}}}=\vec{\nabla} \times \overrightarrow{\mathrm{M}} \quad \text { Bound Volume Current }
\end{gathered}
$$

Ampere's Law in Magnetized Material

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
$$

$$
\vec{J}=\vec{J}_{b}+\vec{J}_{f}
$$

$$
\frac{1}{\mu_{0}}(\vec{\nabla} \times \vec{B})=\vec{J}_{b}+\vec{J}_{f}=\vec{J}_{f}+(\vec{\nabla} \times \vec{M})
$$

where

$$
\vec{\nabla} \times \vec{H}=\vec{J}_{f}
$$

$$
\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M}
$$

Integral form

$$
\oint \vec{H} \cdot d \vec{l}=I_{\text {fenc }}
$$

Faraday's Law of Induction

- Faraday's Law - a changing -magnetic flux through circuit induces an electromotive force around the circuit.

$$
\varepsilon=\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dl}}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-\frac{\mathrm{d}}{\mathrm{dt}} \int \overrightarrow{\mathrm{~B}} \cdot \overrightarrow{\mathrm{da}}
$$

\boldsymbol{C} - Induced emf
E - Induced electric field intensity

Differential form of Faraday's law

$$
\vec{\nabla} \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}
$$

Faraday's Law of Induction

Induced Electric field intensity in terms of vector potential

$$
\overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}-\overrightarrow{\mathrm{V}} \mathrm{~V}
$$

For steady currents

$$
\overrightarrow{\mathrm{E}}=-\vec{\nabla} \mathrm{V} \quad \mathrm{~V} \text { - Scalar potential }
$$

Induced emf in a system moving in a changing magnetic field

$$
\varepsilon=\vec{\nabla} \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}+\vec{\nabla} \times(\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})
$$

MAXWELL'S EQUATIONS

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics-
Theory, Devices and Applications. $3^{\text {rd }}$ February - $7^{\text {th }}$ February 2014

Introduction to Maxwell's Equation

- In electrodynamics Maxwell's equations are a set of four equations, that describes the behavior of both the electric and magnetic fields as well as their interaction with matter
- Maxwell's four equations express
- How electric charges produce electric field (Gauss's law)
- The absence of magnetic monopoles
- How currents and changing electric fields produces magnetic fields (Ampere's law)
- How changing magnetic fields produces electric fields (Faraday's law of induction)

Historical Background

- 1864 Maxwell in his paper "A Dynamical Theory of the Electromagnetic Field" collected all four equations
- 1884 Oliver Heaviside and Willard Gibbs gave the modern mathematical formulation using vector calculus.
- The change to vector notation produced a symmetric mathematical representation, that reinforced the perception of physical symmetries between the various fields.

Electrodynamics Before Maxwell

Gauss's Law

No name

$$
\text { (i) } \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{o}}
$$

$$
(i i) \vec{\nabla} \cdot \vec{B}=0
$$

Faraday's Law

Ampere's Law
(iii) $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}$
$\vec{B}=\vec{\nabla} \times \vec{A}$ (iv) $\vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}$

Electrodynamics Before Maxwell (Cont'd)

Apply divergence to (iii)
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{E})=\vec{\nabla} \cdot\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{B})$
The left hand side is zero, because divergence of a curl is zero.
The right hand side is zero because $\vec{\nabla} \cdot \vec{B}=0$.

Apply divergence to (iv)

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{B})=\mu_{o}(\vec{\nabla} \cdot \vec{J})
$$

Electrodynamics Before Maxwell (Cont'd)

- The left hand side is zero, because divergence of a curl is zero.
- The right hand side is zero for steady currents i.e.,

$$
\vec{\nabla} \cdot \vec{J}=0
$$

- In electrodynamics from conservation of charge

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{J} & =-\frac{\partial \rho}{\partial t} \\
& \Rightarrow \frac{\partial \rho}{\partial t}=0
\end{aligned}
$$

ρ is constant at any point in space which is wrong.

Maxwell's Correction to Ampere's Law

Consider Gauss's Law

$$
\begin{aligned}
& \vec{\nabla} \cdot \varepsilon_{o} \vec{E}=\rho \\
& \frac{\partial}{\partial t}\left(\vec{\nabla} \cdot \varepsilon_{o} \vec{E}\right)=\frac{\partial \rho}{\partial t} \\
& \Rightarrow \frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \\
& \frac{\partial \vec{D}}{\partial t}=\varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Displacement current

This result along with Ampere's law and the conservation of charge equation suggest that there are actually two sources of magnetic field.
The current density and displacement current.

Maxwell's Correction to Ampere's Law (Cont'd)

Amperes law with Maxwell's correction

$$
\vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}+\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
$$

General Form of Maxwell's Equations

Differential Form

$$
\begin{array}{ll}
\text { ifferential Form } & \text { Integral Form } \\
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{o}} & \oint_{S} \vec{E} \cdot d \vec{a}=\frac{1}{\varepsilon_{o}} \int_{V} \rho d V \\
\vec{\nabla} \cdot \vec{B}=0 & \oint_{S} \vec{B} \cdot d \vec{a}=0 \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \oint_{C} \vec{E} \cdot d \vec{l}=-\frac{d}{d t_{S}} \int \vec{B} \cdot d \vec{a} \\
\vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}+\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} & \oint_{C} \vec{B} \cdot d \vec{l}=\mu_{o} I_{e n c}+\mu_{o} \varepsilon_{o} \frac{d}{d t} \oint_{S} \vec{E} \cdot d \vec{a}
\end{array}
$$

Maxwell's Equations in vacuum

- The vacuum is a linear, homogeneous, isotropic and dispersion less medium
- Since there is no current or electric charge is present in the vacuum, hence Maxwell's equations reads as
- $\begin{aligned} & \text { as } \\ & \text { These equations have a } \\ & \text { simple solution in terms of }\end{aligned}$ traveling sinusoidal waves, with the electric and magnetic fields direction orthogonal to each other and the direction of travel

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Maxwell's Equations Inside Matter

Maxwell's equations are modified for polarized and magnetized materials. For linear materials the polarization P and magnetization M is given by

$$
\begin{aligned}
& \vec{P}=\varepsilon_{o} \chi_{e} \vec{E} \\
& \vec{M}=\chi_{m} \vec{H}
\end{aligned}
$$

And the D and B fields are related to E and H by

$$
\begin{aligned}
& \vec{D}=\varepsilon_{o} \vec{E}+\vec{P}=\left(1+\chi_{e}\right) \varepsilon_{o} \vec{E}=\varepsilon \vec{E} \\
& \vec{B}=\mu_{o}(\vec{H}+\vec{M})=\left(1+\chi_{m}\right) \mu_{o} \vec{H}=\mu \vec{H}
\end{aligned}
$$

Where χ_{e} is the electric susceptibility of material,
χ_{m} is the magnetic susceptibility of material.

Maxwell's Equations Inside Matter (Cont'd)

- For polarized materials we have bound charges in addition to free charges

$$
\begin{aligned}
\sigma_{b} & =\vec{P} \bullet \hat{n} \\
\rho_{b} & =-\vec{\nabla} \cdot \vec{P}
\end{aligned}
$$

- For magnetized materials we have bound currents

$$
\begin{aligned}
& \overrightarrow{K_{b}}=\vec{M} \times \hat{n} \\
& \overrightarrow{J_{b}}=\vec{\nabla} \times \vec{M}
\end{aligned}
$$

Maxwell's Equations Inside Matter (Cont'd)

- In electrodynamics any change in the electric polarization involves a flow of bound charges resulting in polarization current J_{P}

$$
\vec{J}_{P}=\frac{\partial \vec{P}}{\partial t} \quad \begin{aligned}
& \text { Polarization current density is due } \\
& \text { to linear motion of charge when the } \\
& \text { Electric polarization changes }
\end{aligned}
$$

Total charge density

$$
\rho_{t}=\rho_{f}+\rho_{b}
$$

Total current density

$$
J_{t}=J_{f}+J_{b}+J_{p}
$$

Maxwell's Equations Inside Matter (Cont'd)

- Maxwell's equations inside matter are written as

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{\rho_{t}}{\varepsilon_{o}} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}_{f}+\mu_{o} \vec{J}_{p}+\mu_{o} \vec{J}_{b}+\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

$$
\vec{\nabla} \times \frac{\vec{B}}{\mu_{o}}=\vec{J}_{f}+\frac{\partial \vec{P}}{\partial t}+\vec{\nabla} \times \vec{M}+\varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
$$

$$
\vec{\nabla} \times\left(\frac{\vec{B}}{\mu_{o}}-\vec{M}\right)=\vec{J}_{f}+\frac{\partial}{\partial t}\left(\varepsilon_{o} \vec{E}+\vec{P}\right)
$$

$$
\vec{\nabla} \times \vec{H}=\vec{J}_{f}+\frac{\partial}{\partial t} \vec{D}
$$

Maxwell's Equations Inside Matter (Cont'd)

