

2570-1

Preparatory School to the Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications

3 - 7 February 2014

REVIEW OF ELECTRODYNAMICS

Imrana Ashraf Zahid Quaid-i-Azam University Islamabad Pakistan

REVIEW OF ELECTRODYNAMICS

Imrana Ashraf Zahid Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics- Theory, Devices and Applications. 3rd February - 7th February 2014

Layout

- Electrostatic : Revisited
- Magneto- static : Revisited
- Introduction to Maxwell's equations
- Electrodynamics before Maxwell
- Maxwell's correction to Ampere's law
- General form of Maxwell's equations
- Maxwell's equations in vacuum
- Maxwell's equations inside matter
- The Electromagnetic wave
- Energy and Momentum of Electromagnetic Waves

Nomenclature

- \Box *E* = Electric field
- □ *D* = Electric displacement
- □ *B* = Magnetic flux density
- $\Box H = Auxiliary field$
- ρ= Charge density
- \Box *j* = Current density
- μ_0 (permeability of free space) = $4\pi \times 10^{-7}$ T-m/A
- \Box ε_0 (permittivity of free space) = 8.854×10⁻¹²N-m²/C²
- □ c (speed of light) = 2.99792458×10⁸ m/s

Introduction

• Electrostatics

 Electrostatic field : Stationary charges produce electric fields that are constant in time. The theory of static charges is called electrostatics.

Stationary charges Constant Electric field;

Electrostatic : Revisited

Coulombs Law

The Electric Field

$$\vec{F} = Q\vec{E}$$
$$\vec{E}(P) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{r_i^2} \hat{r}_i$$

E- the electric field of the source charges.

Physically E(P) Is force per unit charge exerted on a test charge placed at P.

The Electric Field: cont'd

 $\bullet P$

 $\bullet P$

r

r

 λ is the line charge density

 σ is the surface charge density

The Electric Field: cont'd

 $\vec{E}(P) = \frac{1}{4\pi\varepsilon_0} \int_{Volume} \frac{\hat{r}}{r^2} \rho d\tau$

 ρ is the volume charge density

Electric Potential

The work done in moving a test charge Q in an electric field from point P_1 to P_2 with a constant speed.

$$W = Force \bullet dis \tan ce$$
$$W = -\int_{p_1}^{P_2} Q\vec{E} \bullet d\vec{l}$$

negative sign - work done is against the field. For any distribution of fixed charges.

$$\oint \vec{E} \bullet d\vec{l} = 0$$

The electrostatic field is conservative

Electric Potential: cont'd

Stokes's Theorem gives

 $\vec{\nabla} \times \vec{E} = 0$ $\vec{E} = -\vec{\nabla} V$

where V is Scalar Potential

The work done in moving a charge Q from infinity to a point P_2 where potential is V

 $W = \mathbf{Q}V$

V = Work per unit charge

= Volts = joules/Coulomb

Electric Potential : cont'd

Field due to a single point charge q at origin

$$V = \int_{r}^{\infty} \frac{q dr}{4\pi\varepsilon_{0} r^{2}} = \frac{q}{4\pi\varepsilon_{0} r}$$
$$F \propto \frac{1}{r^{2}}$$
$$E \propto \frac{1}{r^{2}}$$
$$V \propto \frac{1}{r}$$

Gauss's Law

Differential form of Gauss's Law

Poisson's Equation

 $\oint \vec{E} \bullet d\vec{a} = \frac{1}{\varepsilon_0} Q_{enc}$ $\vec{\nabla} \bullet \vec{E} = \frac{\rho}{\varepsilon_0}$

 $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$

Laplace's Equation

 $\nabla^2 V = 0$

Electrostatic Fields in Matter

Matter: Solids, liquids, gases, metal, wood and glasses - behave differently in electric field.

- **Two Large Classes of Matter**
- (i) Conductors
- (ii) Dielectric

Conductors: Unlimited supply of free charges.

Dielectrics:

- Charges are attached to specific atoms or molecules- No free charges.
- Only possible motion minute displacement of positive and negative charges in opposite direction.
- Large fields- pull the atom apart completely (ionizing it).

Polarization

A dielectric with charge displacements or induced dipole moment is said to be polarized.

Induced Dipole Moment

$$\mathbf{p} = \alpha E$$

The constant of proportionality *α* is called the atomic polarizability

P ≡ dipole moment per unit volume

3-Feb-14

The Field of a Polarized Object: cont'd

The total field is field due to bound charges plus due to free charges

Gauss's law in Dielectric

- **Effect** of polarization is to produce accumulations of bound charges.
- **The total charge density**

$$\rho = \rho_f + \rho_b$$

From Gauss's law

 $\varepsilon_0 \vec{\nabla} \cdot \vec{E} = \rho = \rho_b + \rho_f$

$$\vec{\nabla} \cdot \vec{D} = \rho_{\vec{D}}$$

$$\int \vec{D} \cdot d\vec{a} = Q_{fenc}$$

 Q_{fenc} -Free charges enclosed

Displacement vector

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

Magnetostatics : Revisited

Magnetostatics

 Steady current produce magnetic fields that are constant in time. The theory of constant current is called magnetostatics.

Steady currents **Constant Magnetic field**;

Magnetic Forces

Lorentz Force

$$\vec{F} = q \left[\vec{E} + \left(\vec{v} \times \vec{B} \right) \right]$$

• The magnetic force on a segment of current carrying wire is

$$F_{mag} = \int (\vec{I} \times \vec{B}) dl$$
$$F_{mag} = \int I (d\vec{l} \times \vec{B})$$

Equation of Continuity

The current crossing a surface s can be written as

$$I = \int_{s} \vec{J} \cdot d\vec{a} = \int (\vec{\nabla} \cdot \vec{J}) d\tau$$
$$\int (\vec{\nabla} \cdot \vec{J}) d\tau = -\frac{d}{dt} \int_{s}^{v} \rho d\tau = -\int \left(\frac{\partial \rho}{\partial t}\right) d\tau$$

Charge is conserved whatever flows out must come at the expense of that remaining inside - outward flow decreases the charge left in v

$$\vec{\nabla} \bullet \vec{J} = -\frac{\partial \rho}{\partial t}$$

This is called equation of continuity

Equation of Continuity 1

In Magnetostatic steady currents flow in the wire and its magnitude I must be the same along the line- otherwise charge would be pilling up some where and current can not be maintained indefinitely.

 $\frac{\partial \rho}{\partial t} = 0$ In Magnetostatic and equation of continuity $\vec{\nabla} \cdot \vec{J} = 0$

Steady Currents: The flow of charges that has been going on forever never increasing - never decreasing.

Magnetostatic and Current Distributions

 $d\vec{l}$

 \vec{v}

Biot and Savart Law

$$\vec{B}(p) = \frac{\mu_0}{4\pi} \int \frac{\vec{I} \times \vec{r}}{\left|\vec{r}\right|^3} d\vec{l}$$

 μ_0 Permeability of free space.

Unit of B = N/Am = Tesla (T)

Biot and Savart Law for Surface and Volume Currents

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{K \times \vec{r}}{\left|\vec{r}\right|^3} da$$

For Surface Currents

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{\vec{J} \times \vec{r}}{\left|\vec{r}\right|^3} d\tau$$

For Volume Currents

3-Feb-14

Force between two parallel wires

The magnetic field at (2) due to current I₁ is

- $B_1 = \frac{\mu_0 I_1}{2\pi d}$ Points inside
- Magnetic force law

$$dF = \int I_2 \left(d\vec{l}_2 \times \vec{B}_1 \right)$$

$$dF = \int I_2 \left(d\vec{l}_2 \times \frac{\mu_0 I_1}{2\pi d} \hat{k} \right)$$

(1)

(2)

Force between two parallel wires

$$dF = \frac{\mu_0 I_1 I_2}{2\pi d} dl_2$$

The total force is infinite but force per unit length is

$$\frac{dF}{dl_2} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

If currents are anti-parallel the force is repulsive.

Straight line currents

The integral of B around a circular path of radius s, centered at the wire is

$$\oint \vec{B} \cdot d\vec{l} = \oint \frac{\mu_0 I}{2\pi s} dl = \mu_0 I$$

For bundle of straight wires. Wire that passes through loop contributes only.

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$

Applying Stokes' theorem

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Divergence and Curl of B

Biot-Savart law for the general case of a volume current reads

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(r') \times \vec{r}}{r^3} d\tau'$$

B is a function of (x, y, z),

J is a function of (x', y', z'), $\vec{\gamma} = (x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}$,

 $d\tau' = dx' \, dy' \, dz'.$

$$\vec{\nabla} \cdot \vec{B} = 0$$
 and $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

Ampere's Law

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Ampere's law

Integral form of Ampere's law

Using Stokes' theorem

$$\int \left(\vec{\nabla} \times \vec{B}\right) \cdot d\vec{a} = \oint \vec{B} \cdot d\vec{l} = \mu_0 \int \vec{J} \cdot d\vec{a}$$
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$

Vector Potential

The basic differential law of Magnetostatics

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

 $\vec{\nabla} \bullet \vec{B} = 0$

B is curl of some vector field called vector potential A(P)

Coulomb's gauge

$$\vec{B}(P) = \vec{\nabla} \times \vec{A}(P)$$

$$\vec{\nabla} \cdot \vec{A} = 0$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \mu_0 J$$

$$\nabla^2 A = -\mu_0 J$$

Magnetostatic Field in Matter

- Magnetic fields- due to electrical charges in motion.
- **Examine a magnet on atomic scale we would find tiny currents.**
- Two reasons for atomic currents.
 - Electrons orbiting around nuclei.
 - Electrons spinning on their axes.
- Current loops form magnetic dipoles they cancel each other due to random orientation of the atoms.
- Under an applied Magnetic field- a net alignment of magnetic dipole occurs- and medium becomes magnetically polarized or magnetized

Magnetization

If **m** is the average magnetic dipole moment per unit atom and **N** is the number of atoms per unit volume, the magnetization is define as

Magnetic Materials

Paramagnetic Materials

The materials having magnetization parallel to B are called paramagnets.

