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Electromagnetic Wave Propagation
in Linear Media

EM wave propagation inside matter - in regions with no free
charges and no free currents ( the medium is an insulator/non-
conductor).

For this situation, Maxwell’s equations become:

3)

1) |VeD(F,1)

ﬁ’xE(F,t)=—

OB (7,1)

Ot
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Electromagnetic Wave Propagation
in Linear Media

The medium is assumed to be linear, homogeneous and
isotropic- thus the following relations are valid in this
medium:

L
Y7,

D(F,t)=¢E(7,t)

and H(7,t)=—B(7,1)

» & = electric permittivity of the medium.
»e=¢,(1+y,) x, = electric susceptibility of the medium.

» 1 = magnetic permeability of the medium.

> u=u,(1+yx,) x, = magnetic susceptibility of the medium.
> €, = electric permittivity of free space = 8.85 x 10~12Farads/m.

> u, = magnetic permeability of free space = 4n X 10~ Henrys/m.
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Electromagnetic Wave Propagation
in Linear Media

Maxwell’s equations inside the linear, homogeneous and
isotropic non-conducting medium become:

1) |V-E(7,t)=0 2) |V+B(#,1)=0

L OF (7,1)
VxB(r,t)=
a | P (71) = pe ot

3) |VxE(F,t)=-

In a linear /homogeneous/isotropic medium, the speed of
propagation of EM waves is:

2/3/2014



Electromagnetic Wave Propagation
in Linear Media

The E and B fields in the medium obey the following wave
equation:

. O*E (7.t 1 O*E(7,t
VE(r)= o agz )=v'2 afﬁ |

R

B} OB (rF O*B(r
VB(F,t)=¢u (71) = ; (:’r)
ot Vo O
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Electromagnetic Wave Propagation
in Linear Media

For linear / homogeneous / isotropic media:

e=Ke =(1+7,)s, K, = L =(1+ y,) = relative electric permittivity
gﬂ
=K, =1+ 1, ) 4, K = _ =(1+ z,, ) = relative magnetic permeability
Hy
S 3 1 1 1 1 .
o \V gﬂ \/KQ SOKm ﬂ o JKEKM Jgﬂﬂ o KEKJH
I <1 = 1 <
If KeKm =1 thus KeKm - — v_prap — KeKm ¢ =C
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Electromagnetic Wave Propagation
in Linear Media

K =< |and
go

1
quantities, then so is KK

€ Fiid

H ) :
K =-— are dimensionless

Ho

Note also that since

Define the index of refraction - a dimensionless quantity- of the
linear / homogeneous / isotropic medium as:

n=JKK = |-

goﬂa
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Electromagnetic Wave Propagation
in Linear Media

For linear / homogeneous / isotropic media:

= c/n (S c)

For many (but not all) linear/homogeneous/isotropic

’
vP?' op

materials:

( True for many paramagnetic and diamagnetic-type materials)

2]~ 9(10%) ~ 0

Thus

2/3/2014

because

=, (1+ 1) = M,

K

m

£ _(+yg,)=1

o

= n=,K,

n=1

and




Electromagnetic Wave Propagation
in Linear Media

The instantaneous EM energy density associated with a
linear/ homogeneous/isotropic material

Uy, (F,t):l(gEz (7, 1)+~ BZ(F,t)]=l( B(7 1B (7, 0)+ B 0 (70) (Joul;:s]

2 U 2 m

with | D(7,1)=¢E(F,1)| and |H (F,t)= LB (F.1)
)7,
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Electromagnetic Wave Propagation

In Linear Media

The instantaneous Poynting’s vector associated with a

linear /homogeneous/isotropic material

S (7,1)=—

1
y7,

—

(E’(r r) B( )) (E(r r)xH(r t))

|

2

Watts
m

The intensity of an EM wave propagating in this medium is:

L,

7)< 505) i ) =613 1= £ o)

Where

2/3/2014
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous linear momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

—

P ey (ar):gus(;,f):% *(f,r)gxi(ﬁ(ﬁ,z)xg(m)g(g(,:jf)x B(F.1) ( kg ]

2
orap m”-sec

The instantaneous angular momentum density associated with an
EM wave propagating in this medium is:

P (P =F X oas (F,t)=£?><(i’(?,t)><§(?,f))( ke )

m-scce
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Electromagnetic Wave Propagation
in Linear Media

Total instantaneous EM energy: Ugy (1) = L Uy (7,1)d7 | (Joules)

Total instantaneous linear _ — = kg-m
. P (Z‘):I 9 s (r,t)d?f ( ]
momentum: ’ sec

Instantaneous EM
Power:

P, (1)= 8UE§; () = —@SS’(F,ZL)-dEi (Watts)

Total instantaneous angular P (£)= I 7 (7.t)dz kg-m"
momentum: = v B sec

2/3/2014 12



Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal
Incidence

Suppose the x-y plane forms the boundary between two linear media. A
plane wave of frequency o- travelling in the z- direction and polarized in the
x- direction- approaches the interface from the left

Interface

2/3/2014 13



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Incident EM plane wave (in medium 1):

Propagates m the +z -direction (i.e. kt = H:, = +z), with polarization |7, = +X

E, (z,t)=E, ej(klz_“)i with: k = )k,) 27/ A = ofv,
rm:( t)_—k XE (4,I):l1§'ﬂ_ efmz_ﬁ]ﬁf since: I;mxﬁ tzxx=+
vy -

Reflected EM plane wave (in medium 1):

Propagates in the — -direction (i.e. k_, = —I:q =—2), with polarization |#,, = +%

E_:',@, (z.1)= E, ej{_k‘z_m)f with: k,q, = ‘Ergﬂ| =k = |IE|‘: 2[4 = wfw,

o 5

Er@,(z,t):llg xE q1(Z z‘)_ D '(k‘z_“)j} since: Erqﬂxﬁrqz:—:

|
Lty

Y
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Transmitted EM plane wave (in medium 2):

Propagates in the +Zz -direction (i.e. kﬁkm = +I€2 —+2z), with polanzation |7, =+X
Enam (Z J) ~ Eam,ei(hz—m}f with: |k, = Eﬂ'ﬂm =k, = E:z = 2”/ A, = (ﬂ/ v,
= 1 ~ ~ l ~ il z—at) ~ . > A A A A
B (2.1) =Ky X By (2,8) =—E, & bz=o)5) since: kXA =+ExF=+
VZ v? -

In this situation the E -field - polarization vectors are all
oriented in the same direction

~

Rye = Aypq = Ny ==+X|  OF equivalently:

in frans

E, (7.t)] E,_eﬂ (Fot) | E,p (51)

2/3/2014 15




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

At the interface between the two linear / homogeneous /
isotropic media -at z = 0 in the x-y plane- the boundary
conditions 1 - 4 must be satisfied for the total E and B -fields
immediately present on either side of the interface:

BC 1) Normal D continuous:  |gE =¢&,E;

lTat 2 Tat

(n.b. | refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous: E' =E!

lT at 2'! ot

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)

2/3/2014 16



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 3) Normal B continuous: Bljr' = lem

( L to x-y boundary, i.e. in the +z" direction)

. _ 1 1
BC 4) Tangential H continuous: —Blli,m =—B,

F Hs

Tot

(| to x-y boundary, i.e. in x-y plane)

2/3/2014 17



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For plane EM waves at normal incidence on the boundary at z =
0- lying in the x-y plane- no components of E or B (incident,
reflected or transmitted waves) - allowed to be along the *z"
propagation direction(s) - the E and B-field are transverse fields -
constraints imposed by Maxwell’s equations.