- In non-dispersive, isotropic media ε and μ are time-independent scalars, and Maxwell's equations reduces to

$$
\begin{aligned}
& \vec{\nabla} \cdot \varepsilon \vec{E}=\rho \\
& \vec{\nabla} \cdot \mu \vec{H}=0 \\
& \vec{\nabla} \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} \\
& \vec{\nabla} \times \vec{H}=\vec{J}+\varepsilon \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Maxwell's Equations Inside Matter (Cont'd)

■ In uniform (homogeneous) medium ε and μ are independent of position- Maxwell's equations reads as

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=\rho_{f} & \oint_{\mathrm{s}} \vec{D} \cdot d \vec{a}=Q_{f} \text { enc } \\
\vec{\nabla} \cdot \vec{H}=0 & \oint_{\mathrm{s}} \vec{H} \cdot d \vec{a}=0 \\
\vec{\nabla} \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} & \oint_{\mathrm{C}} \vec{E} \cdot d \vec{l}=-\mu \frac{d}{d t} \int_{\mathrm{s}} \vec{H} \cdot d \vec{a} \\
\vec{\nabla} \times \vec{H}=\vec{J}_{f}+\varepsilon \frac{\partial \vec{E}}{\partial t} & \oint_{\mathrm{C}} \vec{H} \cdot \vec{l} \vec{l}=I_{f \text { enc }}+\frac{d}{d t} \int_{\mathrm{s}} \vec{D} \cdot d \vec{a}
\end{array}
$$

Generally, ε and μ can be rank-2 tensor (3X3 matrices) describing bi-refringent anisotropic materials.

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Maxwell's equations in integral form:
Gauss' Law:

$$
\begin{aligned}
& \int_{v} \vec{\nabla} \cdot \vec{E}(\vec{r}, t) d \tau^{\prime}=\frac{1}{\varepsilon_{0}} \int_{v} \rho_{\text {Tot }}^{E}(\vec{r}, t) d \tau^{\prime}=\frac{1}{\varepsilon_{0}} \int_{v}\left(\rho_{\text {free }}^{E}(\vec{r}, t)+\rho_{\text {bouxd }}^{E}(\vec{r}, t)\right) d \tau^{\prime} \\
& =\oint_{S} \vec{E}(\vec{r}, t)+d \vec{a}=\frac{1}{\varepsilon_{0}} Q_{T o T}^{\text {exclosed }}(t)=\frac{1}{\varepsilon_{0}}\left(Q_{\text {fres }}^{\text {enclased }}(t)+Q_{\text {bound }}^{\text {annelosed }}(t)\right) \\
& \oint_{S} \vec{D}(\vec{r}, t) d \vec{a}=Q_{f r e e}^{\text {enclosed }}(t) \quad \oint_{S} \overrightarrow{\mathrm{P}}(\vec{r}, t) \cdot d \vec{a} \equiv-Q_{\text {bound }}^{\text {enclosed }}(t)
\end{aligned}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Auxiliary Relation:

$$
\vec{D}(\vec{r}, t)=\varepsilon_{0} \vec{E}(\vec{r}, t)+\overrightarrow{\mathrm{P}}(\vec{r}, t)
$$

$$
\rho_{\text {Banal }}(\vec{r}, t) \equiv-\left.\vec{\nabla} \cdot \overrightarrow{\mathrm{P}}(\vec{r}, t) \sigma_{\text {Boonu }}(\vec{r}, t) \equiv \overrightarrow{\mathrm{P}}(\vec{r}, t) \cdot \hat{n}\right|_{\text {nut }}
$$

No Magnetic Monopoles: $\int_{v} \vec{\nabla} \cdot \vec{B}(\vec{r}, t) d \tau^{\prime}=\oint_{s} \vec{B}(\vec{r}, t) \cdot d \vec{a}=0$
Faraday's Law:

$$
\begin{aligned}
& \int_{S} \vec{\nabla} \times \vec{E}(\vec{F}, t) \cdot d \vec{a}=\hat{D}_{C} \vec{E}(\vec{F}, t) \cdot d \vec{\ell}=-\int_{S} \frac{\partial \vec{B}(\vec{F}, t)}{\partial t} \cdot \vec{a}=-\frac{d}{d t}\left[\int_{S} \vec{B}(\vec{f}, t) \cdot d \vec{a}\right] \\
& \text { EMथ } \varepsilon(t) \equiv \bigoplus_{C} \vec{E}(\vec{F}, t) \cdot d \vec{l}=-\frac{d}{d t}\left[\int_{S} \vec{B}(\vec{F}, t) \cdot d \vec{a}\right]=-\frac{d)_{M}^{\text {melosad }}(t)}{d t}
\end{aligned}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Ampere's Law:

$$
\begin{aligned}
& \int_{S} \vec{\nabla} \times \vec{B}(\vec{r}, t) \cdot d \vec{a}=\oint_{C} \vec{B}(\vec{r}, t) \cdot d \vec{\ell}=\mu_{0} \int_{S}\left(\vec{J}_{\text {ToT }}(\vec{r}, t)+\vec{J}_{D}(\vec{r}, t)\right) \cdot d \vec{a} \\
& =\oint_{C} \vec{B}(\vec{r}, t) \cdot d \vec{\ell}=\mu_{0}\left(I_{T o T}^{\text {maci }}(t)+I_{D}^{\text {end }}(t)\right)=\mu_{0}\left(I_{\text {free }}^{\text {encl }}(t)+I_{\text {bound }}^{\text {mel }}(t)+I_{R_{\text {toend }}}^{\text {enc }}(t)+I_{D}^{\text {encl }}(t)\right)
\end{aligned}
$$

Auxiliary Relation: $\vec{H}(\vec{r}, t)=\frac{1}{\mu_{0}} \vec{B}(\vec{r}, t)-\overrightarrow{\mathbf{M}}(\vec{r}, t)$

$$
\begin{array}{|l|l|}
\hline \vec{J}_{\text {bound }}^{m}(\vec{r}, t) \equiv \vec{\nabla} \times \overrightarrow{\mathrm{M}}(\vec{r}, t) \\
\vec{K}_{\text {bound }}^{m}(\vec{r}, t) \equiv \overrightarrow{\mathrm{M}}(\vec{r}, t) \times\left.\hat{n}\right|_{\text {intf }} & \begin{array}{|l|}
\hline \vec{J}_{P_{\text {bound }}}(\vec{r}, t) \equiv \frac{\partial \vec{P}(\vec{r}, t)}{\partial t} \\
\hline \rho_{m}^{\text {Bound }}(\vec{r}, t) \equiv-\vec{\nabla} \cdot \overrightarrow{\mathrm{M}}(\vec{r}, t) \\
\hline
\end{array} \\
\left.\sigma_{m}^{\text {Bound }}(\vec{r}, t) \equiv \overrightarrow{\mathbf{M}}(\vec{r}, t) \cdot \hat{n}\right|_{\text {int }} \\
\hline
\end{array}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

$$
\int_{s} \vec{\nabla} \times \vec{H}(\vec{r}, t) \cdot d \vec{a}=\oint_{C} \vec{H}(\vec{r}, t) \cdot d \vec{\ell}=I_{\text {prew }}^{\text {ancosed }}(t)+\int_{S} \frac{\partial \vec{D}(\vec{r}, t)}{\partial t} \cdot d \vec{a}=I_{\text {feas }}^{\text {enclossd }}(t)+\frac{d}{d t}\left[\int_{s} \vec{D}(\vec{r}, t) \cdot d \vec{a}\right]
$$

1) Apply the integral form of Gauss' Law at a dielectric interface/boundary using infinitesimally thin Gaussian pillbox extending slightly into dielectric material on either side of interface:

$$
\oint_{S} \vec{E} \cdot d \vec{a}=\frac{1}{\varepsilon_{0}} Q_{\text {ToT }}^{\text {enclased }}=\frac{1}{\varepsilon_{0}} Q_{\text {free }}^{\text {enclosed }}+\frac{1}{\varepsilon_{0}} Q_{b \text { bound }}^{\text {enclased }}=\frac{1}{\varepsilon_{0}} \oint_{S} \sigma_{\text {frea }} d a+\frac{1}{\varepsilon_{0}} \oint_{S} \sigma_{b o u m d} d a
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

The positive direction is from medium 2 (below) to medium 1 (above)

$$
\oint_{s} \vec{D} \cdot d \vec{a}=Q_{\text {friee }}^{\text {enclosed }}=\oint_{s} \sigma_{\text {free }} d a \Rightarrow \begin{array}{|cc|}
\substack{D_{2 b o v e}^{\perp}-D_{i}^{\perp} \\
\text { below }} & =\sigma_{\text {free }} \\
\text { (at interface) }
\end{array}
$$

Likewise: $\oint_{S} \overrightarrow{\mathrm{P}} \cdot d \vec{a}=Q_{\text {boound }}^{\text {enclased }}=-\oint_{S} \sigma_{\text {boumd }} d a \Rightarrow \underset{\substack{P_{\text {abows }}^{\perp}-P_{\text {below }}^{\perp}}}{\substack{\text { bound }}}$ (at interface)

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

$$
\vec{D}=\varepsilon \vec{E}=-\varepsilon \vec{\nabla} V
$$

Since:

$$
\left(\varepsilon_{2} \frac{\partial V_{2}^{\text {abore }}}{\partial n}-\varepsilon_{1} \frac{\partial V_{1}^{\text {boiow }}}{\partial n}\right)_{\text {interfice }}=-\sigma_{\text {free }}
$$