Diamagnetic Materials

The elementary moment are not permanent but are induced according to Faraday's law of induction. In these materials magnetization is opposite to B.

Ferromagnetic Materials

Have large magnetization due to electron spin. Elementary moments are aligned in form of groups called domain

The Field of Magnetized Object

Using the vector potential of current loop

$$\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$$

$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{M} \times \hat{n}}{r} da + \frac{\mu_0}{4\pi} \int \frac{\vec{\nabla} \times \vec{M}}{r} da$$

$$\overrightarrow{K_b} = \vec{M} imes \hat{n}$$
 Bo
 $\overrightarrow{J_b} = \vec{\nabla} imes \vec{M}$ Bo

Bound Surface Current

Bound Volume Current

ŕ

Ampere's Law in Magnetized Material

 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ $\vec{J} = \vec{J}_b + \vec{J}_f$ $\frac{1}{-} \left(\vec{\nabla} \times \vec{B} \right) = \vec{J}_b + \vec{J}_f = \vec{J}_f + \left(\vec{\nabla} \times \vec{M} \right)$ μ_0 $\vec{\nabla} \times \vec{H} = \vec{J}_f$ where $\vec{H} = \frac{\vec{B}}{\vec{B}} - \vec{M}$ μ_0 **Integral form** $\oint \vec{H} \cdot d\vec{l} = I_{fenc}$

3-Feb-14

Faraday's Law of Induction

Faraday's Law - a changing -magnetic flux through circuit induces an electromotive force around the circuit.

$$\varepsilon = \oint \vec{E} \cdot \vec{dl} = -\frac{d\phi}{dt} = -\frac{d}{dt} \int \vec{B} \cdot \vec{da}$$

C – Induced emf

E – Induced electric field intensity

Differential form of Faraday's law

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

Faraday's Law of Induction

Induced Electric field intensity in terms of vector potential

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \vec{\nabla} V$$

For steady currents

$$\vec{E} = -\vec{\nabla}V$$
 V - Scalar potential

Induced emf in a system moving in a changing magnetic field

$$\varepsilon = \overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} + \overrightarrow{\nabla} \times \left(\overrightarrow{v} \times \overrightarrow{B}\right)$$

MAXWELL'S EQUATIONS

Imrana Ashraf Zahid Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics-Theory, Devices and Applications. 3rd February - 7th February 2014

Introduction to Maxwell's Equation

- In electrodynamics Maxwell's equations are a set of four equations, that describes the behavior of both the electric and magnetic fields as well as their interaction with matter
- Maxwell's four equations express
 - How electric charges produce electric field (Gauss's law)
 - The absence of magnetic monopoles
 - How currents and changing electric fields produces magnetic fields (Ampere's law)
 - How changing magnetic fields produces electric fields (Faraday's law of induction)

Historical Background

- 1864 Maxwell in his paper "A Dynamical Theory of the Electromagnetic Field" collected all four equations
- 1884 Oliver Heaviside and Willard Gibbs gave the modern mathematical formulation using vector calculus.
- The change to vector notation produced a symmetric mathematical representation, that reinforced the perception of physical symmetries between the various fields.

Electrodynamics Before Maxwell

Gauss's Law	$(i)\vec{\nabla}\bullet\vec{E} = -\frac{\rho}{2}$	
No name	\mathcal{E}_o $(ii)\vec{\nabla} \cdot \vec{B} = 0$	$\vec{E} = -\vec{\nabla}V - \frac{\partial \vec{A}}{\partial t}$
Faraday's Law	$(iii)\overrightarrow{\nabla}\times\overrightarrow{E} = -\frac{\partial\overrightarrow{B}}{\partial t}$	∂t $\vec{B} = \vec{\nabla} \times \vec{A}$
Ampere's Law	$(iv)\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_{o}\overrightarrow{J}$	

Electrodynamics Before Maxwell (Cont'd)

Apply divergence to (iii)

$$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{E} \right) = \vec{\nabla} \cdot \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\frac{\partial}{\partial t} \left(\vec{\nabla} \cdot \vec{B} \right)$$

The left hand side is zero, because divergence of a curl is zero. The right hand side is zero because $\vec{\nabla} \cdot \vec{B} = 0$.

Apply divergence to (iv)

$$\vec{\nabla} \bullet \left(\vec{\nabla} \times \vec{B} \right) = \mu_o \left(\vec{\nabla} \bullet \vec{J} \right)$$

Electrodynamics Before Maxwell (Cont'd)

- □ The left hand side is zero, because divergence of a curl is zero.
- The right hand side is zero for steady currents i.e.,

$$\vec{\nabla} \cdot \vec{J} = 0$$

In electrodynamics from conservation of charge

$$\vec{\nabla} \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$
$$\Rightarrow \frac{\partial \rho}{\partial t} = 0$$

ho is constant at any point in space which is wrong.

Maxwell's Correction to Ampere's Law

Consider Gauss's Law

$$\vec{\nabla} \cdot \varepsilon_{o} \vec{E} = \rho$$

$$\frac{\partial}{\partial t} (\vec{\nabla} \cdot \varepsilon_{o} \vec{E}) = \frac{\partial \rho}{\partial t}$$

$$\Rightarrow \frac{\partial \rho}{\partial t} = \vec{\nabla} \cdot \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}$$

$$\frac{\partial \vec{D}}{\partial t} = \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}$$
Displacement current

This result along with Ampere's law and the conservation of charge equation suggest that there are actually two sources of magnetic field. The current density and displacement current.

Maxwell's Correction to Ampere's Law (Cont'd)

Amperes law with Maxwell's correction

 $\vec{\nabla} \times \vec{B} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial E}{\partial t}$

General Form of Maxwell's Equations

Differential Form

Integral Form

 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_o}$ $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \times \vec{B} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial \vec{E}}{\partial t}$

$$\oint_{S} \vec{E} \cdot d\vec{a} = \frac{1}{\varepsilon_{o}} \int_{V} \rho dV$$

$$\oint_{S} \vec{B} \cdot d\vec{a} = 0$$

$$\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{a}$$

$$\oint_{C} \vec{B} \cdot d\vec{l} = \mu_{o} I_{enc} + \mu_{o} \varepsilon_{o} \frac{d}{dt} \oint_{S} \vec{E} \cdot d\vec{a}$$

Maxwell's Equations in vacuum

- The vacuum is a linear, homogeneous, isotropic and dispersion less medium
- Since there is no current or electric charge is present in the vacuum, hence Maxwell's equations reads as
- These equations have a simple solution in terms of traveling sinusoidal waves, with the electric and magnetic fields direction orthogonal to each other and the direction of travel

 $\vec{\nabla} \bullet \vec{E} = 0$ $\vec{\nabla} \bullet \vec{B} = 0$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial \vec{B}}$ ∂t $\vec{\nabla} \times \vec{B} = \mu_o \varepsilon_o \frac{\partial \vec{E}}{\partial t}$

Maxwell's Equations Inside Matter

Maxwell's equations are modified for polarized and magnetized materials. For linear materials the polarization *P* and magnetization *M* is given by

$$\overrightarrow{P} = \varepsilon_o \chi_e \overrightarrow{E}$$
$$\overrightarrow{M} = \chi_m \overrightarrow{H}$$

And the *D* and *B* fields are related to *E* and *H* by

$$\vec{D} = \varepsilon_o \vec{E} + \vec{P} = (1 + \chi_e) \varepsilon_o \vec{E} = \varepsilon \vec{E}$$

$$\vec{B} = \mu_o \left(\vec{H} + \vec{M} \right) = (1 + \chi_m) \mu_o \vec{H} = \mu \vec{H}$$

Where χ_e is the electric susceptibility of material,
 χ_m is the magnetic susceptibility of material.

 For polarized materials we have bound charges in addition to free charges

$$\sigma_b = \vec{P} \cdot \hat{n}$$
$$\rho_b = -\vec{\nabla} \cdot \vec{P}$$

• For magnetized materials we have bound currents

$$\overrightarrow{K_b} = \overrightarrow{M} \times \hat{n}$$
$$\overrightarrow{J_b} = \overrightarrow{\nabla} \times \overrightarrow{M}$$

 In electrodynamics any change in the electric polarization involves a flow of bound charges resulting in polarization current J_P

Polarization current density is due to linear motion of charge when the Electric polarization changes

Total charge density $\rho_t = \rho_f + \rho_b$ Total current density $J_t = J_f + J_b + J_p$

Maxwell's equations inside matter are written as

In non-dispersive, isotropic media ε and μ are time-independent scalars, and Maxwell's equations reduces to

 $\vec{\nabla} \cdot \varepsilon \vec{E} = \rho$ $\vec{\nabla} \cdot \mu \vec{H} = 0$ $\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$ $\vec{\nabla} \times \vec{H} = \vec{J} + \varepsilon \frac{\partial \vec{E}}{\partial t}$

 In uniform (homogeneous) medium ε and μ are independent of position- Maxwell's equations reads as

Generally, ε and μ can be rank-2 tensor (3X3 matrices) describing bi-refringent anisotropic materials.