BC -1) and BC- 3) impose no restrictions on such EM waves since:

(EL =E. =0; Ey =E. =0}and {B} =B’ =0; B, =B =0}

lTar lTﬂt ETat 2Tm‘ lTat IT-DT ? 2Tm‘ 2]" of

= The only restrictions on plane EM waves propagating with

normal incidence on the boundary at z = 0 are imposed by BC-2)
and BC- 4).

2/3/2014 18



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Atz =01in medium 1) (i.e. z < 0) we must have:

E! (z=0,1)=E, (z=0,6)+E,,(z=0,7)| and

1 % 1 3
—B] (z=0,t)=—B8,,.(z= Ot)+—B (z=0,1)
# Hh th

While at z = 0 in medium 2) (i.e. z 2 0) we must have:

Egm (z=0,1)= g'ﬁam (z=0,7)| and

] =
—B (z=0,t)=—2B,,, (z=0,¢
B (220.0) =B (20.1)

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) -Tangential E is continuous @ z = 0) requires that:

—

B =B || on|B (z=0.0)4 By (z=0.0)= B, (z=0,1)|

BC 4) -Tangential H is continuous @ z = 0) requires that:

] =
- B ll!mr z=0
K, H

_ LA

ot | Z=0

—= —*
~

or. LJéim: (Z = O’t)_l_i‘g”fﬂ (Z - O’r) -

1
— z=0,t
H F4 H ( )

iramns

2/3/2014 20



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Using explicit expressions for the complex E and B fields

g‘iﬂc (Z’t) = E'o. ei(klz_mr)‘i g;inc (Z, t) = l}%}m X Emc (Z; t) = lg‘a_ E‘{kl _ﬂ#) D

mec vl vl inc
; 5 T 5 > s ~ r- (—Fz—at) A
E”eﬂ (Z’t) - E%‘rel( v ﬂ)x Br%ﬂ (Z?t) =v_lqu‘l XEreﬁ (Z:'t) - _V1 Eﬂmﬂe[( S

The above boundary condition relations become

2/3/2014 21



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential £ continuous (@ z = 0): E:Om ;7"( + Eomﬁ ;7"{ = Eam ﬁ“{

. | R 1 -~ 1 -~
BC 4) (Tangential / contmuous @ z=0): —E, ;7“{ ——quﬂ ;/J = —Eom ,V"{
my " Yy, v,

Cancelling the common e™®t factors on the LHS & RHS of
above equations - we have at z = 0 ( everywhere in the x-y
plane- must be independent of any time t):

2/3/2014 22



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential E continuous @z~ 0): Eq_m + Eﬂmﬂ = Eﬂmm
7 : | | 1 -
BC 4) (Tangential H continuous @ z = 0): E —FE = E,
2N Y A 7 HV, )

Assuming that {#; and 1} and {v; and v,} are known / given for the two media, we have two
equations {from BC 2) and BC 4)} and three unknowns {£_, E , E }

Oime " Orgt? s

— Solve above equations simultaneously for

{Eﬂw and E’aw } 1n terms of / scaled to EH'O_ .

= 14
#Zv?:

Let us define:

2/3/2014 23




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 4) -Tangential H continuous @ z = 0- relation becomes:

EM—E%=,8E

0]- Gbuns

BC 2) -Tangential E continuous @ z =0 - gives:

E HE + Eﬂrﬂ = Eaﬂum

o, o1

BC 4) -Tangential H continuous @ z = 0- reduces to

"

~ ~ v
E, —-E_ =FE_| with |B= =
| ' Y,

2/3/2014 24



Reflection & Transmission of
Linear Polarized Plane EM

Waves at Normal Incidence
Add and Subtract BC -2) and BC- 4) relations:

Insert the result of eqn. (2+4) into eqn. (2

—

—

3 » ).
k. =[—J E, | (2+4)
trans 1+ﬂ inc

2

i, - [ﬂ

]E"._,,m (2-4)

—4):

Z

E —
Oret [ /Z

I

1+ f

ol
© \1+p

.

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

E?={}:£
o\ 1+ f

] Eﬂin.:

and |E, =[L] E
w13 ) o

Now: ﬁE 4h and: v, =£, v £ where: |1, = b4 and |n, = &y Hy
e " ", oty ot
ﬁz /ulvl U/”] M, ;11\/.92;5/5/1 rul A/E A J( ]/(ﬂ)z &1l
it (C/n ) =k ﬂz\/glﬂl/g H, o &M Hy Hy 614,

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Now if the two media are both paramagnetic or

diamagnetic- such that

i.e.

my 5

< |

=11, (1+ 1, ) = 1,

and:

=, (1+ 7, )~ 4,

Common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then

f= Y
HyV;

Vi

[_

Vs

H

n,

n,

2/3/2014

] for |, = 1, = 1 | or ‘Zm‘ﬂl
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

A A

Then
Po=[ 2 )i =2 |5 [ 2 &
frans 1+ f me 1+ (vl / vz) ne v, +V, ine

We can alternatively express these relations in terms of
the indices of refraction n; and ny:

~ n—n, |~ ~ 2n ~
E, =|2—=2|E | and |E, =|——|E
refl inc frans inc

2/3/2014 28




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Now since: a

sl
E, =E, e
- . i5
Eomﬂ = E%
r i
Eofmus - Eatrans

0 = phase angle (in radians) defined at the zero of time - t = 0

Then for the purely real amplitudes (£, , E, . E,

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The relations between real amplitudes become:

[ for | = 1, = K,

1- 4 v v, —V n —H 7Ry
jfo | 1;;_ ~| _2 1 -lfo. _ 1 2 15;1 4/9 = 1
e 1+p0) ™ v, +V, n, +n, LV,

2/3/2014 30



v, >v (ie. n,<n) {e.g medium 1) = glass = medium 2) = air}:

Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic

media for 44 = t, = 14, for the following cases:

E

Crept

v, +V, n, +n, E, because (v,=v,)>0.

v, -V, n —n, E%ﬂ 1s precisely in-phase with
= EO- = EO- :}

2/3/2014
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Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal

Incidence

Ifv,<v (ie. n,>n) {e.g medium I)=arr = medium 2) = glass}

E

Orefl

|

v, =V

1 —
v, + Vi

h, —h, ) E
al'rlf.'
nl + Hz

ie. E

v, +V,

oi'nc

n,+n,

2/3/2014

E, is 180" out-of-phase with

0}'

E, because (v,-v,)<0.

The minus sign indicates a 180
phase shift occurs upon reflection

for v, <v, (1. n, >n ) !

<V




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

E, 1s always mn-phase with £, for all possible v, &v, (m, &n, ) because:

2/3/2014 33



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

What fraction of the incident EM wave energy is reflected ?

What fraction of the incident EM wave energy is
transmitted?