(at interface)

Similarly, for $\int_{v} \vec{\nabla} \cdot \vec{B} d \tau^{\prime}=\oint_{S} \vec{B} \cdot d \vec{a}=0$ (no magnetic monopoles), then at an

Since:

$$
\begin{array}{cll}
\vec{H}=\left(\frac{1}{\mu_{o}}\right) \vec{B}-\overrightarrow{\mathrm{M}} \quad \text { Then: } & \vec{B}=\mu_{o}(\vec{H}+\overrightarrow{\mathrm{M}}) \\
\oint_{s} \vec{B} \cdot d \vec{a}=\mu_{o} \oint_{s}(\vec{H}+\overrightarrow{\mathrm{M}}) \cdot d \vec{a}=0 & \text { or: } & \oint_{s} \vec{H} \cdot d \vec{a}=-\oint_{s} \overrightarrow{\mathrm{M}} \cdot d \vec{a}
\end{array}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Then:

$$
\vec{H}_{2}^{\text {abone }} \cdot \vec{a}-\vec{H}_{1}^{\text {bolew }} \cdot \vec{a}=-\left(\overrightarrow{\mathrm{M}}_{2}^{\text {abowe }} \cdot \vec{a}-\overrightarrow{\mathrm{M}}_{1}^{\text {bolow }} \cdot \vec{a}\right) \quad(\text { at interface })
$$

Or:

$$
\left(\begin{array}{cc}
H_{2}^{\perp} & -H_{1}^{\perp} \\
\text { above } \\
\text { below }
\end{array}\right)=-\left(\begin{array}{cc}
\mathrm{M}_{2}^{\perp} & -\mathrm{M}_{1}^{\perp} \\
\text { above } \\
\text { beowew }
\end{array}\right)=-\sigma_{\text {meghencic }}^{\text {bound }} \text { (at interface) }
$$

Effective bound magnetic charge at interface
3) For Faraday's Law: EMF, $\varepsilon=\oint_{C} \vec{E} \cdot d \vec{\ell}=-\frac{d}{d t}\left(\oint_{s} \vec{B} \cdot d \vec{a}\right)=-\frac{d \Phi_{m}}{d t}$

At interface between two different media, taking a closed contour C of width 1 extending slightly into the material on either side of interface.

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

$$
\vec{E}_{2}^{\text {above }} \cdot \vec{\ell}-\vec{E}_{1}^{\text {below }} \cdot \vec{\ell}=-\frac{d}{d t} \oint_{S} \vec{B} \cdot d \vec{a}=0 \quad \begin{array}{ll}
\text { (in limit area of contour loop } \rightarrow 0 \\
& \text { magnetic flux enclosed } \rightarrow 0)
\end{array}
$$

$$
\begin{array}{|ccc|}
\hline E_{2}^{\|} & -E_{1}^{\|} & =0 \\
\text { bbolow }
\end{array} \text { (at interface) or: } \begin{array}{|cc|}
\hline E_{2}^{\|} & =E_{1}^{\|} \\
\text {above } \\
\text { below }
\end{array} \text { (at interface) }
$$

Since:

$$
\vec{D}=\varepsilon_{0} \vec{E}+\overrightarrow{\mathrm{P}}
$$

$$
\text { And: } \quad \varepsilon_{0} \vec{E}=\vec{D}-\overrightarrow{\mathrm{P}}
$$

Thus:

$$
\left(\vec{E}_{2}^{\text {above }} \cdot \vec{\ell}-\vec{E}_{1}^{\text {below }} \cdot \vec{\ell}\right)=\left(\vec{D}_{2}^{\text {abowe }} \cdot \vec{\ell}-\vec{D}_{1}^{\text {below }} \cdot \vec{\ell}\right)-\left(\overrightarrow{\mathbf{P}}_{2}^{\text {abowe }} \cdot \vec{\ell}-\overrightarrow{\mathbf{P}}_{1}^{\text {below }} \cdot \vec{\ell}\right)=0
$$

In limit area of contour loop $\rightarrow 0$ magnetic flux enclosed $\rightarrow 0$

$$
\Rightarrow\left(\begin{array}{cc}
\vec{D}_{2}^{\|} & -\vec{D}_{1}^{\|} \\
\text {above } & \text { below }
\end{array}\right)=\left(\begin{array}{cc}
\overrightarrow{\mathrm{P}}_{2}^{\|} & -\overrightarrow{\mathrm{P}}_{\text {abowe }}^{\|} \\
\text {below }
\end{array}\right) \text { (at interface) }
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

4) Finally, for Ampere's Law: $\oint_{C} \vec{B} \cdot d \vec{\ell}=\mu_{o}\left(I_{\text {ToT }}^{\text {encl }}+I_{D}^{\text {encl }}\right)$

$$
\begin{gathered}
\vec{B}_{2}^{\text {above }} \cdot \vec{\ell}-\vec{B}_{1}^{\text {below }} \bullet \vec{\ell}=\mu_{o} I_{\text {TOT }}^{\text {encl }}+\mu_{o} I_{D}^{\text {encl }} \\
I_{D}^{\text {encl }}=\int_{S} \vec{J}_{D} \bullet d \vec{a}=\varepsilon_{o} \int_{S} \frac{\partial \vec{E}}{\partial t} \cdot d \vec{a} \\
I_{\text {TOT }}^{\text {encl }}=I_{\text {free }}^{\text {encl }}+I_{\text {boumd }}^{\text {enel }}+I_{P_{\text {bonnd }}^{\text {encl }}}^{\text {en }} \\
I_{P_{\text {bound }}^{\text {encl }}}=\int_{S} \vec{J}_{P_{\text {bouse }}} \bullet d \vec{a}=\int_{S} \frac{\partial \mathrm{P}}{\partial t} \cdot d \vec{a} \\
I_{\text {boumd }}^{\text {encl }}=\int_{S} \vec{J}_{m}^{\text {bound }} \cdot d \vec{a}=\int_{S} \vec{\nabla} \times \overrightarrow{\mathrm{M}} \cdot d \vec{a}
\end{gathered}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Where $I_{\text {roi }}^{\text {erd }}=$ TOTAL current (free + bound + polarization) passing through enclosing Amperian loop contour C

No volume current density $\vec{J}_{\text {Tor }}, \vec{J}_{\text {fiee }}, \vec{J}_{\text {boemd }}^{m}$ or \vec{J}_{P} contributes to $I_{\text {Tor }}^{\text {erd }}$ in the limit area of contour loop $\rightarrow 0$, however a surface current $\vec{K}_{\text {ror }}, \vec{K}_{\text {few }} \vec{K}_{\text {boumd }}^{m}=\overrightarrow{\mathrm{M}} \times \hat{n}$ can contribute!
In the limit that the enclosing Amperian loop contour C shrinks to zero height above/below interface- the enclosed area of loop contour $\rightarrow 0$,

Then: $\quad I_{D}^{\text {end }}=\varepsilon_{0} \int_{s} \frac{\partial \vec{E}}{\partial t} d \vec{a}=\varepsilon_{0} \frac{d}{d t}\left[\int_{S} \vec{E} \cdot d \vec{a}\right]=\varepsilon \frac{d \Phi_{\mathrm{E}}}{d t} \rightarrow 0$
($\Phi_{\mathrm{E}} \equiv \int_{S} \vec{E} \cdot d \vec{a}=$ enclosed flux of electric field lines)

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

Similarly:

$$
I_{\mathrm{P}_{\mathrm{t} \text { max }}^{\text {end }}}^{\text {and }}=\int_{s} \frac{\overrightarrow{\mathrm{P}}}{\partial t} \cdot d \vec{a}=\frac{d}{d t}\left[\int_{s} \overrightarrow{\mathrm{P}} \cdot d \vec{a}\right]=\frac{d \Phi_{\mathrm{P}}}{d t} \rightarrow 0
$$

$$
\left(\Phi_{\mathrm{P}} \equiv \int_{s} \overrightarrow{\mathrm{P}} \cdot d \vec{a}=\text { enclosed flux of electric polarization field lines }\right)
$$

If \hat{n} is unit normal/perpendicular to interface, note that $(\hat{n} \times \vec{\ell})$ is normal/perpendicular to plane of the Amperian loop contour.

$$
\begin{aligned}
& I_{\text {TOT }}^{\text {end }}=\vec{K}_{\text {TOT }} \cdot(\hat{n} \times \vec{\ell})=\left(\vec{K}_{\text {TOI }} \times \hat{n}\right) \cdot \vec{\ell} \quad \text { Using: } \quad \vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A}) \\
& I_{\text {free }}^{\text {enct }}=\vec{K}_{\text {free }} \cdot(\hat{n} \times \vec{\ell})=\left(\vec{K}_{\text {five }} \times \hat{n}\right) \cdot \vec{\ell} \\
& I_{\text {brexd }}^{\text {encl }}=\vec{K}_{\text {bound }}(\hat{n} \times \vec{\ell})=\left(\vec{K}_{\text {bound }}^{m} \times \hat{n}\right) \cdot \vec{\ell} \\
& I_{\text {TOT }}=I_{\text {fiwe }}+I_{\text {twand }} \quad \vec{K}_{\text {Tor }}=\vec{K}_{\text {fwe }}+\vec{K}_{\text {lowad }}
\end{aligned}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