Maxwell's equations in integral form:

Gauss' Law:

$$\int_{v} \vec{\nabla} \cdot \vec{E}(\vec{r},t) d\tau' = \frac{1}{\varepsilon_{0}} \int_{v} \rho_{Tot}^{E}(\vec{r},t) d\tau' = \frac{1}{\varepsilon_{0}} \int_{v} \left(\rho_{fres}^{E}(\vec{r},t) + \rho_{bound}^{E}(\vec{r},t) \right) d\tau'$$
$$= \oint_{s} \vec{E}(\vec{r},t) \cdot d\vec{a} = \frac{1}{\varepsilon_{0}} Q_{ToT}^{enclosed}(t) = \frac{1}{\varepsilon_{0}} \left(Q_{fres}^{enclosed}(t) + Q_{bound}^{enclosed}(t) \right)$$
$$\oint_{s} \vec{D}(\vec{r},t) d\vec{a} = Q_{fres}^{enclosed}(t) \qquad \qquad \oint_{s} \vec{P}(\vec{r},t) \cdot d\vec{a} \equiv -Q_{bound}^{enclosed}(t)$$

Auxiliary Relation:

$$\vec{D}(\vec{r},t) = \varepsilon_o \vec{E}(\vec{r},t) + \vec{P}(\vec{r},t)$$

$$\rho_{Bound}\left(\vec{r},t\right) \equiv -\vec{\nabla} \cdot \vec{P}\left(\vec{r},t\right) \qquad \sigma_{Bound}\left(\vec{r},t\right) \equiv \vec{P}\left(\vec{r},t\right) \cdot \hat{n}\Big|_{intf}$$

No Magnetic Monopoles: $\int_{v} \vec{\nabla} \cdot \vec{B}(\vec{r},t) d\tau' = \oint_{s} \vec{B}(\vec{r},t) \cdot d\vec{a} = 0$ Faraday's Law:

$$\int_{s} \vec{\nabla} \times \vec{E}(\vec{r},t) \cdot d\vec{a} = \oint_{c} \vec{E}(\vec{r},t) \cdot d\vec{\ell} = -\int_{s} \frac{\partial \vec{B}(\vec{r},t)}{\partial t} \cdot d\vec{a} = -\frac{d}{dt} \left[\int_{s} \vec{B}(\vec{r},t) \cdot d\vec{a} \right]$$

$$\varepsilon mf \ \varepsilon(t) \equiv \oint_{C} \vec{E}(\vec{r}, t) \cdot d\vec{\ell} = -\frac{d}{dt} \left[\int_{S} \vec{B}(\vec{r}, t) \cdot d\vec{a} \right] = -\frac{d\Phi_{M}^{enclosed}(t)}{dt}$$

Ampere's Law:

 $\int_{S} \vec{\nabla} \times \vec{B}(\vec{r},t) \cdot d\vec{a} = \oint_{C} \vec{B}(\vec{r},t) \cdot d\vec{\ell} = \mu_{0} \int_{S} \left(\vec{J}_{ToT}(\vec{r},t) + \vec{J}_{D}(\vec{r},t) \right) \cdot d\vec{a}$ $= \oint_{C} \vec{B}(\vec{r},t) \cdot d\vec{\ell} = \mu_{0} \left(I_{ToT}^{\text{encl}}(t) + I_{D}^{\text{encl}}(t) \right) = \mu_{0} \left(I_{free}^{\text{encl}}(t) + I_{bound}^{\text{encl}}(t) + I_{P_{bound}}^{\text{encl}}(t) + I_{D}^{\text{encl}}(t) \right)$

Auxiliary Relation:
$$\vec{H}(\vec{r},t) = \frac{1}{\mu_0} \vec{B}(\vec{r},t) - \vec{M}(\vec{r},t)$$

$$\vec{J}_{bound}^{m}(\vec{r},t) \equiv \vec{\nabla} \times \vec{\mathbf{M}}(\vec{r},t)$$

$$\vec{K}_{bound}^{m}(\vec{r},t) \equiv \vec{\mathbf{M}}(\vec{r},t) \times \hat{n}\Big|_{intf}$$

$$\vec{J}_{P_{bound}}(\vec{r},t) \equiv \frac{\partial \vec{P}(\vec{r},t)}{\partial t}$$

$$\rho_{m}^{Bound}(\vec{r},t) \equiv -\vec{\nabla} \cdot \vec{\mathbf{M}}(\vec{r},t)$$

$$\sigma_{m}^{Bound}(\vec{r},t) \equiv \vec{\mathbf{M}}(\vec{r},t) \cdot \hat{n}\Big|_{intf}$$

$$\int_{S} \vec{\nabla} \times \vec{H}(\vec{r},t) \cdot d\vec{a} = \oint_{C} \vec{H}(\vec{r},t) \cdot d\vec{\ell} = I_{free}^{auctored}(t) + \int_{S} \frac{\partial \vec{D}(\vec{r},t)}{\partial t} \cdot d\vec{a} = I_{free}^{auctored}(t) + \frac{d}{dt} \left[\int_{S} \vec{D}(\vec{r},t) \cdot d\vec{a} \right]$$

1) Apply the integral form of Gauss' Law at a dielectric interface/boundary using infinitesimally thin Gaussian pillbox extending slightly into dielectric material on either side of interface:

$$\oint_{S} \vec{E} \cdot d\vec{a} = \frac{1}{\varepsilon_{0}} Q_{ToT}^{\text{enclosed}} = \frac{1}{\varepsilon_{0}} Q_{free}^{\text{enclosed}} + \frac{1}{\varepsilon_{0}} Q_{bound}^{\text{enclosed}} = \frac{1}{\varepsilon_{0}} \oint_{S} \sigma_{free} da + \frac{1}{\varepsilon_{0}} \oint_{S} \sigma_{bound} da$$
Gives:
$$E_{2}^{\perp} - E_{1}^{\perp} = \frac{1}{\varepsilon_{0}} \sigma_{ToT} = \frac{1}{\varepsilon_{0}} (\sigma_{free} + \sigma_{bound}) \quad \text{(at interface)}$$

The positive direction is from medium 2 (below) to medium 1 (above)

$$\oint_{S} \vec{D} \cdot d\vec{a} = Q_{free}^{\text{enclosed}} = \oint_{S} \sigma_{free} da \implies D_{2}^{\perp} - D_{1}^{\perp} = \sigma_{free} \quad \text{(at interface)}$$
i.ikewise:
$$\oint_{S} \vec{P} \cdot d\vec{a} = Q_{bound}^{\text{enclosed}} = -\oint_{S} \sigma_{bound} da \implies P_{2}^{\perp} - P_{1}^{\perp} = \sigma_{bound} \quad \text{(at interface)}$$

$$\vec{E} = -\vec{\nabla} V$$
Since:
$$\left[\frac{\partial V_{2}^{above}}{\partial n} - \frac{\partial V_{1}^{below}}{\partial n} \right]_{\text{interface}} = -\frac{1}{\varepsilon_{0}} \sigma_{ToT} = -\frac{1}{\varepsilon_{0}} \left(\sigma_{free} + \sigma_{bound} \right) \quad \text{(at interface)}$$

$$\vec{D} = \varepsilon \vec{E} = -\varepsilon \vec{\nabla} V$$

$$\left[\left(\varepsilon_2 \frac{\partial V_2^{above}}{\partial n} - \varepsilon_1 \frac{\partial V_1^{below}}{\partial n} \right)_{\text{interface}} = -\sigma_{free} \quad (at interface)$$

Since:

Similarly, for $\int_{v} \vec{\nabla} \cdot \vec{B} d\tau' = \oint_{s} \vec{B} \cdot d\vec{a} = 0$ (no magnetic monopoles), then at an interface: $\vec{B}_{2}^{above} \cdot \vec{a} - \vec{B}_{1}^{above} \cdot \vec{a} = 0 \implies \left| \begin{array}{c} B_{2}^{\perp} & -B_{1}^{\perp} & = 0 \\ above & below \end{array} \right| \text{ or: } \left| \begin{array}{c} B_{2}^{\perp} & =B_{1}^{\perp} \\ above & below \end{array} \right| \text{ (at interface)}$ $\vec{H} = \left(\frac{1}{\mu}\right)\vec{B} - \vec{M}$ <u>Then</u>: $\vec{B} = \mu_o\left(\vec{H} + \vec{M}\right)$ Since:

$$\oint_{s} \vec{B} \cdot d\vec{a} = \mu_{o} \oint_{s} \left(\vec{H} + \vec{M} \right) \cdot d\vec{a} = 0 \qquad \underline{\text{or}}: \qquad \oint_{s} \vec{H} \cdot d\vec{a} = -\oint_{s} \vec{M} \cdot d\vec{a}$$

Then:
$$\vec{H}_2^{above} \cdot \vec{a} - \vec{H}_1^{below} \cdot \vec{a} = -\left(\vec{M}_2^{above} \cdot \vec{a} - \vec{M}_1^{below} \cdot \vec{a}\right)$$
 (at interface)

Or: $\begin{pmatrix} H_{2}^{\perp} - H_{1}^{\perp} \\ above & below \end{pmatrix} = - \begin{pmatrix} M_{2}^{\perp} - M_{1}^{\perp} \\ above & below \end{pmatrix} = -\sigma_{magnetic}^{bound} \quad (at interface)$

Effective bound magnetic charge at interface

3) For Faraday's Law: EMF,
$$\varepsilon = \oint_C \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \left(\oint_S \vec{B} \cdot d\vec{a} \right) = -\frac{d\Phi_m}{dt}$$

At interface between two different media, taking a closed contour C of width l extending slightly into the material on either side of interface.

$$\vec{E}_2^{above} \cdot \vec{\ell} - \vec{E}_1^{below} \cdot \vec{\ell} = -\frac{d}{dt} \oint_s \vec{B} \cdot d\vec{a} = 0$$

(in limit area of contour loop $\rightarrow 0$, magnetic flux enclosed $\rightarrow 0$)

Since:
$$\vec{D} = \varepsilon_o \vec{E} + \vec{P}$$
 And: $\varepsilon_o \vec{E} = \vec{D} - \vec{P}$

<u>Thus</u>: $\left(\vec{E}_{2}^{above} \cdot \vec{\ell} - \vec{E}_{1}^{below} \cdot \vec{\ell}\right) = \left(\vec{D}_{2}^{above} \cdot \vec{\ell} - \vec{D}_{1}^{below} \cdot \vec{\ell}\right) - \left(\vec{P}_{2}^{above} \cdot \vec{\ell} - \vec{P}_{1}^{below} \cdot \vec{\ell}\right) = 0$

In limit area of contour loop $\rightarrow 0$ magnetic flux enclosed $\rightarrow 0$

$$\Rightarrow \left[\vec{D}_{2}^{\parallel} - \vec{D}_{1}^{\parallel} _{above} below \right] = \left(\vec{P}_{2}^{\parallel} - \vec{P}_{1}^{\parallel} _{below} \right) \quad (at interface)$$