In a given linear/homogeneous/isotropic medium with

V= /gc’ﬂ" c=c/n
&H

The time-averaged energy density in the EM wave is:

(um(?‘,t)) =lgE§ (F)=£E2 (F) [Jouies)

2 m

2/3/2014 34




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The time-averaged Poynting’s vector is:

ar= N\ _ 1 /x = N\ B(F Watts
(5G.0) = (B0 2]

The intensity of the EM wave is:

- | Watts]

I(F)E<|S(F,r)‘>=v<uEM(F,r)>=v(—£Ej(F)]=l£ij(F)=£ijm (%) [ :

2 2 m

The three Poynting’s vectors associated with this problem

are such that
2/3/2014 35



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The three Poynting’s vectors associated with this problem are
such that

* —

é%w||(+§)? 'Sﬁﬂ||(_£) and'S;mwll(+§)

For a monochromatic plane EM wave at normal incidence
with 4=, = 4,

E=ﬂE2uE=uE ﬁEtulvl
Oref 1+4) ™ \v,+v ) ™ n+n, | ™ LV,

Eﬂ' = L ED- = 2 vz EC-‘- = 2 n] EC.'-
frans 1+ ) ™ v, +V, n,+n,

2/3/2014 36




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Take the ratios (E%I / E, ) and (Eam / Ea.-,m) - then square them:

E
o

2
al’
0! nc

E,

Pt
.

=] (4]

[

Yo |

;

Vv, +1f'1

n — A,

|

H, +i’22

;

and

2v,

:

v, +V,

2n,

n +n,

|

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Define the reflection coefficient as:

(Ir@q(;)](@' % 0) w(uEh(0) (EGo) SenEL(F) EL(7)

Define the transmission coefficient as:

T(F)E[I#L(f)}=< i

WD) (i @m0) (emE (7)) evE (7)
I,.(7)

(‘im(?‘,l‘)b v (e, (7.1)) ) (LevE (7)) CenE ()

2/3/2014 38



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with £4 = £, = 4,

Reflection coefficient:

Transmission coefficient:

2/3/2014 39



Reflection & Transmission of

Linear Polarized Plane EM
Waves at Normal Incidence

But: Eo,q,(’_")zzl—ﬂzﬁuz=u2&
E, (7) 1+4) \v+v I,

Ef,m(r_")z_izﬂ 2v, 2_ 2n, :
E, (7) 1+ v, +v, ) n+n

2 2 2
J _ £,v, [ 2v, ] & [ 2n, ]

2/3/2014
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

&LV, Vi — 1 = &,U, = i

2

gV S H V

Now: === # but: 2 °
Slvl glﬂlvl 2 _ 1 1

Vl = =—
H, E\H, V]

1
EV _(V ]/2 /JEJZZ_IU:I“/lI — 11 ie ﬂE;"‘lVI_EZVQ

[vL ]/ . Aﬁv HV, - HV; &V

2/3/2014 41



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

FforﬂlzﬂZﬁﬂo

T(F)=[SQVEJ[ 2 ]Z=/9(LJ2= 403 j 4v,v, _ 4dnn,
e 1+'8 l+ﬂ (1"'/8)2 (1"’.2""”1)2 ("71""'72)2

R(F)+T(F)_(1ﬁ)2+ 145 (1-pY 48 128452 +48 112544 (14B)
(1+8)  (1+p) (1+ ) (=47 (1+5)

2

| R(F)+T(7)=1 | '=>EM energy is conserved at the

interface/boundary between two L/H/I media
2/3/2014 42




Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

A monochromatic plane EM wave incident at an oblique
angle 0,., on a boundary between two linear/

homogeneous/isotropic media, defined with respect to the
normal to the interface- as shown in the figure below:

|

trans

2/3/2014 43



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The incident EM wave is:

l:z:'inc (F’r)zéﬂ.ﬂcel@m.FM) and § (F )= l 12 _hmc (r t)

1

The reflected EM wave is:
~ . ~ ik _»eF—oot ~ . 1 ~ ~ .
E g (?'J)=Ewe(mﬂ ) and qu?(r,t)=v—1krg7xEr¢(r,r)

The transmitted EM wave is:

Epoo (F0)=E, """V and |B,,, (¥,1)=— k,mmxﬁm(?,t)

s frans

2

2/3/2014 44



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

All three EM waves have the same frequency- f =a/27

W= kmcv = quﬂvl = kiram'VZ

The total EM fields in medium 1

B, (F.)=E, (F.t)+E,(7.1) and By, (7.t)=B, (7.t)+3B,,

2/3/2014




Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Must match to the total EM fields in medium 2;

— —= —*
o~ ~~

ET(HE (F’ t) = Efrans (F’t) and BTGIz (F,f) = Ehuns (F" ZL)

4

Using the boundary conditions BC1) — BC4) at z = 0.

At z = 0- four boundary conditions are of the form:

-F—mr) (Ersﬂ-?’—a}e:) (F_c;.mm -F—mr)

(.._......- )ei[i’;fnc n (-...-...-) .E,'i _ (____) E'i

They must hold for all (x,y) on the interface at z = 0 - and also must
hold for all times t. The above relation is already satisfied for
arbitrary time, t - the factor e™®tis common to all terms.

2/3/2014 46



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The following relation must hold for all (x,y) on interface at
atz=0:

(—) ei(i_r',-,m-i") +(~—) ei(Emﬁ'F) =(—) ei(EmﬂHs'F)

When z = 0 - at interface we must have:

— —

ko oF =K, qoF =

ifn Fg

ke Xtk y=hk aXx+k y=k  x+k .y @z=0

ne, me, mrans, n

2/3/2014 47



Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

The above relation can only hold for arbitrary (x,
y, z = 0) iff ( = if and only if):

kmc X = k x ktmm X — k kmﬂth — kjt‘lvc:w‘zser
kznc Y = kreﬂ Y= ktrans Y — k k — k

2/3/2014 48



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The problem has rotational symmetry about the z -axis- without
any loss of generality - choose k to lie entirely within the x-z
plane- that is no component of k in y-direction as shown in the
figure on next slide

Kine, = Ko = Kyans, =0 and thus: k.. =k, , =k

trans, efl, trans,

— —

The transverse components of kfnc:kmﬂjmm are all equal and
point in the +x" direction.

2/3/2014 49



Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

ei;j-l-s.
A=,

2/3/2014 50



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The First Law of Geometrical Optics:

The incident, reflected, and transmitted wave vectors form a plane
- called the plane of incidence- which also includes the normal to
the surface -here the z axis.