In the limit that the enclosing Amperian loop contour C (of width l) shrinks to zero height above/below interface, causing area of enclosed loop contour $\rightarrow 0$, then:

$$
\begin{aligned}
& \vec{B}_{2}^{\text {above }} \cdot \vec{\ell}-\vec{B}_{1}^{\text {below }} \cdot \vec{\ell}=\mu_{0} I_{\text {TOT }}^{\text {eneI }}+\overbrace{\mu_{0} I_{D}^{\text {ender }}}^{=0}=\mu_{0} I_{\text {Tor }}^{\text {enct }}=\left(\vec{K}_{\text {TOT }} \times \hat{n}\right) \cdot \vec{\ell} \\
& \underset{\substack{B_{2}^{\|} \\
\text {above }}}{-B_{1}^{\|}} \begin{array}{l}
\text { below }
\end{array}=\mu_{o} \vec{K}_{\text {ror }} \times \hat{n}=\mu_{o}\left(\vec{K}_{\text {friee }}+\vec{K}_{\text {bouind }}^{\prime \prime \prime}\right) \times \hat{n} \text { (atinterface) }
\end{aligned}
$$

Since: $\quad \vec{H}=\frac{1}{\mu_{o}} \vec{B}-\overrightarrow{\mathrm{M}}$ and: $\frac{1}{\mu_{o}} \vec{B}=\vec{H}+\overrightarrow{\mathrm{M}}$ then:
(at interface)

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

We also see that: | $\begin{array}{l}H_{2}^{\\|}-H_{1}^{\\|}=\vec{K}_{\text {free }} \times \hat{n} \\ \text { above }\end{array}$ |
| :--- |
| and: $\begin{array}{l}\mathrm{M}_{2}^{\\|}-\mathrm{M}_{1}^{\\|}=\vec{K}_{\text {boumd }}^{m} \times \hat{n} \\ \text { above }\end{array}$ |,

(at interface)
(at interface)
\|- components of \boldsymbol{B} are discontinuous at interface by $\mu_{o} \vec{K}_{\text {Tor }} \times \hat{n}$
\|- components of H are discontinuous at interface by $\vec{K}_{\text {free }} \times \hat{n}$
||- components of \mathbf{M} are discontinuous at interface $\vec{K}_{\text {bound }}^{m} \times \hat{n}$ by

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

$$
\text { If } \vec{B}=\vec{\nabla} \times \vec{A}
$$

where A is the magnetic vector potential - then:

$$
\begin{aligned}
& {\left[\left(\frac{1}{\mu_{0}}\right)\left[\begin{array}{cc}
B_{2}^{\|} & -B_{1}^{\|} \\
\text {abober } \\
\text { below }
\end{array}\right]=\vec{K}_{\text {ror }} \times \hat{n}\right.} \\
& \left.\left(\frac{1}{\mu_{o}}\right)\left(\frac{\partial \vec{A}_{2}^{\text {above }}}{\partial n}-\frac{\partial \vec{A}_{1}^{\text {below }}}{\partial n}\right)\right|_{\text {interfactace }}=-\vec{K}_{\text {ror }}
\end{aligned}
$$

Maxwell's Equations and Boundary Conditions at Interfaces in Matter

For linear magnetic media:

$$
\vec{B}=\mu \vec{H} \quad \text { or: } \quad \vec{H}=\frac{1}{\mu} \vec{B}
$$

Potential Formulation of Electrodynamics 1

- In electrostatic

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}(\vec{r}, t)=0 \\
& \vec{E}(\vec{r}, t)=-\vec{\nabla} V(\vec{r}, t)
\end{aligned}
$$

In electrodynamics

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t) \neq 0
$$

But

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0 \\
& \vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t)
\end{aligned}
$$

Putting this in Faraday's Law

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\vec{\nabla} \times\left(\frac{\partial \vec{A}(\dot{r}, t)}{\partial t}\right)
$$

$$
\vec{\nabla} \times\left[\vec{E}(\vec{r}, t)+\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}\right]=0
$$

$$
\left[\vec{E}(\vec{r}, t)+\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}\right] \equiv-\vec{\nabla} V(\vec{r}, t)
$$

$$
\vec{E}(\vec{r}, t)=-\vec{\nabla} V(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}
$$

Potential Formulation of Electrodynamics 2

$$
\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A}(\vec{r}, t))
$$

and from

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\vec{\nabla} \times \vec{\nabla} V(\vec{r}, t)-\frac{\partial}{\partial t} \vec{\nabla} \times \vec{A}(\vec{r}, t)
$$

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t)=0-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}
$$

Explain Maxwell's ii and iii Equations

Potential Formulation of Electrodynamics 3

Now consider Maxwell's i and iv equations
As $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=\frac{1}{\varepsilon_{o}} \rho_{\text {tot }}(\vec{r}, t) \quad$ Gauss's Law

$$
\vec{\nabla} \cdot\left[-\vec{\nabla} V(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}\right]=\frac{1}{\varepsilon_{o}} \rho_{\text {tot }}(\vec{r}, t)
$$

$$
\nabla^{2} V(\vec{r}, t)+\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}(\vec{r}, t))=-\frac{1}{\varepsilon_{o}} \rho_{t o t}(\vec{r}, t)
$$

This replaces Poisson's Equation in electrodynamics

Potential Formulation of Electrodynamics 4

Now consider Ampere's Law:

$$
\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu_{o} \vec{J}_{t o t}(\vec{r}, t)+\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}
$$

with: $\vec{E}(\vec{r}, t)=-\vec{\nabla} V(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}$
and: $\quad \vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t)$

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{A}(\vec{r}, t))=\mu_{o} \vec{J}_{t o t}(\vec{r}, t)-\mu_{o} \varepsilon_{o} \vec{\nabla}\left(\frac{\partial V(\vec{r}, t)}{\partial t}\right)-\mu_{o} \varepsilon_{o} \frac{\partial^{2} \vec{A}(\vec{r}, t)}{\partial t^{2}}
$$

Potential Formulation of Electrodynamics 5

Using vector identity:

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{A}) \equiv \vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}
$$

Re-arranging:

$$
\left(\nabla^{2} \vec{\Lambda}(\vec{r}, t)-\mu_{o} \varepsilon_{o} \frac{\partial^{2} \vec{A}(\vec{r}, t)}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{\Lambda}(\vec{r}, t)+\mu_{o} \varepsilon_{o} \frac{\partial V(\vec{r}, t)}{\partial t}\right)=-\mu_{o} \vec{J}_{t o t}(\vec{r}, t)
$$

These equation carry all information in Maxwell's Equations

Potential Formulation of Electrodynamics 6

$$
\nabla^{2} V(\vec{r}, t)+\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{\Lambda}(\vec{r}, t))=-\frac{1}{\varepsilon_{o}} \rho_{\text {tot }}(\vec{r}, t)
$$

$$
\left(\nabla^{2} \vec{A}(\vec{r}, t)-\mu_{o} \varepsilon_{o} \frac{\partial^{2} \vec{A}(\vec{r}, t)}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}(\vec{r}, t)+\mu_{o} \varepsilon_{o} \frac{\partial V(\vec{r}, t)}{\partial t}\right)=-\mu_{o} \vec{J}_{t o t}(\vec{r}, t)
$$

Four Maxwell's equations reduced to two equations using potential formulation.
Potentials V and A are not uniquely defined by above equations.

Gauge Transformations

Suppose we have e.g. two sets of potentials

$$
\{V(\vec{r}, t), \vec{A}(\vec{r}, t)\} \text { and }\left\{V^{\prime}(\vec{r}, t), \vec{A}^{\prime}(\vec{r}, t)\right\}
$$

That correspond to the same physical fields

$$
\vec{E}(\vec{r}, t) \text { and } \vec{B}(\vec{r}, t)
$$

These two sets of potentials must be related to each other by:

$$
\vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\alpha}(\vec{r}, t)
$$

and
Because:

$$
V^{\prime}(\vec{r}, t)=V(\vec{r}, t)+\beta(\vec{r}, t)
$$

$$
\vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t)=\vec{\nabla} \times \vec{A}^{\prime}(\vec{r}, t)=\vec{\nabla} \times(\vec{A}(\vec{r}, t)+\vec{\alpha}(\vec{r}, t))
$$

$$
\vec{\nabla} \times \vec{\alpha}(\vec{r}, t) \equiv 0
$$

Gauge Transformations

But if: $(\vec{\nabla} \times \vec{\alpha}(\vec{r}, t))=0$, then since $(\vec{\nabla} \times \vec{\nabla} f(\vec{r}, t)) \equiv 0$
we can always write $\quad \vec{\alpha}(\vec{r}, t) \equiv \vec{\nabla} \lambda(\vec{r}, t)$
And if:

$$
\begin{aligned}
\vec{E}(\vec{r}, t) & =-\vec{\nabla} V(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t} \\
& =-\vec{\nabla} V^{\prime}(\vec{r}, t)-\frac{\partial \vec{A}^{\prime}(\vec{r}, t)}{\partial t}=-\vec{\nabla} V(\vec{r}, t)-\vec{\nabla} \beta(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}-\frac{\partial \vec{\alpha}(\vec{r}, t)}{\partial t}
\end{aligned}
$$