4) Finally, for Ampere's Law: $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{o} \left(I_{TOT}^{encl} + I_{D}^{encl} \right)$

🕇 bound

JS m

$$\vec{B}_{2}^{above} \cdot \vec{\ell} - \vec{B}_{1}^{below} \cdot \vec{\ell} = \mu_{o} I_{TOT}^{encl} + \mu_{o} I_{D}^{encl}$$

$$I_{D}^{encl} = \int_{S} \vec{J}_{D} \cdot d\vec{a} = \varepsilon_{o} \int_{S} \frac{\partial \vec{E}}{\partial t} \cdot d\vec{a}$$

$$I_{D}^{encl} = I_{free}^{encl} + I_{bound}^{encl} + I_{P_{bound}}^{encl}$$

$$I_{P_{bound}}^{encl} = \int_{S} \vec{J}_{P_{bound}} \cdot d\vec{a} = \int_{S} \frac{\partial \vec{P}}{\partial t} \cdot d\vec{a}$$

$$I_{P_{bound}}^{encl} = \int_{S} \vec{J}_{P_{bound}} \cdot d\vec{a} = \int_{S} \frac{\partial \vec{P}}{\partial t} \cdot d\vec{a}$$

JS

Where I_{TOT}^{encl} = TOTAL current (free + bound + polarization) passing through enclosing Amperian loop contour C No volume current density $\vec{J}_{TOT}, \vec{J}_{free}, \vec{J}_{bound}^{m}$ or \vec{J}_{p} contributes to I_{TOT}^{encl} in the limit area of contour loop $\rightarrow 0$, however a surface current $\vec{K}_{TOT}, \vec{K}_{free}, \vec{K}_{bound}^{m} = \vec{M} \times \hat{n}$ can contribute!

In the limit that the enclosing Amperian loop contour C shrinks to zero height above/below interface- the enclosed area of loop contour $\rightarrow 0$,

Then:
$$I_D^{encl} = \varepsilon_o \int_s \frac{\partial \bar{E}}{\partial t} \cdot d\bar{a} = \varepsilon_o \frac{d}{dt} \left[\int_s \bar{E} \cdot d\bar{a} \right] = \varepsilon \frac{d\Phi_E}{dt} \to 0$$

 $(\Phi_E \equiv \int_s \bar{E} \cdot d\bar{a} = \text{enclosed flux of electric field lines})$

Similarly:

y: $I_{P_{bound}}^{ancl} = \int_{S} \frac{\partial P}{\partial t} \cdot d\vec{a} = \frac{d}{dt} \left[\int_{S} \vec{P} \cdot d\vec{a} \right] = \frac{d\Phi_{P}}{dt} \rightarrow 0$ $(\Phi_{P} \equiv \int_{S} \vec{P} \cdot d\vec{a} = \text{enclosed flux of electric polarization field lines})$

If \hat{n} is unit normal/perpendicular to interface, note that $(\hat{n} \times \vec{\ell})$ is normal/perpendicular to plane of the Amperian loop contour.

$$\begin{split} I_{TOT}^{ancl} &= \vec{K}_{TOT} \cdot \left(\hat{n} \times \vec{\ell} \right) = \left(\vec{K}_{TOT} \times \hat{n} \right) \cdot \vec{\ell} & \text{Using:} \quad \vec{A} \cdot \left(\vec{B} \times \vec{C} \right) = \vec{B} \cdot \left(\vec{C} \times \vec{A} \right) \\ I_{free}^{ancl} &= \vec{K}_{free} \cdot \left(\hat{n} \times \vec{\ell} \right) = \left(\vec{K}_{free} \times \hat{n} \right) \cdot \vec{\ell} & = \vec{C} \cdot \left(\vec{A} \times \vec{B} \right) \\ I_{bound}^{ancl} &= \vec{K}_{bound} \cdot \left(\hat{n} \times \vec{\ell} \right) = \left(\vec{K}_{bound}^{m} \times \hat{n} \right) \cdot \vec{\ell} & \left\{ = \left(\vec{A} \times \vec{B} \right) \cdot \vec{C} \right\} \\ I_{TOT}^{ancl} &= I_{free} + I_{bound} & \vec{K}_{TOT}^{ancl} = \vec{K}_{free} + \vec{K}_{bound} \end{split}$$

In the limit that the enclosing Amperian loop contour C (of width l) shrinks to zero height above/below interface, causing area of enclosed loop contour $\rightarrow 0$, then:

$$\vec{B}_{2}^{above} \cdot \vec{\ell} - \vec{B}_{1}^{below} \cdot \vec{\ell} = \mu_{o} I_{TOT}^{encl} + \underbrace{\mu_{o}}^{e} I_{D}^{encl} = \mu_{o} I_{TOT}^{encl} = \left(\vec{K}_{TOT} \times \hat{n}\right) \cdot \vec{\ell}$$

$$B_{2}^{\parallel} - B_{1}^{\parallel} = \mu_{o} \vec{K}_{TOT} \times \hat{n} = \mu_{o} \left(\vec{K}_{free} + \vec{K}_{bound}^{m}\right) \times \hat{n} \quad (at interface)$$

$$since: \quad \vec{H} = \frac{1}{\mu_{o}} \vec{B} - \vec{M} \quad and: \quad \frac{1}{\mu_{o}} \vec{B} = \vec{H} + \vec{M} \quad then:$$

$$\frac{1}{\mu_{o}} \left(\vec{B}_{2}^{above} \cdot \vec{\ell} - \vec{B}_{1}^{below} \cdot \vec{\ell}\right) = \left(\vec{H}_{2}^{above} \cdot \vec{\ell} - \vec{H}_{1}^{below} \cdot \vec{\ell}\right) + \left(\vec{M}_{2}^{above} \cdot \vec{\ell} - \vec{M}_{1}^{below} \cdot \vec{\ell}\right) = \left[\left(\vec{K}_{free} \times \hat{n}\right) + \left(\vec{K}_{bound} \times \hat{n}\right)\right]$$

$$(at interface)$$

- **||-** components of **B** are discontinuous at interface by $\mu_o \vec{K}_{TOT} \times \hat{n}$
- **||-** components of **H** are discontinuous at interface by $\vec{K}_{free} \times \hat{n}$
- $\|- \begin{array}{c} \text{components of } \mathbf{M} \text{ are discontinuous at interface } \vec{K}_{bound}^{m} \times \hat{n} \\ \text{by} \end{array}$

If $\vec{B} = \vec{\nabla} \times \vec{A}$

where *A* is the magnetic vector potential - then:

$$\left(\frac{1}{\mu_0}\right) \begin{bmatrix} B_2^{\parallel} & -B_1^{\parallel} \\ above & below \end{bmatrix} = \vec{K}_{TOT} \times \hat{n} \quad (\text{at interface}) \text{ is equivalent to} \\ \left(\frac{1}{\mu_o}\right) \left(\frac{\partial \vec{A}_2^{above}}{\partial n} - \frac{\partial \vec{A}_1^{below}}{\partial n}\right) \Big|_{\text{interface}} = -\vec{K}_{TOT} \quad (\text{at interface})$$

For linear magnetic media:

$$\vec{B} = \mu \vec{H}$$
 or: $\vec{H} = \frac{1}{\mu} \vec{B}$

Potential Formulation of Electrodynamics 1

- In electrostatic
- $\vec{\nabla} \times \vec{E}(\vec{r},t) = 0$ $\vec{E}(\vec{r},t) = -\vec{\nabla}V(\vec{r},t)$ In electrodynamics $\vec{\nabla} \times \vec{E}(\vec{r},t) \neq 0$

But

 $\vec{\nabla} \cdot \vec{B}(\vec{r},t) = 0$

$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t)$$

Putting this in Faraday's Law

$$\vec{\nabla} \times \vec{E}(\vec{r},t) = -\vec{\nabla} \times \left(\frac{\partial \vec{A}(\vec{r},t)}{\partial t}\right)$$

$$\vec{\nabla} \times \left[\vec{E}(\vec{r},t) + \frac{\partial \vec{A}(\vec{r},t)}{\partial t} \right] = 0$$

$$\left[\vec{E}(\vec{r},t) + \frac{\partial \vec{A}(\vec{r},t)}{\partial t}\right] \equiv -\vec{\nabla}V(\vec{r},t)$$

$$\vec{E}(\vec{r},t) = -\vec{\nabla}V(\vec{r},t) - \frac{\partial\vec{A}(\vec{r},t)}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B}(\vec{r},t) = \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{A}(\vec{r},t)\right)$$

and from

$$\vec{\nabla} \times \vec{E}(\vec{r},t) = -\vec{\nabla} \times \vec{\nabla} V(\vec{r},t) - \frac{\partial}{\partial t} \vec{\nabla} \times \vec{A}(\vec{r},t)$$

$$\vec{\nabla} \times \vec{E}(\vec{r},t) = 0 - \frac{\partial \vec{B}(\vec{r},t)}{\partial t}$$

Explain Maxwell's ii and iii Equations

Now consider Maxwell's i and iv equations

As
$$\vec{\nabla} \cdot \vec{E}(\vec{r},t) = \frac{1}{\varepsilon_o} \rho_{tot}(\vec{r},t)$$
 Gauss's Law

$$\left|\vec{\nabla} \cdot \left[-\vec{\nabla} V\left(\vec{r},t\right) - \frac{\partial \vec{A}\left(\vec{r},t\right)}{\partial t}\right] = \frac{1}{\varepsilon_o} \rho_{tot}\left(\vec{r},t\right)$$

$$\nabla^2 V(\vec{r},t) + \frac{\partial}{\partial t} \left(\vec{\nabla} \cdot \vec{A}(\vec{r},t) \right) = -\frac{1}{\varepsilon_o} \rho_{tot} \left(\vec{r},t \right)$$