The Second Law of Geometrical Optics (Law of Reflection):

From the figure- we see that:

kmcx =k sm0 |= kreﬂx = kmﬂ S1n Qreﬂ = |k =k sl

rans, frans frans

k,.=k.,,=k| = |sm0, =smn0

: . Law of
Angle of Incid = Angle of Reflect —
ngle o lucicE Sl R e ticction 1§, grEﬂ Reflection!
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Third Law of Geometrical Optics (Law of Refraction
- Snell’s Law):

For the transmitted angle - 0,,,,. we see that:

trans

k. _sm@ =k sin0

Inc me frans

In medium 1): k =k =o0/v=no/c=nk,

where &, = vacuum wave number = 272'/ A

and A = vacuum wave length

frans

In medium 2): |k, . =k, =o/v,=no/c=n,k,
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

szm:' Sin gim:' = kf.rans Sin gimns = k] s1n ginc = kZ S111 gimm

k. =k =nk|andlk__ =k =nk

inc

Lsingd =k sind v sinf. =n. sinf | LLaw of Refraction |
1 S G, . 2SI s = 1 me 2 frans (SHGII,S LﬂW)

sin Qmm m,

sin &. 7

inc 2

Which can also be written as:

Since 0

ans Tefers to medium 2) and 0, refers to medium 1)

sin (92 _n |

sin 91 71

|nl sin &, = 7, sin Qzl or-

A x

(incident) (transmitted)
2/3/2014 53
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Using three laws of geometrical optics we can see that :

k__ or

z=0  "“trans

z=0

everywhere on the interface at z = 0 -in the x-y plane

i(ﬁ_'.;-m o —(m')

e i(EmM ¥ —aJr)

—0— €

Thus

z=0

everywhere on the interface at z = 0 -in the x-y plane and
valid also for all time(s) t, since @ is the same in either
medium (1 or 2).
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The BC 1) — BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two
linear/ homogeneous/isotropic media become:

BC 1): Normal ( z-) component of D continuous at z =0 (no
free surface charges):

&, (Eowz + E%ﬂz ) = Sonmz {usmg D=g¢gk |

BC 2): Tangential (x-, y-) components of E continuous at z = 0:

(Eoﬂ +E, )=E0m
X, ¥ X,y Xy
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BC 3): Normal (z-) component of B continuous at z = 0:

(Bamz +B, ) -3,

BC 4): Tangential (x-, y-) components of H continuous at
z =0 (no free surface currents):

Note that in each of the above, we also have the relation

—_—
[ 2

trjal

B =Lix
N
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

For a monochromatic plane EM wave incident on a
boundary between two L / H/ I media at an oblique angle
of incidence - three possible polarization cases to consider:

Case I): limc 1 plane of incidence Transverse Electric (TE)
{B. || plane of incidence} Polarization
Case T): E_ || plane of incidence

B Transverse Magnetic
{B,, L plane of incidence}  (TM) Polarization

—_

Case III): The most general case: £ 1s neither L nor || to the plane of incidence.

{= 3,.”,, 1s neither || nor L to the plane of incidence}
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Reflection & Transmission of Monochromatic
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Case I): Electric Field Vectors Perpendicular to the Plane of
Incidence: Transverse Electric (TE) Polarization

*A monochromatic plane EM wave is incident on a boundary
at z = 0 -in the x-y plane between two L/H/I media - at an
oblique angle of incidence.

*The polarization of the incident EM wave is transverse (Ll )
to the plane of incidence (containing the three wave-vectors
and the unit normal to the boundary n” = +z").

*The three B-field vectors are related to their respective E -
field vectors by the right hand rule - all three B-field vectors
lie in the x-z plane (the plane of incidence)
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The four boundary conditions on the complex E and B
fields on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

(7 rosl =l

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

(E ) )=E ~ |k +E =E
refly inc refl trans

of.ﬂf.‘ Gtra ru.'y

2/3/2014 59



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 3) Normal (z-) component of B continuous at z = 0:

(Bainc + Bﬂrﬂg,ﬁi’z ) = Bﬂtrﬂnsz
inc = Inc, + inc = sin Qfm'x + COS gmcz
kreﬂ = kmﬂx + kmﬂz =sin6 _,x —cos Qeﬂz
kﬂ‘ﬂﬂ.&" = H‘a?!.i'l_ + kﬂ'ﬂﬂ.‘fz = Sln gﬁ‘a}!.ﬁx + GDS gﬂ‘ﬂﬂsz
- ~ —~ 1 (E - 9 + E . 9 A 1
- S\ — S| 0 (— SIn O Sin Z=—
(Boim:z Z+ Bamﬂz Z) — BD:?M ] Z |3 vl inc e Orgft I‘é‘ﬂ VZ

2/3/2014
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Using the Law of Reflection on the BC 3) result:

sin 0. 7
O trans

sin &

inc

P =("1

refl
V.
2

Using Snell’s Law / Law of Refraction:

ﬂsin@ =n—2$in9 : _

inc trans

C C v

=

1, sin Q_M =1, sin Qn_am

=y, sinf | or:

trans

or: |v,sinf

nc

ne

v, sin6 | |
v, sinf

Reduces to BC2)

2/3/2014
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):

1 = ~ = ~ 1 = ~
—(30_ x+B, x):—Ba X
G

tramis,

! (E&"ﬂm(—c:-:Jrs6’1-,,,,,.)ﬂLiij},,m,,‘3'-'1'5"’9@#1):iE

4V

1
£V,

E, (—cos@,,, )%

Using the Law of Reflection on the BC 4) result:

irans

(E_ P )[,L;lvl 'CDSﬂmm]E

o
v, cosd,,
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From BC 1) — BC 4) actually have only two independent
relations for the case of transverse electric (TE) polarization:

= = - ~ ~ & ~
) |E, +E =E 2) ( E -E )= fv, cosO E
inc refl frans inc refl /«121’2 COS 9 trans

IHC

( cos@ ]
o=
cos @

nc

Define: p= [&]
HV;

Then eqn. 2) becomes:

E‘ —E =af E
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Adding and subtracting Eqn’s 1 &2 to get:

Dinc

. 7 -
K, = ( ]E eqn. (1+2)

1+af

E
a!'ﬂﬂ

=

E | eqn. (2-1)

Gtmns

Plug eqn. (2+1) into eqn. (2—1) to obtain:

2

(57 )
Oref 2 l+aff ) o

1+ af

l—aﬁ]E

aiﬂc

1

"o _ 1—af
E, 1+aff

J

2/3/2014
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The Fresnel Equations for E || to Interface
= £ | Plane of Incidence = Transverse Electric (TE) Polarization

with
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Plane EM Waves at Oblique Incidence

For TE polarization:

Incident Intensity

'Z

12 {52 0 -{ 3 () Jfu- 2

[lvl (EE) ]cosf)m —lalv](Eii) cos ()

Reflection Intensity

1= (320 ()] = S (B2 ) | o5l =S (B2 ) cost,

Transmission Intensity

I, = |8, (1) -
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients for transverse
electric (TE) polarization

2 o
TE 1 ev(E)" ) cosé, EE Y
_ Ireﬂ 2 1"1\ 0,4 inc B Oret
Ry "'qujz T 5 - ETE
inc E 811”1 E ) cOS an O
1 E \2
L (E ) cos &
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The reflection and transmission coefficients for transverse
electric (TE) polarization
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Case II): Electric Field Vectors Parallel to the Plane of Incidence:
Transverse Magnetic (TM) Polarization

*A monochromatic plane EM wave is incident on a boundary
at z = 0 in the x-y plane between two L / H/ I media at an
oblique angle of incidence.
*The polarization of the incident EM wave is now parallel to
the plane of incidence -(containing the three wave-vectors and
the unit normal to the boundary n” = +z").
 The three B -field vectors are related to E -field vectors by the
right hand rule -then all three B-field vectors are L to the
plane of incidence {hence the origin of the name transverse
magnetic polarization}.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The four boundary conditions on the complex E and B-fields
on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

£, (E +E, )= &k,

OI'HE-"

£, (_Eo,-m sin &

c

+E, sing,, ) =g, (—Eam sinf), )

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

( ~

\ Oinc,
s ~
kE"' cost +E,

ine refl

ﬂ'rrmlsI

COS 9,_@7 ) =F cos®

Opams frans

+E, )=E
refly

71
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BC 3) Normal (z-) component of B continuous at z = 0:

=0 =0 _=0
; + Iy = B, = 0+0=0
nc, rafl_ trans._

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):
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From BC1) at z = 0:

— 2 1 — Z" 2 —
E, —E =7 |k, = E, =pE,
£ N £V

2

From BC 4) at z = 0:

v Py,
where: /35['“11}:( 22J
HV, &1V
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From BC 2) at z = 0:

cos &

frans

a = |

" cos 0 cos@,,

mc

(Eo_ 4 Ey'% ) _ [cos Brvans JE{}M —aE | where:

Thus for the case of transverse magnetic (TM) polarization:

E.-M—E = PE, | and E'M+E~’O =aFE

l:)i‘ram' 01' refl Obum

Solving these two above equations simultaneously, we obtain:
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~ 2
i =[
trans a+ﬁ

} E"mc

_(a=F

2

] Eobum

~

e

a—p
a+,6’

5.