Then we see that $\quad \vec{\nabla} \beta(\vec{r}, t)+\frac{\partial \vec{\alpha}(\vec{r}, t)}{\partial t}=0$

Gauge Transformations

But:

$$
\begin{aligned}
\vec{\alpha}(\vec{r}, t) \equiv \vec{\nabla} \lambda(\vec{r}, t) & \Leftrightarrow \vec{\nabla} \beta(\vec{r}, t)+\frac{\partial(\vec{\nabla} \lambda(\vec{r}, t))}{\partial t}=0 \\
& \Leftrightarrow \vec{\nabla}\left(\beta(\vec{r}, t)+\frac{\partial \lambda(\vec{r}, t)}{\partial t}\right)=0
\end{aligned}
$$

which must hold for arbitrary all space-time points (\vec{r}, t)

$$
\beta(\vec{r}, t)+\frac{\partial \lambda(\vec{r}, t)}{\partial t}=0
$$

Gauge Transformations

Note that

$$
\vec{\nabla}\left(\beta(\vec{r}, t)+\frac{\partial \lambda(\vec{r}, t)}{\partial t}\right)=0
$$

can also be satisfied if $\left(\beta(\vec{r}, t)+\frac{\partial \lambda(\vec{r}, t)}{\partial t}\right)=\kappa(t)$
i.e. the scalar function $\kappa(t)$ depends only on time, t.

Thus we see that:

$$
\beta(\stackrel{\rightharpoonup}{r}, t)=-\frac{\partial \lambda(\vec{r}, t)}{\partial t}+\kappa(t)
$$

But we can always "absorb" $\kappa(\mathrm{t})$

$$
\lambda^{\prime}(\vec{r}, t)=\lambda(\vec{r}, t)+\int_{t^{\prime}=0}^{t^{\prime}=t} \kappa(t) d t^{\prime}
$$

Gauge Transformations

Note also that since the scalar function $\kappa(\mathrm{t})$ depends only
on time t, this will not affect the gradient of $\vec{\nabla} \lambda(\vec{r}, t)$ in any way, and hence $\vec{\alpha}(\vec{r}, t)=\vec{\nabla} \lambda(\vec{r}, t)$
is completely unaffected by this!
Thus: $\quad \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\alpha(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \lambda(\vec{r}, t)$
or

$$
\vec{\nabla} \lambda(\vec{r}, t)=\vec{A}^{\prime}(\vec{r}, t)-\vec{A}(\vec{r}, t) \equiv \Delta \vec{A}(\vec{r}, t)
$$

And:

$$
V^{\prime}(\vec{r}, t)=V(\vec{r}, t)-\frac{\partial \lambda(\vec{r}, t)}{\partial t}
$$

Such changes in V and A are called Gauge Transformations
or

$$
-\frac{\partial \lambda(\vec{r}, t)}{\partial t}=V^{\prime}(\vec{r}, t)-V(\vec{r}, t) \equiv \Delta V(\vec{r}, t)
$$

Coulomb's and Lorentz Gauges

Coulomb Gauge $\vec{\nabla} \cdot \vec{A}(\vec{r}, t)=0$
Using this we get $\nabla^{2} V(\vec{r}, t)=-\frac{1}{\varepsilon_{0}} \rho_{\text {tot }}(\vec{r}, t)$
It is Poisson's equation, setting $V(\vec{r}=\infty, t)=0$
we get $\quad V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int_{v^{\prime}} \frac{\rho_{t o t}\left(\vec{r}^{\prime}, t\right)}{\boldsymbol{r}} d \tau^{\prime} \quad \begin{gathered}\vec{r} \equiv \vec{r}-\vec{r}^{\prime} \\ \boldsymbol{r}=|\vec{r}|=\sqrt{r^{2}-r^{\prime 2}}\end{gathered}$
Scalar potential is easy to calculate in Coulomb's gauge but vector potential is difficult to calculate

Coulomb's Gauge

The differential equations for V and A in Coulombs gauge reads

$$
\nabla^{2} V(\vec{r}, t)=-\frac{1}{\varepsilon_{0}} \rho_{\text {TOT }}(\vec{r}, t)
$$

$$
\nabla^{2} \vec{A}(\vec{r}, t)-\mu_{o} \varepsilon_{o} \frac{\partial^{2} \vec{A}(\vec{r}, t)}{\partial t^{2}}=-\mu_{o} \vec{J}_{t o t}(\vec{r}, t)+\mu_{o} \varepsilon_{o} \vec{\nabla}\left(\frac{\partial V(\vec{r}, t)}{\partial t}\right)
$$

Lorentz Gauge

The Lorentz gauge:

$$
\vec{\nabla} \cdot \vec{A}(\vec{r}, t)=-\mu_{o} \varepsilon_{o} \frac{\partial V(\vec{r}, t)}{\partial t}
$$

This is design to eliminate the middle term in eqn. for A

$$
\nabla^{2} \vec{A}(\vec{r}, t)-\mu_{o} \varepsilon_{o} \frac{\partial^{2} \vec{A}(\vec{r}, t)}{\partial t^{2}}=-\mu_{o} \vec{J}_{t o t}(\vec{r}, t)
$$

And equation for V will become

$$
\left(\nabla^{2} V(\vec{r}, t)-\varepsilon_{o} \mu_{o} \frac{\partial^{2} V(\vec{r}, t)}{\partial t^{2}}\right)=-\frac{1}{\varepsilon_{o}} \rho_{t o t}(\vec{r}, t)
$$

Lorentz Gauge

The Lorentz gauge treats V and A on equal footing. The same differential operator

$$
\square^{2} \equiv \nabla^{2}-\varepsilon_{o} \mu_{o} \frac{\partial^{2}}{\partial t^{2}}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$

called the d'Alembertian

$$
\square^{2} \vec{A}(\vec{r}, t)=-\mu_{o} \vec{J}_{t o t}(\vec{r}, t)
$$

and

$$
\square^{2} V(\vec{r}, t)=-\frac{1}{\varepsilon_{o}} \rho_{\text {tot }}(\vec{r}, t)
$$

ELECTROMAGNETIC WAVES IN VACUUM

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics- Theory, Devices and Applications. $3^{\text {rd }}$ February - $7^{\text {th }}$ February 2014

ELECTROMAGNETIC WAVES IN VACUUM

> THE WAVE EQUATION

* In regions of free space (i.e. the vacuum) - where no electric charges - no electric currents and no matter of any kind are present - Maxwell's equations (in differential form) are:

$$
\begin{aligned}
& \text { 1) } \vec{\nabla} \cdot \vec{E}(\vec{r}, t)=0 \\
& \text { 3) } \vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t} \\
& \text { 2) } \begin{aligned}
\begin{array}{|l}
\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0 \\
\hline \vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}=\frac{1}{c^{2}} \frac{\partial \vec{E}(\vec{r}, t)}{\partial t} \\
\left(c^{2}=1 / \varepsilon_{o} \mu_{o}\right)
\end{array} \\
\frac{1}{2}
\end{aligned}
\end{aligned}
$$

Set of coupled first-order partial differential equations

ELECTROMAGNETIC WAVES IN VACUUM . . .

> We can de-couple Maxwell's equations -by applying the curl operator to equations 3) and 4):

$$
\begin{array}{l|l}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) & \vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\vec{\nabla} \times\left(\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right) \\
=\vec{\nabla}(\vec{V} \cdot 0 \cdot \vec{E})-\nabla^{2} \vec{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) & =\vec{\nabla}(\vec{\vee} \cdot \vec{B})-\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial}{\partial t}(\vec{\nabla} \times \vec{E}) \\
=-\nabla^{2} \vec{E}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right) & =-\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(-\frac{\partial \vec{B}}{\partial t}\right) \\
=\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} & =\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{array}
$$

ELECTROMAGNETIC WAVES IN VACUUM . . .

> These are three-dimensional de-coupled wave equations.
> Have exactly the same structure - both are linear, homogeneous, 2nd order differential equations.
> Remember that each of the above equations is explicitly dependent on space and time,

$$
\text { i.e. } \vec{E}=\vec{E}(\vec{r}, t) \text { and } \vec{B}=\vec{B}(\vec{r}, t) \text { : }
$$

$$
\nabla^{2} \vec{E}(\vec{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}=0
$$

$$
\nabla^{2} \vec{B}(\vec{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}(\vec{r}, t)}{\partial t^{2}}=0
$$

ELECTROMAGNETIC WAVES IN VACUUM...