This replaces Poisson's Equation in electrodynamics 3-Feb-14

Now consider Ampere's Law:

$$\vec{\nabla} \times \vec{B}(\vec{r},t) = \mu_o \vec{J}_{tot}(\vec{r},t) + \mu_o \varepsilon_o \frac{\partial \vec{E}(\vec{r},t)}{\partial t}$$

with:
$$\vec{E}(\vec{r},t) = -\vec{\nabla}V(\vec{r},t) - \frac{\partial\vec{A}(\vec{r},t)}{\partial t}$$

and:
$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t)$$

$$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{A}(\vec{r},t)\right) = \mu_o \vec{J}_{tot}(\vec{r},t) - \mu_o \varepsilon_o \vec{\nabla} \left(\frac{\partial V(\vec{r},t)}{\partial t}\right) - \mu_o \varepsilon_o \frac{\partial^2 \vec{A}(\vec{r},t)}{\partial t^2}$$

Using vector identity:

$$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{A} \right) \equiv \vec{\nabla} \left(\vec{\nabla} \cdot \vec{A} \right) - \nabla^2 \vec{A}$$

Re-arranging:

$$\left(\nabla^{2}\vec{A}(\vec{r},t)-\mu_{o}\varepsilon_{o}\frac{\partial^{2}\vec{A}(\vec{r},t)}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla}\cdot\vec{A}(\vec{r},t)+\mu_{o}\varepsilon_{o}\frac{\partial V(\vec{r},t)}{\partial t}\right)=-\mu_{o}\vec{J}_{tot}(\vec{r},t)$$

These equation carry all information in Maxwell's Equations

$$\nabla^2 V(\vec{r},t) + \frac{\partial}{\partial t} \left(\vec{\nabla} \cdot \vec{A}(\vec{r},t) \right) = -\frac{1}{\varepsilon_o} \rho_{tot}(\vec{r},t)$$

$$\left(\nabla^{2}\vec{A}(\vec{r},t) - \mu_{o}\varepsilon_{o}\frac{\partial^{2}\vec{A}(\vec{r},t)}{\partial t^{2}}\right) - \vec{\nabla}\left(\vec{\nabla}\cdot\vec{A}(\vec{r},t) + \mu_{o}\varepsilon_{o}\frac{\partial V(\vec{r},t)}{\partial t}\right) = -\mu_{o}\vec{J}_{tot}(\vec{r},t)$$

Four Maxwell's equations reduced to two equations using potential formulation. Potentials V and A are not uniquely defined by above equations.

Suppose we have e.g. two sets of potentials $\{V(\vec{r},t), \vec{A}(\vec{r},t)\}$ and $\{V'(\vec{r},t), \vec{A}'(\vec{r},t)\}$ That correspond to the same physical fields $\vec{E}(\vec{r},t)$ and $\vec{B}(\vec{r},t)$

These two sets of potentials must be related to each other by:

$$\vec{A}'(\vec{r},t) = \vec{A}(\vec{r},t) + \vec{\alpha}(\vec{r},t)$$

and

$$V'(\vec{r},t) = V(\vec{r},t) + \beta(\vec{r},t)$$

Because:

$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t) = \vec{\nabla} \times \vec{A}'(\vec{r},t) = \vec{\nabla} \times \left(\vec{A}(\vec{r},t) + \vec{\alpha}(\vec{r},t)\right)$$

 $\vec{\nabla} \times \vec{\alpha}(\vec{r},t) \equiv 0$

But if:
$$(\vec{\nabla} \times \vec{\alpha}(\vec{r},t)) = 0$$
, then since $(\vec{\nabla} \times \vec{\nabla} f(\vec{r},t)) \equiv 0$

we can always write
$$\vec{\alpha}(\vec{r},t) \equiv \vec{\nabla}\lambda(\vec{r},t)$$

And if:

$$\vec{E}(\vec{r},t) = -\vec{\nabla}V(\vec{r},t) - \frac{\partial\vec{A}(\vec{r},t)}{\partial t}$$
$$= -\vec{\nabla}V'(\vec{r},t) - \frac{\partial\vec{A}'(\vec{r},t)}{\partial t} = -\vec{\nabla}V(\vec{r},t) - \vec{\nabla}\beta(\vec{r},t) - \frac{\partial\vec{A}(\vec{r},t)}{\partial t} - \frac{\partial\vec{\alpha}(\vec{r},t)}{\partial t}$$

Then we see that

$$\vec{\nabla}\beta(\vec{r},t) + \frac{\partial\vec{\alpha}(\vec{r},t)}{\partial t} = 0$$

But:

$$\vec{\alpha}(\vec{r},t) \equiv \vec{\nabla}\lambda(\vec{r},t) \implies \vec{\nabla}\beta(\vec{r},t) + \frac{\partial\left(\vec{\nabla}\lambda(\vec{r},t)\right)}{\partial t} = 0$$

$$\overrightarrow{\nabla}\left(\beta(\vec{r},t) + \frac{\partial\lambda(\vec{r},t)}{\partial t}\right) = 0$$

which must hold for arbitrary all space-time points (\vec{r},t)

$$\beta(\vec{r},t) + \frac{\partial \lambda(\vec{r},t)}{\partial t} = 0$$

Note that

$$\vec{\nabla}\left(\beta(\vec{r},t) + \frac{\partial\lambda(\vec{r},t)}{\partial t}\right) = 0$$

can also be satisfied if

$$\beta(\vec{r},t) + \frac{\partial \lambda(\vec{r},t)}{\partial t} = \kappa(t)$$

i.e. the scalar function κ (t)depends only on time, t. Thus we see that: $\beta(\vec{r},t) = -\frac{\partial \lambda(\vec{r},t)}{\partial t} + \kappa(t)$

But we can always "absorb" κ (t)

$$\lambda'(\vec{r},t) = \lambda(\vec{r},t) + \int_{t'=0}^{t'=t} \kappa(t) dt'$$

Note also that since the scalar function κ (t) depends only on time t, this will not affect the gradient of $\vec{\nabla}\lambda(\vec{r},t)$ in any way, and hence $\vec{\alpha}(\vec{r},t) = \vec{\nabla}\lambda(\vec{r},t)$ is completely unaffected by this! $\vec{A}'(\vec{r},t) = \vec{A}(\vec{r},t) + \alpha(\vec{r},t) = \vec{A}(\vec{r},t) + \vec{\nabla}\lambda(\vec{r},t)$ Thus: or $\vec{\nabla}\lambda(\vec{r},t) = \vec{A}'(\vec{r},t) - \vec{A}(\vec{r},t) \equiv \Delta\vec{A}(\vec{r},t)$ $V'(\vec{r},t) = V(\vec{r},t) - \frac{\partial \lambda(\vec{r},t)}{\partial t}$ Such changes in V and A are called Gauge And: **Transformations** $-\frac{\partial\lambda(\vec{r},t)}{\partial t} = V'(\vec{r},t) - V(\vec{r},t) \equiv \Delta V(\vec{r},t)$ or

Coulomb's and Lorentz Gauges

Coulomb Gauge

$$\vec{\nabla} \cdot \vec{A}(\vec{r},t) = 0$$

Using this we get
$$\nabla^2 V(\vec{r},t) = -\frac{1}{\varepsilon_o} \rho_{tot}(\vec{r},t)$$

It is Poisson's equation, setting $V(\vec{r} = \infty, t) = 0$

we get
$$V(\vec{r},t) = \frac{1}{4\pi\varepsilon_o} \int_{\nu'} \frac{\rho_{tot}(\vec{r}',t)}{r} d\tau' \qquad \vec{r} \equiv \vec{r} - \vec{r}'$$
$$\vec{r} = |\vec{r}| = \sqrt{r^2 - r'^2}$$

Scalar potential is easy to calculate in Coulomb's gauge but vector potential is difficult to calculate

Coulomb's Gauge

The differential equations for V and A in Coulombs gauge reads

$$\nabla^2 V(\vec{r},t) = -\frac{1}{\varepsilon_o} \rho_{TOT}(\vec{r},t)$$

$$\nabla^{2}\vec{A}(\vec{r},t) - \mu_{o}\varepsilon_{o}\frac{\partial^{2}\vec{A}(\vec{r},t)}{\partial t^{2}} = -\mu_{o}\vec{J}_{tot}(\vec{r},t) + \mu_{o}\varepsilon_{o}\vec{\nabla}\left(\frac{\partial V(\vec{r},t)}{\partial t}\right)$$

Lorentz Gauge

The Lorentz gauge:

$$\vec{\nabla} \cdot \vec{A}(\vec{r},t) = -\mu_o \varepsilon_o \frac{\partial V(\vec{r},t)}{\partial t}$$

This is design to eliminate the middle term in eqn. for A

$$\nabla^2 \vec{A}(\vec{r},t) - \mu_o \varepsilon_o \frac{\partial^2 \vec{A}(\vec{r},t)}{\partial t^2} = -\mu_o \vec{J}_{tot}(\vec{r},t)$$

And equation for V will become

$$\left(\nabla^2 V(\vec{r},t) - \varepsilon_o \mu_o \frac{\partial^2 V(\vec{r},t)}{\partial t^2}\right) = -\frac{1}{\varepsilon_o} \rho_{tot}(\vec{r},t)$$

Lorentz Gauge

The Lorentz gauge treats V and A on equal footing. The same differential operator

$$\Box^{2} \equiv \nabla^{2} - \varepsilon_{o} \mu_{o} \frac{\partial^{2}}{\partial t^{2}} = \nabla^{2} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}$$

called the d'Alembertian

$$\Box^2 \vec{A}(\vec{r},t) = -\mu_o \vec{J}_{tot}(\vec{r},t)$$

and

$$\Box^2 V(\vec{r},t) = -\frac{1}{\varepsilon_o} \rho_{tot}(\vec{r},t)$$

ELECTROMAGNETIC WAVES IN VACUUM

Imrana Ashraf Zahid Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Fundamentals of Photonics- Theory, Devices and Applications. 3rd February - 7th February 2014

ELECTROMAGNETIC WAVES IN VACUUM

> THE WAVE EQUATION

In regions of free space (i.e. the vacuum) - where no electric charges - no electric currents and no matter of any kind are present - Maxwell's equations (in differential form) are:

1)
$$\vec{\nabla} \cdot \vec{E}(\vec{r},t) = 0$$

2) $\vec{\nabla} \cdot \vec{B}(\vec{r},t) = 0$
3) $\vec{\nabla} \times \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t}$
4) $\vec{\nabla} \times \vec{B}(\vec{r},t) = \mu_o \varepsilon_o \frac{\partial \vec{E}(\vec{r},t)}{\partial t} = \frac{1}{c^2} \frac{\partial \vec{E}(\vec{r},t)}{\partial t}$
 $\vec{C}^2 = 1/\varepsilon_o \mu_o$

Set of coupled first-order partial differential equations

ELECTROMAGNETIC WAVES IN VACUUM . . .