The Fresnel Equations for B || to Interface
=B | Plane of Incidence = Transverse Magnetic (TM) Polarization

2/3/2014
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Reflected & transmitted intensities at oblique incidence for
the TM case

LY =v < :ff (t)>-2 = f%vlgl (Ef"f )2] cosl = %EIV] (Ef’[ )2 cos &
\
I:;;r =, <§$ (t))-.% = iévlgl (Ef: )2) cos ‘9;-@;1 = %glvl (Ej:: )2 cos@
I =v, <§m (t))-f = (%vzgz (Ej:i )2] cosf = %gzvz (Ejf )2 cost
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Reflection and Transmission coefficients
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The Fresnel Equations

TE Polarization

‘BEJulvl —

”EjiJ v ”Effm} 2
E,. ) (1+ap) | EX ) (a+pB)

LR L

&y

TM Polarization

(" 7 IM
E"mﬂ _ a—p
k\Ej:fl:r a+p

HVy, &Yy Ly &1,

2/3/2014 78



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission Coefficients R & T

TE Polarization

R+T=1

o= frans

cos@, .
B = T L |
HY, eV iy &L

2/3/2014

TM Polarization

IHJ

Iy

Lo |
)

IM
R — refl — Eﬂmﬂ
Yo B

.

—(

IM
EG
trans

IM
E™

a—p )
a+pf

T _ 4ap
(a+p)

v=¢/ -1
: A1 /1/31,:11

—c/ — 1
E Ag /1/752;12

79



Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

= Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.

= Comparing results for TE vs. TM polarization for the
cases of external reflection (m1 < n2) and internal
reflection m1 > n2)

Comment 1):
= When (E,;/E;,)< 0 - E,,q is 180° out-of-phase with E ;.
since the numerators of the original Fresnel Equations

for TE & TM polarization are (1-ap ) and (a — )
respectively.
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Comment 2):

*For TM Polarization (only)- there exists an angle of incidence
where (E,.q /Ei.)= 0 - no reflected wave occurs at this angle for
TM polarization!

*This angle is known as Brewster’s angle 05 (also known as the
polarizing angle 0, - because an incident wave which is a linear
combination of TE and TM polarizations will have a reflected
wave which is 100% pure-TE polarized for an incidence angle
Oinc =05 =0p ).

*Brewster’s angle 05 exists for both external (n; < n,) & internal
reflection (n; > n,) for TM polarization (only).

2/3/2014 81



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence
Brewster’s Angle 0,/ the Polarizing Angle 8, for

Transverse Magnetic (TM) Polarization

a_
a+t

[ TM [ - TM
From the numerator of % /&, )=(

) -the originally-derived
expression for TM polarization- when this ratio = 0 at

Brewster’s angle 0 = polarizing angle 0, - this occurs when (a

—B)=0,i.e. whena=.

c050, ,, = \/1—31'112 % and Snell’s Law: siné,,, = [:—leiﬂ £
2
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Brewster's Angle 0,/ the Polarizing Angle 0, for
Transverse Magnetic (TM) Polarization

I
1——sin G

ine

— [)’2 cos’@ = ,6’2 (1 —sin’ Q.M) « Solve for sin* @

inc inc

2 1 2 - 2 - 2 l_ﬁz (l_ﬂz)ﬂz
-3 =| —— sin” & sin~ . = =
ﬂ [ﬂg 18 ] inc = inc %gz —ﬂz (l—ﬂ4)

===+ )

g =) p
" (1-8)(1+87) 1+ P
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: : . sid
Geometrically: [sné, = p _ | PP SEE
1+ g2 hypotenuse

1 adjacent
cosf, = =
1+ g hypotenuse
tn 0, — 3 _|opp. side| [ 7, 1
adjacent )

Thus, at an angle of incidence 8, = @5 = 87° = Brewster’s angle / the polarizing angle for a
TM polarized incident wave, where no reflected wave exists, we have:

me mc n
tan &y =tand, _[ﬂ_z] for m = = p,
1

ne SINOFC m
we also see that: tan 8, = e
costy” n

? - . _ .
From Snell’s Law: n,simnf,_ =n,siné@,_ .

. - mc __ igl= ‘__ ._.
or: msinf; =mny,cosly for g =p =u,.

__pinc __ q#inc
.. When 8 =6 =6;".
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So what’s so interesting about this???

=0
Well: |cos 87 = sin(% — 07 ) = sin(%)cos O — gm’é sinf;° =sind, |ie. Siﬂ(% — 9;":) =sinf,__

". When 6, =65 =6, for an incident TM-polanized EM wave, we see that 8, = z/2 65"
Thus: A7+, =x/2, ie O =67 and 8, are complimentary angles !

Comment 3):

For internal reflection (n; > n,) there exists a critical angle of
incidence past which no transmitted beam exists for either TE
or TM polarization. The critical angle does not depend on
polarization - it is actually defined by Snell’s Law:

- n - n

2 ifc . 2 ifc I | y)
S gc:rm‘c:a{ o gcrm'r:af — 81 -
n m
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mec
For 6, 26 ..., notransmitted beam exists — incident

beam is totally internally reflected.

For One > Yaca> the transmitted wave is actually exponentially

damped - becomes a so-called:

Evanescent Wave:
z{kzxsin G.c {:1}&31‘} n -
Etran.s (f“' ZL) Eo,,_ E—ig 2 J a = kZ — Sln gmc
/;1 VV\_\ nz

Exp. damping inz  Oscillatory along interface in x-direction
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Brewster’s angle for TE polarization:

0° =sin™ “ \ A =sin" \/E

CoEHE
H; \ﬁf’i

(i‘\_[&\ (i\_(&\

_\& ) \HA ) _ : _{\&a /) \H)

sin@. = > ]\ \=\/E ie. |A=|- 1\ =
A _[ﬂz AR
At ) \ M) \H) K]
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

» Free charge and free currents are zero for propagation
through a vacuum or insulating materials such as glass or pure

water.
» Inside a conductor- free charges can move around in

response to EM fields contained therein- free current is not

Zero.
» Assume that the conductor is linear/homogeneous/ isotropic

media. e =
»> From Ohm’s Law Y e (?’J) = D'CE(TJ)

where 0. = conductivity of the metal conductor (Ohmi/m) and o.
=1/ p. where p. = resistivity of the metal conductor (Ohm-m).
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Assume that the linear/ homogeneous/isotropic conducting
medium has electric permittivity € and magnetic permeability
1. Maxwell’s equations inside such a conductor are thus:

1) |V-E(7,0)= pre. (7.1)/€ 2) |V-B(F,t)=0

—

0B(7,1) Using Ohm’s Law:

) 6><E'(FJ)=—

ot J 1o (Fot) = 6 E (F,1) )
o ; OF (F : OF (F
8) Vx B(7,0)=pJ ,, (7.t)+ e é:,r) o, F (7 1)+ e ((?:,t)
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ELECTROMAGNETIC WAVES IN

CONDUCTORS

Electric charge is conserved- thus the continuity equation
inside the conductor is:

OP ree (75 1)
ﬁee( r) o ﬁ.at
— = ap ee 'F?t
o (V-E(r,r))=— ﬁ@f )
thus:
CoP pee (751) _ Py (7,1) o
g Ot —

but: |J .. (7.1)=6.E(7,1)

but: ﬁ’-E’(F,r)= P free (F’IZ

apﬁ-ee (?' r)

ot

[ )pﬁeg(f‘ t)=0

1st order linear, homogeneous differential equation

2/3/2014
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

The general solution of this differential equation for the free
charge density is of the form:

puF)= Py =00 = py (7 =0)e Vo

A damped exponential!!!

The continuity equation inside a conductor tells us that any free
charge density initially present at time t = 0 is exponentially
damped in a characteristic time 7y g = glo, = charge relaxation
time.
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Maxwell’s equations for a charge-equilibrated conductor

Y

V-E(#,t)=0

2) |VsB(#,t)=0

3) |VxE(F,t)=-

4) |VxB(F,t)= uc E(7,t)+ ue
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

These equations are different from the previous
derivation(s) of monochromatic plane EM waves
propagating in free space and in linear/homogeneous/
isotropic non-conducting materials. Re-derive the wave
equations for E and B. Apply V x () to equations 3) and 4):

L O*E(7,1) OL (7,1)
We get ViE(F,t)= ue 22 THO——
2 - — — —

and V’B(7,1) = ue 0 ig’t) + Uo, SBg;,t)
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

General solution(s) - are usually in the form of an oscillatory
function times a damping term ( a decaying exponential) - in the
direction of the propagation of the EM wave. A complex plane-
wave type solutions for E and B associated with the above wave
equation(s) are of the general form:

kz—ar)

(z,t) = E’aei(

efF

~

ExE(z,r)

B (z,t)= B e = (E}lgx E(z,r) —
®

1
@
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

With (frequency-dependent) complex wave number:

E(a)) =k(w)+ix(®)

k() =Re k() = - _\/1+[i]2 +1_%

2

k() =3m(k(0)) =0 ‘%“_\/1{%]2 -1

2
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The imaginary part of k that is - x= Jm(k) results in an
exponential damping of the monochromatic plane EM wave with
increasing z:

E (z,t)= Eﬂe_mel_(h_mt)

These solutions satisty the above wave equations for any
choice E,
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The characteristic distance over which E and B are
reduced to 1/e=0.3679- of their initial values (at z = 0)
is known as the skin depth

6, (@) =1/x(o)

2/3/2014 98



MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The above plane wave solutions satisfy the above wave
equations(s).

Maxwell’s equations rule out the presence of any
longitudinal i.e, z- component of E and B.

E and B are purely transverse waves (as before)- even in a
conductor.

Consider a linearly polarized monochromatic plane EM
wave propagating in the +z" -direction in a conducting
medium.

E (z,1) = E ez

then
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

~ F (z,1) L B (z,¢) Lz (+z = propagation direction)

The complex wave-number [ = i + ik = Ke*

where: KE|E|=Vk2 +x° and ¢, Etm_l(%)

2/3/2014
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

In the complex k -plane:
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

Then we see that:

e

o

_ i,
has E,=E.e

a Q

B' (Z? 2(-) — goe—!{'z I(kz—ﬁ’f)j} — EEH'QEK'E i(kz—ot) ~
()
~ ”
/1)' k = Ke w
~ ) j(; - K l'@'ik |
haS Bﬂ = BGQZEB —_—— Eo — € ED ezJE
@ (0]
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

Ke™*
0,

Wy _
be™ =

K

9 _
Ee™ =—

),

Fe 53“?& —

\/kzﬂc

Q

a

o

Ee

{0z +8y)

inside a conductor, E and B are no longer in phase with each other!!!

éie:zzéiﬁ'+'¢%

quphtiﬁ = ESB __'éiE = 9ék

Phases of E and B

With phase difference:
B

We also see that: E"
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real /physical E and B fields associated with linearly
polarized monochromatic plane EM waves propagating in a
conducting medium are exponentially damped:

L

E(z,t)= fRe(E’ (ZJ)) =Ee*cos(kz-wt+0,)x| p» |0, =0,+4, 9

B(z,t)= ‘il:ie(}}(z,t)) =Be “cos(kz—awt+6,)y=Be ™ cos(kz— ot +{0, + gék})j}

b | =
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

where K(@)= 'ig(a))| = \/kz (0)+Kk* (@)=

éiB = éiﬁ + QQk

, 14, (@)= tanl[

k(@)

and ;“c‘(m)=|:}"'(m)‘=k(m)+m(m)

2/3/2014
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real part of k- determines the spatial wavelength A (o)-the
propagation speed v(® ) and also the index of refraction

)= @ 0

k(@) Re(k(w))

c _ ck () _ cﬂe(fg(m))

"))

o £
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

Definition of the skin depth in a conductor:

4, (@)

1
k(@) z
m,/% \/H(Z;) -1

2/3/2014

Distance over which

the £ and B fields fall to
l/e —e1=03679 of

their initial values.
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In the presence of free surface charges ¢ and free surface
currents- the BC’'s for reflection and refraction at e.g. a
dielectric-conductor interface become:

BC1): (normal D at interface):

BC 2): (tangential E at interface):

BC 3): (normal B at interface):

BC 4): (tangential H at interface):

2/3/2014

11

1 1
sl —&e Lk, =0,

ﬁ_

E'-El =0

B —B, =0

—

—

B = 7

B]J_ — BJ_

g

1 1

— Bl ——Bl=K__xn

# H,

Jree
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

| =normal to plane of interface
|| = parallel to plane of interface

Where n,;— is a unit vector 1 to the interface - pointing
from medium (2) into medium (1).