> Maxwell's equations implies that empty space - the vacuum (not empty at the microscopic scale) - supports the propagation of (macroscopic) electromagnetic waves

- which propagate at the speed of light (in vacuum):

$$
c=1 / \sqrt{\varepsilon_{o} \mu_{o}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

MONOCHROMATIC EM PLANE WAVES

Monochromatic EM plane waves propagating in free space are waves consisting of a single frequency f , wavelength $\lambda=c f$, angular frequency $\omega=2 \pi f$ and wave-number $k=2 \pi / \lambda$ - propagate with speed $c=f \lambda=\omega k$.

In the visible region of the EM spectrum [$\{\sim 380 \mathrm{~nm}$ (violet) $\leq \lambda \leq \sim$ 780 nm (red) $\}$ - EM light waves of a given frequency or wavelength are perceived by the human eye as having a specific- single colour. Single- frequency EM waves are called mono-chromatic.

MONOCHROMATIC EM PLANE WAVES

EM waves that propagate e.g. in the $+z^{\wedge}$ direction but which additionally have no explicit x - or y-dependence are known as plane waves- for a given time t the wave fronts of the EM wave lie in a plane- \perp to the \hat{z}-axis,

MONOCHROMATIC EM PLANE WAVES

There also exist spherical EM waves - emitted from a point source - the wave-fronts associated with these EM waves are spherical - and thus do not lie in a plane \perp to the direction of propagation of the EM wave

Portion of a spherical wavefront associated with a spherical wave

MONOCHROMATIC EM PLANE WAVES

If the point source is infinitely far away from observer- then a spherical wave \rightarrow plane wave in this limit, (the radius of curvature $\rightarrow \infty$); a spherical surface becomes planar as $\mathrm{R}_{\mathrm{C}} \rightarrow \infty$.

Criterion for a plane wave: $\lambda \ll R_{C}$
Monochromatic plane waves associated with \vec{E} and \vec{B}

$$
\overline{\tilde{B}}(z, t)=\overrightarrow{\tilde{B}}_{0} e^{i(k z-\omega t)}
$$

$$
\overrightarrow{\tilde{E}}(z, t)=\overrightarrow{\tilde{E}}_{0} e^{i(k z-\omega t)}
$$

MONOCHROMATIC EM PLANE WAVES

n.b. complex vectors:

n.b. complex vectors:
e.g. $\overrightarrow{\tilde{E}}_{o}=E_{o} e^{i \delta} \hat{x}$

$$
\text { e.g. } \overrightarrow{\tilde{B}}_{o}=B_{o} e^{i \delta} \hat{y}
$$

$n . b$. The real, physical (instantaneous) fields are:

$$
\left\{\begin{array}{l}
\overrightarrow{\vec{E}(\vec{r}, t) \equiv \operatorname{Re}(\overrightarrow{\tilde{E}}(\vec{r}, t))} \\
\hline \vec{B}(\vec{r}, t) \equiv \operatorname{Re}(\overrightarrow{\tilde{B}}(\vec{r}, t))
\end{array}\right\}
$$

> Very important to keep in mind!!

MONOCHROMATIC EM PLANE WAVES

Maxwell's equations for free space impose additional constraints on $\overrightarrow{\vec{E}}_{0}$ and \vec{B}_{o}

$$
\begin{array}{rll}
\text { Since: } \vec{\nabla} \cdot \vec{E}=0 & \text { and: } & \vec{\nabla} \cdot \vec{B}=0 \\
=\operatorname{Re}(\vec{\nabla} \cdot \overrightarrow{\tilde{E}})=0 & & =\operatorname{Re}(\vec{\nabla} \cdot \overrightarrow{\tilde{B}})=0
\end{array}
$$

These two relations can only be satisfied

$$
\forall(\vec{r}, t) \text { if } \vec{\nabla} \cdot \tilde{\tilde{E}}=0 \quad \forall(\vec{r}, t) \text { and } \vec{\nabla} \cdot \tilde{\tilde{B}}=0 \quad \forall(\vec{r}, t)
$$

In Cartesian coordinates: $\quad \vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}$
Thus: $(\vec{\nabla} \cdot \overrightarrow{\tilde{E}})=0 \quad$ and $\quad(\vec{\nabla} \cdot \overrightarrow{\tilde{B}})=0$ become:

MONOCHROMATIC EM PLANE WAVES

$$
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(\overrightarrow{\tilde{E}}_{o} e^{i(k-\alpha t)}\right)=0 \text { and } \quad\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(\overrightarrow{\tilde{B}}_{o} e^{i(k z-a t)}\right)=0
$$

Now suppose we do allow:

$$
\begin{aligned}
& \overrightarrow{\tilde{E}}_{o}=\underbrace{\left(E_{o x} \hat{x}+E_{o y} \hat{y}+E_{o z} \hat{z}\right)}_{\text {polarization in } \hat{x}-\hat{y}-\hat{z}(3-D)} e^{i \delta} \equiv \vec{E}_{o} e^{i \delta} \\
& \overrightarrow{\tilde{B}}_{o}=\underbrace{\left(B_{o x} \hat{x}+B_{o y} \hat{y}+B_{o z} \hat{z}\right)}_{\text {polarization in } \hat{x}-\hat{y}-\hat{z}(3-D)} e^{i \delta} \equiv \vec{B}_{o} e^{i \delta}
\end{aligned}
$$

$$
\begin{array}{|}
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(E_{o x} \hat{x}+E_{o y} \hat{y}+E_{o z} \hat{z}\right) e^{i \delta} e^{i(k-o x)}=0 \\
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(B_{o x} \hat{x}+B_{o y} \hat{y}+B_{o z} \hat{z}\right) e^{i \delta} e^{i(k z-o t)}=0
\end{array}
$$

MONOCHROMATIC EM PLANE WAVES

$E_{o x} E_{o y}, E_{o z}=$ Amplitudes (constants) of the electric field components in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions respectively.
$B_{o x}, B_{o y}, B_{o z}=$ Amplitudes (constants) of the magnetic field components in x, y, z directions respectively.

$$
\begin{array}{|l|}
\frac{\partial}{\partial x} \hat{x} \cdot E_{o x} \hat{x} e^{i(k-\alpha t)} e^{i \delta}=0 \\
\hline \frac{\partial}{\partial y} \hat{y} \cdot E_{o y} \hat{y} e^{i(k-\alpha t)} e^{i \delta}=0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial x} \hat{x} \cdot B_{o x} \hat{x} e^{i(k-\omega t)} e^{i \delta}=0 \\
& \frac{\partial}{\partial y} \hat{y} \cdot B_{o y} \hat{y} e^{i(k-\omega t)} e^{i \delta}=0
\end{aligned}
$$

$$
\frac{\partial}{\partial z}\left(e^{a z}\right)=a e^{a z}
$$

MONOCHROMATIC EM PLANE WAVES

$$
\begin{array}{|l}
\frac{\partial}{\partial z} \hat{z} \cdot E_{o z} \hat{z} e^{i(k-\omega t)} e^{i \delta}=i k E_{o z} e^{i(k z-\omega t)} e^{i \delta}=0
\end{array} \stackrel{\text { true iff } E_{o z} \equiv 0}{\frac{\partial}{\partial z} \hat{z} \cdot B_{o z} \hat{z^{i(k z-\omega t)}} e^{i \delta}=i k \mathrm{E}_{o z} e^{i(k z-\omega t)} e^{i \delta}=0} \Leftarrow \text { true iff } B_{o z} \equiv 0!!!
$$

$>$ Maxwell's equations additionally impose the restriction that an electromagnetic plane wave cannot have any component of \mathbf{E} or B I| to (or anti- || to) the propagation direction (in this case here, the z -direction)
$>$ Another way of stating this is that an EM wave cannot have any longitudinal components of \mathbf{E} and \mathbf{B} (i.e. components of \mathbf{E} and \mathbf{B} lying along the propagation direction).

MONOCHROMATIC EM PLANE WAVES

> Thus, Maxwell's equations additionally tell us that an EM wave is a purely transverse wave (at least for propagation in free space) - the components of \mathbf{E} and \mathbf{B} must be \perp to propagation direction.

- The plane of polarization of an EM wave is defined (by convention) to be parallel to E.

MONOCHROMATIC EM PLANE WAVES

Maxwell's equations impose another restriction on the allowed form of E and B for an EM wave:

$$
\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
$$

Can only be satisfied $\forall(\vec{r}, t)$ iff:

$$
\vec{\nabla} \times \overrightarrow{\tilde{E}}=-\frac{\partial \overrightarrow{\tilde{B}}}{\partial t}
$$

and/or:

$$
\vec{\nabla} \times \overrightarrow{\tilde{B}}=\frac{1}{c^{2}} \frac{\partial \overrightarrow{\tilde{E}}}{\partial t}
$$

MONOCHROMATIC EM PLANE WAVES

MONOCHROMATIC EM PLANE WAVES

$$
\begin{array}{|l|}
\mid \overrightarrow{\tilde{E}}=\tilde{E}_{x} \hat{x}+\tilde{E}_{y} \hat{y}=\left(E_{o x} \hat{x}+E_{o y} \hat{y}\right) e^{i(k z-\omega t)} e^{i \delta} \\
\hline \overrightarrow{\tilde{B}}=\tilde{B}_{x} \hat{x}+\tilde{B}_{y} \hat{y}=\left(B_{o x} \hat{x}+B_{o y} \hat{y}\right) e^{i(k z-\omega t)} e^{i \delta}
\end{array}
$$

$$
\begin{array}{|l}
\vec{\nabla} \times \overrightarrow{\tilde{E}}=-\frac{\partial \tilde{E}_{y}}{\partial z} \hat{x}+\frac{\partial \tilde{E}_{x}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x}-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y} \\
\vec{\nabla} \times \overrightarrow{\tilde{B}}=-\frac{\partial \tilde{B}_{y}}{\partial z} \hat{x}+\frac{\partial \tilde{B}_{x}}{\partial z} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x}+\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}
\end{array}
$$

Can only be satisfied/ can only be true iff the \hat{x} and \hat{y} relations are separately / independently satisfied $\forall(\vec{r}, t)$!