We can de-couple Maxwell's equations -by applying the curl operator to equations 3) and 4):

$$\begin{split} \vec{\nabla} \times \left(\vec{\nabla} \times \vec{E} \right) &= \vec{\nabla} \times \left(-\frac{\partial \vec{B}}{\partial t} \right) \\ &= \vec{\nabla} \left(\vec{\nabla} \cdot \vec{E} \right) - \nabla^2 \vec{E} = -\frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{B} \right) \\ &= \vec{\nabla} \left(\vec{\nabla} \cdot \vec{E} \right) - \nabla^2 \vec{E} = -\frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{B} \right) \\ &= -\nabla^2 \vec{E} = -\frac{\partial}{\partial t} \left(\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \right) \\ &= \left[\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \right] \\ &= \left[\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \right] \\ \end{split}$$

ELECTROMAGNETIC WAVES IN VACUUM . . .

- > These are three-dimensional de-coupled wave equations.
- Have exactly the same structure both are linear, homogeneous, 2nd order differential equations.
- Remember that each of the above equations is explicitly dependent on space and time,

i.e.
$$\vec{E} = \vec{E}(\vec{r},t)$$
 and $\vec{B} = \vec{B}(\vec{r},t)$:

$$\nabla^{2}\vec{E}(\vec{r},t) - \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}(\vec{r},t)}{\partial t^{2}} = 0$$

$$\nabla^2 \vec{B}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2 \vec{B}(\vec{r},t)}{\partial t^2} = 0$$

ELECTROMAGNETIC WAVES IN VACUUM . . .

Maxwell's equations implies that empty space – the vacuum (not empty at the microscopic scale) – supports the propagation of (macroscopic) electromagnetic waves - which propagate at the speed of light (in vacuum):

$$c = 1/\sqrt{\varepsilon_o \mu_o} = 3 \times 10^8 \text{ m/s}$$

Monochromatic EM plane waves propagating in free space are waves consisting of a single frequency **f**, wavelength $\lambda = cf$, angular frequency $\omega = 2\pi f$ and wave-number $k = 2\pi / \lambda$ - propagate with speed $c = f\lambda = \omega k$.

In the visible region of the EM spectrum [$\{\sim 380 \text{ nm (violet}\} \le \lambda \le \sim 780 \text{ nm (red)}\}$ - EM light waves of a given frequency or wavelength are perceived by the human eye as having a specific- single colour. Single- frequency EM waves are called mono-chromatic.

EM waves that propagate e.g. in the $+z^{2}$ direction but which additionally have no explicit x- or y-dependence are known as plane waves- for a given time t the wave fronts of the EM wave lie in a plane- \perp to the z-axis,

There also exist spherical EM waves – emitted from a point source – the wave-fronts associated with these EM waves are spherical - and thus do not lie in a plane \perp to the direction of propagation of the EM wave

Portion of a spherical wavefront associated with a spherical wave

If the point source is infinitely far away from observer- then a spherical wave \rightarrow plane wave in this limit, (the radius of curvature $\rightarrow \infty$); a spherical surface becomes planar as $R_C \rightarrow \infty$.

Criterion for a plane wave: $\lambda \ll R_c$

Monochromatic plane waves associated with \vec{E} and \vec{B}

$$\vec{\tilde{B}}(z,t) = \vec{\tilde{B}}_{o}e^{i(kz-\omega t)}$$
3-Feb-14

$$\vec{\tilde{E}}(z,t) = \vec{\tilde{E}}_o e^{i(kz - \omega t)}$$

n.b. The *real*, *physical* (instantaneous) fields are:

$$\vec{E}(\vec{r},t) \equiv \operatorname{Re}\left(\vec{\tilde{E}}(\vec{r},t)\right)$$
$$\vec{B}(\vec{r},t) \equiv \operatorname{Re}\left(\vec{\tilde{B}}(\vec{r},t)\right)$$

<u>Very</u> important to keep in mind!!

Maxwell's equations for free space impose additional constraints on \vec{E}_{o} and \vec{B}_{o}

Since:
$$\nabla \cdot E = 0$$
 and: $\nabla \cdot B = 0$
= $\operatorname{Re}\left(\vec{\nabla} \cdot \vec{\tilde{E}}\right) = 0$ = $\operatorname{Re}\left(\vec{\nabla} \cdot \vec{\tilde{B}}\right) = 0$

These two relations can only be satisfied

$$\forall (\vec{r},t) \text{ if } \vec{\nabla} \cdot \vec{\tilde{E}} = 0 \ \forall (\vec{r},t) \text{ and } \vec{\nabla} \cdot \vec{\tilde{B}} = 0 \ \forall (\vec{r},t)$$

a

a

In Cartesian coordinates:
$$\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}$$

Thus: $(\vec{\nabla} \cdot \vec{\tilde{E}}) = 0$ and $(\vec{\nabla} \cdot \vec{\tilde{B}}) = 0$ become:

a

$$\left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right) \cdot \left(\vec{\tilde{E}}_{o}e^{i(kz-\omega t)}\right) = 0 \quad \text{and} \qquad \left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right) \cdot \left(\vec{\tilde{E}}_{o}e^{i(kz-\omega t)}\right) = 0$$

Now suppose we do allow:

$$\vec{\tilde{E}}_{o} = \underbrace{\left(E_{ox}\hat{x} + E_{oy}\hat{y} + E_{oz}\hat{z}\right)}_{\text{polarization in }\hat{x} - \hat{y} - \hat{z} (3-D)} e^{i\delta} \equiv \vec{E}_{o}e^{i\delta}$$

$$\vec{\tilde{B}}_{o} = \underbrace{\left(B_{ox}\hat{x} + B_{oy}\hat{y} + B_{oz}\hat{z}\right)}_{\text{polarization in }\hat{x} - \hat{y} - \hat{z} (3-D)} e^{i\delta} \equiv \vec{B}_{o}e^{i\delta}$$

$$\underbrace{\left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)}_{\text{polarization in }\hat{x} - \hat{y} - \hat{z} (3-D)} e^{i\delta}e^{i(kz - \omega t)} = 0$$

$$\underbrace{\left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)}_{\left(B_{ox}\hat{x} + B_{oy}\hat{y} + B_{oz}\hat{z}\right)} e^{i\delta}e^{i(kz - \omega t)} = 0$$

Then

 E_{ox} , E_{oy} , E_{oz} = Amplitudes (constants) of the electric field components in x, y, z directions respectively. B_{ox} , B_{oy} , B_{oz} =Amplitudes (constants) of the magnetic field components in x, y, z directions respectively.

$$\frac{\partial}{\partial x} \hat{x} \cdot E_{ox} \hat{x} e^{i(kz - \omega t)} e^{i\delta} = 0$$
$$\frac{\partial}{\partial y} \hat{y} \cdot E_{oy} \hat{y} e^{i(kz - \omega t)} e^{i\delta} = 0$$

$$\frac{\partial}{\partial x}\hat{x} \cdot B_{ox}\hat{x}e^{i(kz-\omega t)}e^{i\delta} = 0$$
$$\frac{\partial}{\partial y}\hat{y} \cdot B_{oy}\hat{y}e^{i(kz-\omega t)}e^{i\delta} = 0$$

$$\frac{\partial}{\partial z} \left(e^{az} \right) = a e^{az}$$

$$\frac{\partial}{\partial z} \hat{z} \cdot E_{oz} \hat{z} e^{i(kz - \omega t)} e^{i\delta} = ikE_{oz} e^{i(kz - \omega t)} e^{i\delta} = 0 \quad \Leftarrow \quad \text{true iff} \quad E_{oz} \equiv 0 \quad !!!$$

$$\frac{\partial}{\partial z} \hat{z} \cdot B_{oz} \hat{z} e^{i(kz - \omega t)} e^{i\delta} = ikE_{oz} e^{i(kz - \omega t)} e^{i\delta} = 0 \quad \Leftarrow \quad \text{true iff} \quad B_{oz} \equiv 0 \quad !!!$$

Maxwell's equations additionally impose the restriction that an electromagnetic plane wave cannot have any component of **E** or **B** \parallel to (or anti- \parallel to) the propagation direction (in this case here, the *z* -direction)

>Another way of stating this is that an EM wave cannot have any longitudinal components of **E** and **B** (i.e. components of **E** and **B** lying along the propagation direction).

- ➤ Thus, Maxwell's equations additionally tell us that an EM wave is a purely transverse wave (at least for propagation in free space) – the components of E and B must be ⊥ to propagation direction.
- The plane of polarization of an EM wave is defined (by convention) to be parallel to E.