Incident EM wave [medium (1)]:

E ( z, l‘) _ E ei(klz—ai) X and § ( Z, j) — i E% ei(klz—mt)j}

inc O nc ",
1
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Reflected EM wave [medium (1)]:

= ~ - _' l ad I(—Fkyz— ~
E(z1)=E, &% and B, W(z,r)=—v—1Ewe( g

Transmitted EM wave [medium (2)]:

]

(Ezz—a#)jz‘ i(Egz—an)

y

25 ¢
w frans

and Bﬁﬁm (Z, l‘) =

Efmm (z,t)= Eom e

complex wave-number in (conducting) medium (2) is:

k2 = k2 + ik,
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In medium (1) EM fields are:

L L

By, (2,0)= By (2,1)+ B,y (2,1)

Epy (20)= By (2.0)+ Eo (1)

In medium (2) EM fields are:

o~ ~
—_

Epy, (2.8) = Eypy (2.1)| and: By, (2.0)=B,,,, (.7)
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Apply BC’s at the z = 0 interface in the x-y plane:

L

BC 1): glEll_ngzl=J e but ElizElz = 0| and: E:zlzﬁzz =0

BC2): El=El .|E, +E, =

2/3/2014 113



Reflection of EM Waves at Normal

Incidence from a Conducting Surface

BC3): [B'=B;| but:|B =B, =0| and:|B, =B, =0/ = [0=0
Lo Yoz o ¢ L (B _E :
BC4): —Bl-—B} =K, xi. but|K, =0| - |—(E,_-E, |-—=£,_ =0
b 2 M, " o
or: |E, -E, =pE,_|with s[ﬁH"‘—J
c refl trans
1o | \ o

2/3/2014
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Thus we obtain:
Eﬂ 1_ 3 Hg 2
—7 | = —'q and: || == |= =
E, 1+ /3 E, (1 + ,8)

with |2 (ﬂlvlkz ] _ [ v, ] i

H,0 H, @
The relations for reflection/transmission of EMW at normal incidence on a
non-conductor/conductor boundary are identical to those obtained for
reflection / transmission of EMW at normal incidence on a
boundary/interface between two non-conductors- except for the replacement

of B with a complex f.
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For the case of a perfect conductor- the conductivity

o, = {thus resistivity, p. =1/6,. =0}

WU, G = =
= both kz“—"KQ:J ’u; ¢ — | and since: k, =k, +ix,| then: k2=00+i00=00(1+i)

) k =)
and since: ﬂE[’ulvl 2J=(ﬂ]kz = f=w
O

Thus, for a perfect conductor, we see that:

Z_E,-,.,_- and | E ; =0
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a perfect conductor the reflection and transmission
coefficients are:

and: |7 =1-R=0

="

Il
TN
am :th

4
~—

[
|
5$Ij¥-F i

8 =
b2

Il
TN
SR ST
& =
—_
N
_ptrjz At

=
—

Il

(-

We also see that for a perfect conductor - for normal
incidence- the reflected wave undergoes a 180 degree phase
shift with respect to the incident wave at the interface at z =0
in the x-y plane. A perfect conductor screens out all EM

waves from propagating in its interior.
2/3/2014 117



Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a good conductor- the conductivity is large- but finite. The
reflection coefficient R for monochromatic plane EM waves at
normal incidence on a good conductor is not unity- but close
to it. {This is why good conductors make good mirrors!}.

E. Y |E [ (E \E,
R — refl = |— refl — _ refl _ refl —
Ea. 0O; Ea- Eo.

Where B:[ﬂlvl};:(ﬂlvl]\/mﬂ;ac (L+i)= v 20-0 (1+1)
M
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Define B
Y =MW

O

2,0

C_| Then: |B=y(1+i)

Thus, the reflection coefficient R for monochromatic plane
EM waves at normal incidence on a good conductor is:

]

~

1-/

R=|—t| =

~

]

~

1+ f

_(1=8)(1-8) _
A1+ pN\1+8)

l-y-iy )\ 1-y+iy
l+y+iy N 1+y-iy

_ 1—;1/)2+}/2

Jz(

_(l+y)2+}/2J

with

2/3/2014

V=MV

21,0
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Obviously, only a small fraction of the normally-incident
monochromatic plane EM wave is transmitted into the good
conductor- since R<1and |T=1-R| ie.:

_(l—yf +;y2_

I'=1-R=1- >
(1+y) +7r"

(x1)

Note that the transmitted wave is exponentially attenuated
in the z-direction; the E and B fields in the good conductor
fall to 1/e of their initial {z = 0} values (at/on the interface)
after the monochromatic plane EM wave propagates a
distance of one skin depth in z into the conductor:
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

5, (@)=— \/ =

K, (o) \ouo,

Note also that the energy associated with the transmitted
monochromatic plane EM wave is ultimately dissipated in the
conducting medium as heat.

In metals - the transmitted wave is absorbed in the metal- we
can only study the reflection coefficient R.

A full description of the physics of reflection from the surface
of a metal conductor as a function of angle of incidence-
requires the use of a complex dispersion relation
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Full Maxwell Equations in Matter

The electromagnetic state of matter at a given observation point
r at a given time t is described by four macroscopic quantities:

1.) The volume density
of free charge:

2.) The volume density
of electric dipoles:

3.) The volume density
of magnetic dipoles:

4.) The free electric current
/unit area:

2/3/2014

pﬁee(?',t)

P(7,1)

& electric polarization

& magnetization

& {free} current density
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Full Maxwell Equations in Matter

These four quantities are related to the macroscopic E and B fields by the
four Maxwell equations for matter

1) Gauss’ Law:

Auxiliary relation:

Electric polarization

?) No magnetic charges/monopoles:

&

0

VeE = Pro ; (pﬁee +pbaund)

a

i

=g E+

p

& constitutive relation: |[D=¢E

P=(s-¢)E=5,0,E

VeD=gVoE +V-b=p,,

VeB =

<

Auxihary relation:

2/3/2014

.1 -

[I=—B-M

s

=

g
, electric susceptibility |y, = (——1

—

where: | Pppuna = VP

—_ —_—

& constitutive relation: | B
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Full Maxwell Equations in Matter

3) Faraday’s Law:

—

_p
51‘

Magnetization:

4) Ampere’s Law:

Total current density:

2/3/2014

, magnetic susceptibility

mag Tmag " /
T J + memd + Jbormd Jbazmd o V x M

JE
Jbaund T

opP OF

VxM+pu —+ —
" Ho Ho ot Ho%o ot

—=

v X H #ojﬁee + #ﬂ

oD
ot
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Full Maxwell Equations in Matter

Then Maxwell’s equations in matter, for £, =0 and M =0

1) Gauss’ Law: VeD =0| or: |VeE = —; V.P = pﬁee/ga
2) No magnetic charges: VeB=0

3) Faraday’s Law: VxE = —%f

4) Ampere’s Law: VxB= H,E, §+ﬂa §+ﬂaj o
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Full Maxwell Equations in Matter

We also have Ohm’s Law -

and the Continuity eqn.

Then applying the curl operator to Faraday’s Law:

We thus obtain the inhomogeneous wave equation:

S fee =OL
V.Jﬁ'ee = 0

—

. 138E 1 O°P oJ
V’E - =V + U 4y T
CZ atz 6‘0 pbound 1"' o atz )L 0 af

iy
source terms

{and a similar one for B }

2/3/2014
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Full Maxwell Equations in Matter

For non-conducting or poorly-conducting media, i.e.
insulators/ dielectrics- the first two terms on the RHS are
important - they explain many optical effects such as
dispersion (frequency-dependence of the index of refraction),
absorption . . .

—_ —_— —

Note that the Vpbound =-V (V'P) term is often zero- P uniform

oP, P - 0. 0 . 0.
+ +——and V=—x+—y+—=Z
ox oy Oz ox Oy 0oz

v _'_an

e.g. for Poc E (i.c. P proportional to E) where: E(Z,f) =FE_ cos (kZ— ot + 5)2
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Full Maxwell Equations in Matter

For good conductors (e.g. metals), the conduction term

—

OJ oo 65_17:
ar 1%

Ko

is the most important, because it explains the opacity of
metals (e.g. in the visible light region) and also explains the
high reflectance of metals.
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Dispersion Phenomena in Linear
Dielectrics

In a non-conducting, linear, homogeneous, isotropic
medium there are no free electrons

(ie. Ppo(F)=0)

Atomic electrons are permanently bound to nuclei of atoms
comprising the medium. There exist no preferential
directions in such an {isotropic} medium.