MONOCHROMATIC EM PLANE WAVES

$$
\begin{align*}
& \vec{\nabla} \times \overrightarrow{\tilde{E}}: \begin{array}{|c|}
\hline-\frac{\partial \tilde{E}_{y}}{\partial z} \hat{x}=-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x} \\
+\frac{\partial \tilde{E}_{x}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y}
\end{array} \Rightarrow \frac{\partial \tilde{E}_{y}}{\partial z}=\frac{\partial \tilde{B}_{x}}{\partial t} \tag{1}\\
& \frac{\partial \tilde{E}_{x}}{\partial z}=-\frac{\partial \tilde{B}_{y}}{\partial t} \Rightarrow i k E_{o y}=-i \omega B_{o x} \tag{2}\\
& \vec{\nabla} \times \tilde{B}: \begin{array}{|c|}
\hline-\frac{\partial \tilde{B}_{y}}{\partial z} \hat{x}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x} \\
+\frac{\partial \tilde{B}_{x}}{\partial z} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}
\end{array} \Rightarrow \frac{-\frac{\partial \tilde{B}_{y}}{\partial z}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t}}{} \Rightarrow-i k B_{o y}=-\frac{1}{c^{2}} i \omega E_{o x} \\
& \frac{\partial \tilde{B}_{x}}{\partial z}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \Rightarrow i k B_{o x}=-\frac{1}{c^{2}} i \omega E_{o y}
\end{align*}
$$

From (1):

$$
i k \tilde{E}_{o y}=-i \omega B_{o x}
$$

$$
\begin{equation*}
\Rightarrow E_{o y}=-\left(\frac{\omega}{k}\right) B_{o x} \quad \text { or: } \quad B_{o x}=-\left(\frac{k}{\omega}\right) E_{o y} \tag{4}
\end{equation*}
$$

MONOCHROMATIC EM PLANE WAVES

From (2): $\quad i k \tilde{E}_{o x}=+i \omega B_{o y} \Rightarrow E_{o x}=+\left(\frac{\omega}{k}\right) B_{o y} \quad$ or: $\quad B_{o y}=+\left(\frac{k}{\omega}\right) E_{o x}$
From (3): $\quad-i k B_{o y}=-\frac{1}{c^{2}} i \omega E_{o x} \Rightarrow B_{o y}=+\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{o x}$

From (4):

$$
i k B_{o x}=-\frac{1}{c^{2}} i \omega E_{o y} \Rightarrow B_{o x}=-\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{o y}
$$

$$
c=f \lambda=(2 \pi f)\left(\frac{\lambda}{2 \pi}\right)=\left(\frac{\omega}{k}\right) \quad \frac{1}{c}=(k / \omega) \quad(k=2 \pi / \lambda)
$$

MONOCHROMATIC EM PLANE WAVES . . .

$\vec{\nabla} \times \overrightarrow{\tilde{E}}:$
(1)
(2)
$\vec{\nabla} \times \tilde{B}:$
(4)

$B_{o x}=-\frac{1}{c} E_{o y}$
$B_{o y}=+\frac{1}{c} E_{o x}$
$B_{o y}=+\frac{1}{c} E_{o x}$
$B_{o x}=-\frac{1}{c} E_{o y}$

Maxwell's Equations also have some redundancy encrypted into them!

Actually we have only two independent relations:

MONOCHROMATIC EM PLANE WAVES

Very Useful Table:

$$
\begin{array}{|l|l|}
\hline \hat{x} \times \hat{y}=\hat{z} & \hat{y} \times \hat{x}=-\hat{z} \\
\hat{y} \times \hat{z}=\hat{x} & \hat{z} \times \hat{y}=-\hat{x} \\
\hat{z} \times \hat{x}=\hat{y} & \hat{x} \times \hat{z}=-\hat{y} \\
\hline
\end{array}
$$

Two relations can be written compactly into one relation:

$$
\overrightarrow{\tilde{B}}_{o}=\frac{1}{c}\left(\hat{z} \times \overrightarrow{\tilde{E}}_{o}\right)
$$

Physically this relation states that E and B are:
$>$ in phase with each other.
$>$ mutually perpendicular to each other $-(\mathbf{E} \perp \mathbf{B}) \perp \mathrm{z}^{\wedge}$

MONOCHROMATIC EM PLANE WAVES

The \mathbf{E} and \mathbf{B} fields associated with this monochromatic plane EM wave are purely transverse $\{$ n.b. this is as also required by relativity at the microscopic level - for the extreme relativistic particles - the (massless) real photons travelling at the speed of light c that make up the macroscopic monochromatic plane EM wave.\}
The real amplitudes of E and B are related to each other by:

$$
B_{o}=\frac{1}{c} E_{o} \quad \text { with } \quad B_{o}=\sqrt{B_{o x}^{2}+B_{o y}^{2}} \text { and } E_{o}=\sqrt{E_{o x}^{2}+E_{o y}^{2}}
$$

Instantaneous Poynting's Vector for a linearly polarized EM wave

$$
\begin{aligned}
& \vec{S}(z, t)=\frac{1}{\mu_{o}} \vec{E}(z, t) \times \vec{B}(z, t)=\frac{1}{\mu_{o}} \operatorname{Re}\{\tilde{\tilde{E}}(z, t)\} \times \operatorname{Re}\{\tilde{\vec{B}}(z, t)\} \\
& \vec{S}(z, t)=\frac{1}{\mu_{o}} E_{o} B_{o} \cos ^{2}(k z-\omega t+\delta) \underbrace{(\hat{x} \times \hat{y})}_{=2} \\
& \vec{S}(z, t)=\frac{1}{\mu_{o}} E_{o} B_{o} \cos ^{2}(k z-\omega t+\delta) \hat{z} \\
& \hline
\end{aligned}
$$

\Rightarrow EM Power flows in the direction of propagation of the EM wave (here, the $+z^{\wedge}$ direction)

Instantaneous Poynting's Vector for a linearly polarized EM wave

This is the paradigm for a monochromatic plane wave. The wave as a whole is said to be polarized in the x direction (by convention, we use the direction of E to specify the polarization of an electromagnetic wave).

Instantaneous Energy \& Linear Momentum \& Angular Momentum in EM

 Waves

 Waves}

Instantaneous Energy Density Associated with an EM Wave:

$$
u_{\mathrm{EM}}(\vec{r}, t)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\frac{1}{\mu_{o}} B^{2}(\vec{r}, t)\right)=u_{\text {elect }}(\vec{r}, t)+u_{\text {mag }}(\vec{r}, t)
$$

where $u_{\text {elect }}(\vec{r}, t)=\frac{1}{2} \varepsilon_{o} E^{2}(\vec{r}, t)$

$$
\text { and } u_{\text {mag }}(\vec{r}, t)=\frac{1}{2 \mu_{o}} B^{2}(\vec{r}, t)=\frac{1}{2} \varepsilon_{o} E^{2}(\vec{r}, t)
$$

Instantaneous Energy \& Linear Momentum \& Angular Momentum in EM Waves

But $B^{2}=\frac{1}{c^{2}} E^{2}-$ EM waves in vacuum, and $\frac{1}{c^{2}}=\varepsilon_{0} \mu_{0}$

$$
\begin{gathered}
u_{E M}(\vec{r}, t)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\frac{\varepsilon_{o} \mu_{o}}{\mu_{o}} E^{2}(\vec{r}, t)\right)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\varepsilon_{o} E^{2}(\vec{r}, t)\right) \\
u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(\vec{k} \cdot \vec{r}-\omega t+\delta)\left(\frac{\text { Joules }}{\mathrm{m}^{3}}\right)
\end{gathered}
$$

$$
u_{\text {elect }}(\vec{r}, t)=u_{\text {mag }}(\vec{r}, t) \text { - EM waves propagating in the vacuum !!!! }
$$

Instantaneous Poynting's Vector Associated with an EM Wave

$$
\vec{S}(\vec{r}, t)=\frac{1}{\mu_{o}} \vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t)=\frac{1}{\mu_{o}} \operatorname{Re}\{\tilde{\vec{E}}(z, t)\} \times \operatorname{Re}\{\tilde{\vec{B}}(z, t)\}\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

For a linearly polarized monochromatic plane EM wave propagating in the vacuum,

$$
\vec{S}(\vec{r}, t)=c\left(\frac{\varepsilon_{o} \mu_{o}}{\mu_{o}^{\prime}}\right) E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}=c \varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}
$$