Maxwell's equations impose another restriction on the allowed form of E and B for an EM wave:

$$\vec{\nabla} \times \vec{\tilde{E}} = \left(\frac{\partial \tilde{\tilde{E}}_{x}}{\partial y} - \frac{\partial \tilde{E}_{y}}{\partial z} \right) \hat{x} + \left(\frac{\partial \tilde{E}_{x}}{\partial z} - \frac{\partial \tilde{\tilde{E}}_{y}}{\partial x} \right) \hat{y} + \left(\frac{\partial \tilde{\tilde{E}}_{y}}{\partial x} - \frac{\partial \tilde{\tilde{E}}_{y}}{\partial y} \right) \hat{z} = -\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x} - \frac{\partial \tilde{B}_{y}}{\partial t} \hat{y} - \frac{\partial \tilde{\tilde{B}}_{z}}{\partial t} \hat{z}$$

$$\vec{\nabla} \times \tilde{B} = \left(\frac{\partial \tilde{\tilde{B}}_{z}}{\partial y} - \frac{\partial \tilde{B}_{y}}{\partial z} \right) \hat{x} + \left(\frac{\partial \tilde{B}_{x}}{\partial z} - \frac{\partial \tilde{\tilde{B}}_{y}}{\partial x} \right) \hat{y} + \left(\frac{\partial \tilde{\tilde{B}}_{y}}{\partial x} - \frac{\partial \tilde{\tilde{B}}_{y}}{\partial y} \right) \hat{z} = \frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x} + \frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y} + \frac{1}{c^{2}} \frac{\partial \tilde{\tilde{E}}_{z}}{\partial t} \hat{z}$$

$$\vec{\tilde{E}} = \tilde{E}_x \hat{x} + \tilde{E}_y \hat{y} + \vec{\tilde{E}}_z \hat{z} = \left(E_{ox} \hat{x} + E_{oy} \hat{y} + \vec{E}_{oz} \hat{z} \right) e^{i(kz - \omega t)} e^{i\delta}$$
$$\vec{\tilde{B}} = \tilde{B}_x \hat{x} + \tilde{B}_y \hat{y} + \vec{\tilde{B}}_z \hat{z} = \left(B_{ox} \hat{x} + B_{oy} \hat{y} + \vec{B}_{oz} \hat{z} \right) e^{i(kz - \omega t)} e^{i\delta}$$

$$\vec{\tilde{E}} = \tilde{E}_x \hat{x} + \tilde{E}_y \hat{y} = \left(E_{ox} \hat{x} + E_{oy} \hat{y}\right) e^{i(kz - \omega t)} e^{i\delta}$$
$$\vec{\tilde{B}} = \tilde{B}_x \hat{x} + \tilde{B}_y \hat{y} = \left(B_{ox} \hat{x} + B_{oy} \hat{y}\right) e^{i(kz - \omega t)} e^{i\delta}$$

$$\begin{vmatrix} \vec{\nabla} \times \vec{\tilde{E}} &= -\frac{\partial \tilde{E}_y}{\partial z} \hat{x} + \frac{\partial \tilde{E}_x}{\partial z} \hat{y} = -\frac{\partial \tilde{B}_x}{\partial t} \hat{x} - \frac{\partial \tilde{B}_y}{\partial t} \hat{y} \end{vmatrix}$$
Can only be satisfied / can only be true *iff* the \hat{x} and \hat{y} relations are $\hat{E} = -\frac{\partial \tilde{B}_y}{\partial z} \hat{x} + \frac{\partial \tilde{B}_x}{\partial z} \hat{y} = \frac{1}{c^2} \frac{\partial \tilde{E}_x}{\partial t} \hat{x} + \frac{1}{c^2} \frac{\partial \tilde{E}_y}{\partial t} \hat{y} \end{vmatrix}$
Can only be satisfied / can only be true *iff* the \hat{x} and \hat{y} relations are separately / independently satisfied $\forall (\vec{r}, t)!$

 $\forall (\vec{r},t)!$

From (2):

$$ik\tilde{E}_{ox} = +i\omega B_{oy}$$
 \Rightarrow $E_{ox} = +\left(\frac{\omega}{k}\right)B_{oy}$ or: $B_{oy} = +\left(\frac{k}{\omega}\right)E_{ox}$

From (3):
$$-ikB_{oy} = -\frac{1}{c^2}i\omega E_{ox} \Rightarrow B_{oy} = +\frac{1}{c^2}\left(\frac{\omega}{k}\right)E_{ox}$$

From (4):
$$ikB_{ox} = -\frac{1}{c^2}i\omega E_{oy} \implies B_{ox} = -\frac{1}{c^2}\left(\frac{\omega}{k}\right)E_{oy}$$

$$c = f\lambda = (2\pi f) \left(\frac{\lambda}{2\pi}\right) = \left(\frac{\omega}{k}\right) \qquad \frac{1}{c} = \left(\frac{k}{\omega}\right) \qquad \left(k = \frac{2\pi}{\lambda}\right)$$

Actually we have only two independent relations:

Very Useful Table:

$$\begin{array}{ccc} \hat{x} \times \hat{y} = \hat{z} & \hat{y} \times \hat{x} = -\hat{z} \\ \hat{y} \times \hat{z} = \hat{x} & \hat{z} \times \hat{y} = -\hat{x} \\ \hat{z} \times \hat{x} = \hat{y} & \hat{x} \times \hat{z} = -\hat{y} \end{array}$$

Two relations can be written compactly into one relation:

$$\vec{\tilde{B}}_{o} = \frac{1}{c} \left(\hat{z} \times \vec{\tilde{E}}_{o} \right)$$

Physically this relation states that E and B are:
> in phase with each other.
> mutually perpendicular to each other - (E⊥B)⊥ z[^]

MONOCHROMATIC EM PLANE WAVES . . .

The **E** and **B** fields associated with this monochromatic plane EM wave are purely transverse { n.b. this is as also required by relativity at the microscopic level – for the extreme relativistic particles – the (massless) real photons travelling at the speed of light c that make up the macroscopic monochromatic plane EM wave.}

The real amplitudes of E and B are related to each other by:

$$B_o = \frac{1}{c} E_o$$
 with $B_o = \sqrt{B_{ox}^2 + B_{oy}^2}$ and $E_o = \sqrt{E_{ox}^2 + E_{oy}^2}$

Instantaneous Poynting's Vector for a linearly polarized EM wave

$$\vec{S}(z,t) = \frac{1}{\mu_o} \vec{E}(z,t) \times \vec{B}(z,t) = \frac{1}{\mu_o} \operatorname{Re}\left\{\tilde{\vec{E}}(z,t)\right\} \times \operatorname{Re}\left\{\tilde{\vec{B}}(z,t)\right\}$$
$$\vec{S}(z,t) = \frac{1}{\mu_o} E_o B_o \cos^2\left(kz - \omega t + \delta\right) \underbrace{\left(\hat{x} \times \hat{y}\right)}_{=\hat{z}}$$
$$\vec{S}(z,t) = \frac{1}{\mu_o} E_o B_o \cos^2\left(kz - \omega t + \delta\right) \hat{z} \qquad \left(\frac{\operatorname{Watts}}{\operatorname{m}^2}\right)$$

 \Rightarrow EM Power flows in the direction of propagation of the EM wave (here, the +z[^] direction)

Instantaneous Poynting's Vector for a linearly polarized EM wave

This is the paradigm for a monochromatic plane wave. The wave as a whole is said to be polarized in the x direction (by convention, we use the direction of E to specify the polarization of an electromagnetic wave).

Instantaneous Energy & Linear Momentum & Angular Momentum in EM Waves

Instantaneous Energy Density Associated with an *EM Wave*:

$$u_{EM}(\vec{r},t) = \frac{1}{2} \left(\varepsilon_o E^2(\vec{r},t) + \frac{1}{\mu_o} B^2(\vec{r},t) \right) = u_{elect}(\vec{r},t) + u_{mag}(\vec{r},t)$$

where
$$u_{elect}(\vec{r},t) = \frac{1}{2} \varepsilon_o E^2(\vec{r},t)$$

and
$$u_{mag}(\vec{r},t) = \frac{1}{2\mu_o} B^2(\vec{r},t) = \frac{1}{2} \varepsilon_o E^2(\vec{r},t)$$

Instantaneous Energy & Linear Momentum & Angular Momentum in EM Waves

$$B^2 = \frac{1}{c^2}E^2$$
 - EM waves in vacuum, and

$$\frac{1}{c^2} = \varepsilon_o \mu_o$$

$$u_{EM}(\vec{r},t) = \frac{1}{2} \left(\varepsilon_o E^2(\vec{r},t) + \frac{\varepsilon_o \mu_o}{\mu_o} E^2(\vec{r},t) \right) = \frac{1}{2} \left(\varepsilon_o E^2(\vec{r},t) + \varepsilon_o E^2(\vec{r},t) \right)$$

$$u_{EM}(\vec{r},t) = \varepsilon_o E^2(\vec{r},t) = \varepsilon_o E_o^2 \cos^2\left(\vec{k}\cdot\vec{r} - \omega t + \delta\right) \left(\frac{\text{Joules}}{\text{m}^3}\right)$$

 $u_{elect}(\vec{r},t) = u_{mag}(\vec{r},t)$ - EM waves propagating in the vacuum !!!!

Instantaneous Poynting's Vector Associated with an EM Wave

$$\vec{S}(\vec{r},t) = \frac{1}{\mu_o} \vec{E}(\vec{r},t) \times \vec{B}(\vec{r},t) = \frac{1}{\mu_o} \operatorname{Re}\left\{\tilde{\vec{E}}(z,t)\right\} \times \operatorname{Re}\left\{\tilde{\vec{B}}(z,t)\right\} \left(\frac{\operatorname{Watts}}{\operatorname{m}^2}\right)$$

For a linearly polarized monochromatic plane EM wave propagating in the vacuum,

$$\vec{S}(\vec{r},t) = c \left(\frac{\varepsilon_o \mu_o}{\mu_o}\right) E_o^2 \cos^2\left(kz - \omega t + \delta\right) \hat{z} = c\varepsilon_o E_o^2 \cos^2\left(kz - \omega t + \delta\right) \hat{z}$$

But
$$u_{EM}(\vec{r},t) = \varepsilon_o E^2(\vec{r},t) = \varepsilon_o E_o^2 \cos^2(kz - \omega t + \delta)$$

$$\vec{S}\left(\vec{r},t\right) = c u_{EM}\left(\vec{r},t\right) \hat{z}$$

Instantaneous Poynting's Vector Associated with an EM Wave

The propagation velocity of energy

$$\vec{v}_{prop} = c\hat{z}$$

Poynting's Vector = Energy Density * Propagation Velocity

$$\vec{S}\left(\vec{r},t\right) = u_{EM}\left(\vec{r},t\right)\vec{v}_{prop}$$

Instantaneous Linear Momentum Density Associated with an EM Wave:

$$\vec{\wp}_{EM}(\vec{r},t) = \varepsilon_o \mu_o \vec{S}(\vec{r},t) = \frac{1}{c^2} \vec{S}(\vec{r},t) \left(\frac{\text{kg}}{\text{m}^2 - \text{sec}}\right)$$

Instantaneous Linear Momentum Density Associated with an EM Wave

For linearly polarized monochromatic plane EM waves propagating in the vacuum:

$$\vec{\wp}_{EM} = \frac{1}{c^{\mathscr{I}}} \not c \varepsilon_o E_o^2 \cos^2 \left(kz - \omega t + \delta\right) \hat{z} = \frac{1}{c} \underbrace{\varepsilon_o E_o^2 \cos^2 \left(kz - \omega t + \delta\right)}_{=u_{EM}} \hat{z}$$

But:
$$u_{EM}(\vec{r},t) = \varepsilon_o E^2(\vec{r},t) = \varepsilon_o E_o^2 \cos^2(kz - \omega t + \delta)$$

$$\vec{\wp}_{EM}(\vec{r},t) = \varepsilon_o \mu_o \vec{S}(\vec{r},t) = \frac{1}{c^2} \vec{S}(\vec{r},t) = \frac{1}{c} u_{EM}(\vec{r},t) \hat{z} \left(\frac{\mathrm{kg}}{\mathrm{m}^2 - \mathrm{sec}}\right)$$

Instantaneous Angular Momentum Density Associated with an *EM wave*

$$\vec{\ell}_{EM}(\vec{r},t) = \vec{r} \times \vec{\wp}_{EM}(\vec{r},t) \left(\frac{\text{kg}}{\text{m-sec}}\right)$$

$$\vec{\wp}_{EM}(\vec{r},t) = \varepsilon_o \mu_o \vec{S}(\vec{r},t) = \frac{1}{c^2} \vec{S}(\vec{r},t) = \frac{1}{c} u_{EM}(\vec{r},t) \hat{z} \left(\frac{\text{kg}}{\text{m}^2 - \text{sec}}\right)$$

For an EM wave propagating in the $+z^{-}$ direction:

$$\vec{\ell}_{EM}(\vec{r},t) = \frac{1}{c^2} \vec{r} \times \vec{S}(\vec{r},t) = \frac{1}{c} u_{EM}(\vec{r},t)(\vec{r} \times \hat{z}) \left(\frac{\text{kg}}{\text{m-sec}}\right)$$
Depends on the choice of orig

115

Instantaneous Power Associated with an EM wave

The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing volume v (containing EM fields in the volume v) is:

$$P_{EM}(t) = \frac{\partial U_{EM}(t)}{\partial t} = \int_{v} \frac{\partial u_{EM}(\vec{r},t)}{\partial t} d\tau = -\oint_{s} \vec{S}(\vec{r},t) \cdot d\vec{a}$$

The instantaneous EM power crossing (imaginary) surface is:

$$P_{EM}(t) = -\int_{S} \vec{S}(\vec{r}, t) \cdot d\vec{a}_{\perp}$$

The instantaneous total EM energy contained in volume v

$$U_{EM}(t) = \int_{v} u_{EM}(\vec{r}, t) d\tau \quad \text{(Joules)}$$

Instantaneous Angular Momentum Density Associated with an *EM wave*

The instantaneous total EM linear momentum contained in the volume v is:

$$\vec{p}_{EM}(t) = \int_{v} \vec{\wp}_{EM}(\vec{r},t) d\tau \qquad \left(\frac{\text{kg-m}}{\text{sec}}\right)$$

The instantaneous total EM angular momentum contained in the volume v is:

$$\vec{\mathcal{L}}_{EM}(t) = \int_{v} \vec{\ell}_{EM}(\vec{r},t) d\tau$$

$$\left(\frac{\text{kg-m}^2}{\text{sec}}\right)$$

Usually we are not interested in knowing the instantaneous power P(t), energy / energy density, Poynting's vector, linear and angular momentum, *etc.*- because experimental measurements of these quantities are very often averages over many extremely fast cycles of oscillation. For example period of oscillation of light wave

$$\tau_{light} = 1/f_{light} \simeq \frac{1}{10^{15} \text{ cps}} = 10^{-15} \text{ sec/cycle} = 1 \text{ femto-sec})$$

We need time averaged expressions for each of these quantities - in order to compare directly with experimental data- for monochromatic plane EM light waves:

If we have an instantaneous physical quantity of the form:

 $Q(t) = Q_o \cos^2(\omega t)$

The time-average of Q(t) is defined as:

$$\left\langle Q(t)\right\rangle \equiv \left\langle Q\right\rangle = \frac{1}{\tau} \int_{t=0}^{t=\tau} Q(t) dt = \frac{Q_o}{\tau} \int_{t=0}^{t=\tau} \cos^2\left(\omega t\right) dt$$

The time average of the $\cos^2(\omega t)$ function:

$$\frac{1}{\tau}\int_{0}^{\tau}\cos^{2}\left(\omega t\right)dt = \frac{1}{\tau}\left[\frac{t}{2} + \frac{\sin 2\omega t}{4\omega}\right]_{t=0}^{t=\tau} = \frac{1}{2\tau}\left[\left(\tau - 0\right) + \left(\frac{\sin 2\omega \tau}{2\omega} - 0\right)\right] = \frac{1}{2\tau}\left[\tau + \frac{\sin 2\omega \tau}{2\omega}\right]$$

$$\omega \tau = 2\pi f \tau$$
 $f = 1/\tau$ $\omega \tau = 2\pi (\tau/\tau) = 2\pi$ $\sin(\omega \tau) = \sin(2\pi) = 0$

$$\frac{1}{\tau} \int_0^\tau \cos^2(\omega t) dt = \frac{1}{2\pi} \left[\not\tau \right] = \frac{1}{2} \qquad \left\langle Q(t) \right\rangle = \left\langle Q \right\rangle = \frac{1}{2} Q_o$$

Thus, the time-averaged quantities associated with an EM wave propagating in free space are: 3-Feb-14

Intensity of an EM wave:

$$I(\vec{r}) \equiv \langle S(\vec{r},t) \rangle = \langle \left| \vec{S}(\vec{r},t) \right| \rangle = c \langle u_{EM}(\vec{r},t) \rangle = \frac{1}{2} c \varepsilon_o E_o^2 \left| \left(\frac{\text{Watts}}{\text{m}^2} \right) \right|$$

The intensity of an EM wave is also known as the irradiance of the EM wave – it is the radiant power incident per unit area upon a surface.

EM Energy Density:

$$\left| u_{EM}\left(\vec{r},t \right) \Rightarrow \left\langle u_{EM}\left(\vec{r},t \right) \right\rangle \right|$$

Total EM Energy:

$$U_{\scriptscriptstyle EM}(t) \Rightarrow \langle U_{\scriptscriptstyle EM}(t) \rangle$$

Poynting's Vector:

$$\vec{S}(\vec{r},t) \Rightarrow \left\langle \vec{S}_{EM}(\vec{r},t) \right\rangle$$

EM Power:

$$P_{EM}(t) \Rightarrow \langle P_{EM}(t) \rangle$$

Linear Momentum Density:

$$\vec{\wp}_{\scriptscriptstyle EM}\left(\vec{r},t\right) \Rightarrow \left\langle \vec{\wp}_{\scriptscriptstyle EM}\left(\vec{r},t\right) \right\rangle$$

Linear Momentum:

$$\vec{p}_{\scriptscriptstyle EM}\left(t
ight)\!\Rightarrow\!\left\langle \vec{p}_{\scriptscriptstyle EM}\left(t
ight)\!
ight
angle$$

Angular Momentum Density:

$$\vec{\ell}_{EM}(\vec{r},t) \Rightarrow \left\langle \vec{\ell}_{EM}(\vec{r},t) \right\rangle$$

Angular Momentum:

$$\left| \vec{\mathcal{L}}_{_{EM}}(t) \!\Rightarrow\! \left\langle \vec{\mathcal{L}}_{_{EM}}(t) \right
angle \right|$$

For a monochromatic EM plane wave propagating in free space / vacuum in ² direction:

$$\left\langle u_{EM}\left(\vec{r},t\right)\right\rangle = \frac{1}{2}\varepsilon_{o}E_{o}^{2}\left(\frac{\text{Joules}}{\text{m}^{3}}\right)$$

$$\left\langle \vec{S}(\vec{r},t) \right\rangle = \frac{1}{2} c \varepsilon_o E_o^2 \hat{z} = c \left\langle u_{EM}(\vec{r},t) \right\rangle \hat{z} \left(\frac{\text{Watts}}{\text{m}^2} \right)$$

$$\left\langle \vec{\wp}_{EM}\left(\vec{r},t\right) \right\rangle = \frac{1}{2c} \varepsilon_o E_o^2 \hat{z} = \frac{1}{c^2} \left\langle \vec{S}\left(\vec{r},t\right) \right\rangle = \frac{1}{c} \left\langle u_{EM}\left(\vec{r},t\right) \right\rangle \hat{z} \left(\frac{\mathrm{kg}}{\mathrm{m}^2 - \mathrm{sec}}\right)$$

$$\left\langle \ell_{EM}\left(\vec{r},t\right) \right\rangle = \left(\vec{r} \times \left\langle \vec{\wp}_{EM}\left(\vec{r},t\right) \right\rangle \right) = \frac{1}{c^2} \left(\vec{r} \times \left\langle \vec{S}\left(\vec{r},t\right) \right\rangle \right) = \frac{1}{c} \left\langle u_{EM}\left(\vec{r},t\right) \right\rangle (\hat{r} \times \hat{z}) \left(\frac{\mathrm{kg}}{\mathrm{m-sec}}\right)$$

Story has not finished yet To be continued...

THANKS FOR TIME BEING