But

$$
u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)
$$

$$
\vec{S}(\vec{r}, t)=c u_{E M}(\vec{r}, t) \hat{z}
$$

Instantaneous Poynting's Vector Associated with an EM Wave

The propagation velocity of energy $\vec{v}_{\text {prop }}=c \hat{z}$
Poynting's Vector = Energy Density * Propagation Velocity

$$
\vec{S}(\vec{r}, t)=u_{E M}(\vec{r}, t) \vec{v}_{\text {prop }}
$$

Instantaneous Linear Momentum Density Associated with an EM Wave:

$$
\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{0} \mu_{0} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t)\left(\frac{\mathrm{kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

Instantaneous Linear Momentum Density Associated with an EM Wave

For linearly polarized monochromatic plane EM waves propagating in the vacuum:

$$
\vec{\wp}_{E M}=\frac{1}{c^{z}} \not \ell \varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}=\frac{1}{c} \underbrace{\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)}_{=u_{R M}} \hat{z}
$$

$$
\text { But: } \quad u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)
$$

$$
\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{o} \mu_{o} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t) \hat{z}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

Instantaneous Angular Momentum Density Associated with an EM wave

$$
\vec{\ell}_{E M}(\vec{r}, t)=\vec{r} \times \vec{\wp}_{E M}(\vec{r}, t) \quad\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right)
$$

But: $\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{0} \mu_{o} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t) \hat{z}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)$
For an EM wave propagating in the $+z^{\wedge}$ direction:

$$
\vec{\ell}_{E M}(\vec{r}, t)=\frac{1}{c^{2}} \vec{r} \times \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t)(\vec{r} \times \hat{z})\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right)
$$

Depends on the choice of origin ${ }_{115}$

Instantaneous Power Associated with an EM wave

The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing volume v (containing EM fields in the volume v) is:

$$
P_{E M}(t)=\frac{\partial U_{E M}(t)}{\partial t}=\int_{v} \frac{\partial u_{E M}(\vec{r}, t)}{\partial t} d \tau=-\oint_{S} \vec{S}(\vec{r}, t) \cdot d \vec{a}
$$

The instantaneous EM power crossing (imaginary) surface is:

$$
P_{E M}(t)=-\int_{S} \vec{S}(\vec{r}, t) \cdot d \vec{a}_{\perp}
$$

The instantaneous total EM energy contained in volume v

$$
U_{E M}(t)=\int_{v} u_{E M}(\vec{r}, t) d \tau \quad \text { (Joules) }
$$

Instantaneous Angular Momentum Density Associated with an EM wave

The instantaneous total EM linear momentum contained in the volume v is:

$$
\vec{p}_{E M}(t)=\int_{v} \vec{\wp}_{E M}(\vec{r}, t) d \tau \quad\left(\frac{\mathrm{~kg}-\mathrm{m}}{\mathrm{sec}}\right)
$$

The instantaneous total EM angular momentum contained in the volume v is:

$$
\overrightarrow{\mathcal{R}}_{E M}(t)=\int_{v} \vec{\ell}_{E M}(\vec{r}, t) d \tau \quad\left(\frac{\mathrm{~kg}-\mathrm{m}^{2}}{\mathrm{sec}}\right)
$$

Time-Averaged Quantities Associated with EM Waves

Usually we are not interested in knowing the instantaneous power $\mathrm{P}(\mathrm{t})$, energy / energy density, Poynting's vector, linear and angular momentum, etc.- because experimental measurements of these quantities are very often averages over many extremely fast cycles of oscillation. For example period of oscillation of light wave

$$
\left.\tau_{\text {light }}=1 / f_{\text {light }} \simeq \frac{1}{10^{15} \mathrm{cps}}=10^{-15} \mathrm{sec} / \mathrm{cycle}=1 \text { femto-sec }\right)
$$

We need time averaged expressions for each of these quantities - in order to compare directly with experimental data- for monochromatic plane EM light waves:

Time-Averaged Quantities Associated with EM Waves

If we have an instantaneous physical quantity of the form:

$$
Q(t)=Q_{o} \cos ^{2}(\omega t)
$$

The time-average of $Q(t)$ is defined as:

$$
\langle Q(t)\rangle \equiv\langle Q\rangle=\frac{1}{\tau} \int_{t=0}^{t=\tau} Q(t) d t=\frac{Q_{o}}{\tau} \int_{t=0}^{t=\tau} \cos ^{2}(\omega t) d t
$$

Time-Averaged Quantities Associated with EM Waves

The time average of the $\cos ^{2}(\omega t)$ function:

$$
\frac{1}{\tau} \int_{0}^{\tau} \cos ^{2}(\omega t) d t=\frac{1}{\tau}\left[\frac{t}{2}+\frac{\sin 2 \omega t}{4 \omega}\right]_{t=0}^{t-\tau}=\frac{1}{2 \tau}\left[(\tau-0)+\left(\frac{\sin 2 \omega \tau}{2 \omega}-0\right)\right]=\frac{1}{2 \tau}\left[\tau+\frac{\sin 2 \omega \tau}{2 \omega}\right]
$$

$$
\omega \tau=2 \pi f \tau \quad f=1 / \tau \quad \omega \tau=2 \pi(\tau / \tau)=2 \pi \quad \sin (\omega \tau)=\sin (2 \pi)=0
$$

$$
\frac{1}{\tau} \int_{0}^{\tau} \cos ^{2}(\omega t) d t=\frac{1}{2 \not t}[\not t]=\frac{1}{2}
$$

$$
\langle Q(t)\rangle=\langle Q\rangle=\frac{1}{2} Q_{o}
$$

Thus, the time-averaged quantities associated with an EM wave propagating in free space are:

Time-Averaged Quantities Associated with EM Waves

Intensity of an EM wave:

$$
I(\vec{r}) \equiv\langle S(\vec{r}, t)\rangle=\langle | \vec{S}(\vec{r}, t)| \rangle=c\left\langle u_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2} c \varepsilon_{o} E_{o}^{2}\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

The intensity of an EM wave is also known as the irradiance of the EM wave - it is the radiant power incident per unit area upon a surface.

Time-Averaged Quantities Associated with EM Waves

EM Energy Density: $\quad u_{E M}(\vec{r}, t) \Rightarrow\left\langle u_{E M}(\vec{r}, t)\right\rangle$

Total EM Energy:

$$
U_{E M}(t) \Rightarrow\left\langle U_{E M}(t)\right\rangle
$$

Poynting's Vector:

$$
\vec{S}(\vec{r}, t) \Rightarrow\left\langle\vec{S}_{E M}(\vec{r}, t)\right\rangle
$$

EM Power:

$$
P_{E M}(t) \Rightarrow\left\langle P_{E M}(t)\right\rangle
$$

Time-Averaged Quantities Associated with EM Waves

Linear Momentum Density:

Linear Momentum:

Angular Momentum Density:

Angular Momentum:

$$
\vec{\wp}_{E M}(\vec{r}, t) \Rightarrow\left\langle\vec{\wp}_{E M}(\vec{r}, t)\right\rangle
$$

$$
\vec{p}_{E M}(t) \Rightarrow\left\langle\vec{p}_{E M}(t)\right\rangle
$$

$$
\vec{\ell}_{E M}(\vec{r}, t) \Rightarrow\left\langle\vec{\ell}_{E M}(\vec{r}, t)\right\rangle
$$

$$
\overrightarrow{\mathcal{L}}_{E M}(t) \Rightarrow\left\langle\overrightarrow{\mathcal{L}}_{E M}(t)\right\rangle
$$

Time-Averaged Quantities Associated with EM Waves

For a monochromatic EM plane wave propagating in free space / vacuum in ${ }^{\text {z } z ~ d i r e c t i o n: ~}$

$$
\left\langle u_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2} \varepsilon_{o} E_{o}^{2}\left(\frac{\text { Joules }}{\mathrm{m}^{3}}\right)
$$

$$
\langle\vec{S}(\vec{r}, t)\rangle=\frac{1}{2} c \varepsilon_{o} E_{o}^{2} \hat{z}=c\left\langle u_{E M}(\vec{r}, t)\right\rangle \hat{z} \quad\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

$$
\left\langle\left\langle\vec{\wp}_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2 c} \varepsilon_{o} E_{o}^{2} \hat{z}=\frac{1}{c^{2}}\langle\vec{S}(\vec{r}, t)\rangle=\frac{1}{c}\left\langle u_{E M}(\vec{r}, t)\right\rangle \hat{z}\right|\left(\frac{\mathrm{kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

$$
\ell_{\text {3-Feb-14 }}^{\left\langle\ell_{E M}(\vec{r}, t)\right\rangle=\left(\vec{r} \times\left\langle\vec{\partial}_{E M}(\vec{r}, t)\right\rangle\right)=\frac{1}{c^{2}}(\vec{r} \times\langle\vec{S}(\vec{r}, t)\rangle)=\frac{1}{c}\left\langle u_{E M}(\vec{r}, t)\right\rangle(\hat{r} \times \hat{z})\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{SEc}}\right)}
$$

Story has not finished yet To be continued...

THANKS FOR TIME BEING