Suppose each atomic electron (charge -e) in a dielectric is
displaced by a small distance 7 from its equilibrium position,
e.g. by application of a static electric field E(7).
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Dispersion Phenomena in Linear
Dielectrics

The resulting macroscopic electric polarization (aka electric
dipole moment per unit volume) is:

—

P(#)=np(7)

where:

ne = (atomic) electron number density (# e/ m3)
and the induced atomic (molecular) electric dipole moment is:
p(F)=—eF (here-where 7 is the vector displacement of

the atomic electron from its equilibrium { E= ()} position.
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Dispersion Phenomena in Linear
Dielectrics

Thus:

P(F)=np(F)=-ner

The atomic electrons are each elastically bound to their
equilibrium positions with a force constant k, The force
equation for each atomic electron is thus:

—

F,(F)=—eE(F)=kr

[
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Dispersion Phenomena in Linear
Dielectrics

The static polarization is therefore given by:

k

€

— F (7 2 -
f’(?):nef)(?'):—nee?:—nee( EE(”)]zﬂe E(7)

If the E-field varies with time

-~y
Lo

E=E(7,1)=E,¢"

Due to a monochromatic EM plane wave incident on
an atom- the above relation is incorrect !

2/3/2014
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Lorentz Model

A more correct way to treat this situation is to consider
the bound atomic electrons as classical, damped, forced
harmonic oscillators -described by inhomogeneous 2nd-
order differential equation

'
—

mF +m yF+kF =—ek (7

2= =
m, 0 ;gt) +m_y 8}‘55!) + kj(t) =

v

n.b. we have neglected the

ev x B (<< eE) term here...
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Lorentz Model

Velocity-dependent
damping term
¥ = damping constant

Potential Force
(binding of atomic
electrons to atom)

Driving Force

m_=electron mass =9.1x10°' kg
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Lorentz Model

Suppose the driving term varies periodically in time with
angular frequency ®

e
—=

F. (F.t)=—eE (¥ 1) = —ef e 7

because E (F, z‘) =E e "7

n.b. The electric field £ is now complex E:‘

Then the inhomogeneous force equation becomes:

~

m, F+m 7/7'+kr ——eE e'F  with F(Z‘)=F(Z‘)F
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Lorentz Model

In the steady- state, we have:

~

3 =~  _—iot
+m yr +kir=—ek e r

=

m

e

Since 7 physically represents the {vector} spatial displacement
of each atomic electron from its equilibrium { £ =0 } position,
then:

—Iiaf ™

?(t)zi‘ (0)e™ 7  {n.b. ?F:'(Z‘) 1s now complex}
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Lorentz Model

Thus: ‘mj + mey;' + kj = —eE’ae"im’F
2= = ~
e 5;:) Ty aragt) +kF(t)=—eL(F,1)

07, 7 —iom, 7, 7 4k, 7 = e, 7

2 _ _ =
(mea) —k, +zcomey)ro = ek
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Lorentz Model

Divide this equation through out by m, :

[ | (ke] | ]~
" — +iwy |1,
| ",

Define:
2 ( k e ] ke
W, = or: |,

m

e

o

€
m
e

e

characteristic/natural resonance frequency.
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Lorentz Model

or.

e » . .
( /ne ) Eo Atomic electron spatial

5 SR displacement amplitude
@ =, -I-I}/Ct)] {n.b. complex!'}

i(w):[

—

Now: P(F,l‘) — —nee;’(t) = —n_er, (a)) g i

P is now complex and frequency-dependent!!!
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Frequency Dependence of

Polarization
Thus s
T —n, (GZQE)(EOE_M?) . n, (%e) P
(r, )_ [a)z—a)ﬂz—ki}/a)] - [a){f—wz—iya)] (r, )
Form =0

2 2
SN V7% P /% MY
P(a)z()): 5 2 Er= 2 Er=|—=|Er
W, k, k,
mﬁ'
Static polarization f’(m =0) is in-phase with E
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Frequency Dependence of
Polarization

Note also that the phase of (complex) I:’(m) depends on the

frequency @ —1i.e. f’(a)) lags behind E‘(a)) by a phase angle

Im(P rt n.b. The damping constant ¥
b (a)) =tan’ |: (—- ( )):l =tan " {( 2769 > ):l — has the same units as @ :
r,

radians/sec

=

When: O<,=[——, ¢ >0 :>f’lags;§"
m

When: @ > @), =

k o3 ~
=, % <0 = P leads E
me
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Frequency Dependence of
Polarization

e From the above formula- note that if the damping constant,

y =0 then @, =0, the polarization f;(w) is then always in-phase

b

with E(w) because if y =0, then Sm (f’(F 4 )) =0

* The electric polarization P(o)is purely real! Physically - a
damping constant of y = 0 means that the width I' = y/ 20
of the atomic/molecular resonance is infinitely narrow,

« And there are no dissipative processes present at the
microscopic atomic/molecular level in this macroscopic
medium - y has SI units of radians/second.
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Frequency Dependence of
Polarization

Note further that E in the above expression is actually the
internal macroscopic electric field of the dielectric: E,

nt

L L

—= —

E=E,_=FE,_+E,

inf

The sum of the macroscopic external applied electric field
and the macroscopic electric field due to the polarization of
the dielectric medium.

The electric field due to polarization of the medium is:

E:Y :Ez'm — Lot _Lf)
3¢,

(e 4

!

a=lt

E,=-

P

1L
3&,
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Frequency Dependence of
Polarization

e\ /m =1
) [mj — @’ —i}fa)] Fer 3¢,

Therefore:

gl
g vl

where:
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Frequency Dependence of
Polarization

Now solve for P : Skipping writing out some of the complex
algebra, we obtain:

()
jard € m
P = -

2 2 . ext
|:L'01 — —zya)]

iy

effective angular

2
_ 2 [ ne _ resonance frequency
o=, |0, — - .
3¢.m, of bound atomic

electrons
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Relation Between Complex
Polarization and Electric Field

This formula is identical e.g. to the {complex} displacement
amplitude formula for a driven harmonic oscillator and for
many other physical systems exhibiting a {damped}
resonance-type behavior.

Now if E_, = E- field associated with a monochromatic
plane EM wave propagating in a dielectric medium:

(e
—

E, (zt)= E "=

O 2

Because of the linear relationship between the polarization P and

e
—=

E,(z,1)= E %

2

2

'

for EM plane wave
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Relation Between Complex
Polarization and Electric Field

—=

Gauss’ Law becomes since P, (?‘) =0

6.5‘@:}‘ — _giﬁ'f) = ﬁbound =0

o

The wave equation for a dielectric medium with

s
—»

ﬁﬁee(F)ZO and J, =0

2
L aZEeﬂ = U azP = . azEm‘ with: — = go#o

VE
o or ° o [caf—a)z—i}/co] or’ C
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Relation Between Complex
Polarization and Electric Field

Or: B N =
= 1 n e | O°E
VE =—|1+| —= ext
et 2 e m [ 2 _ ot —i ] ot”
oM, )| o —@” —iyw
with: 2
, ne
) =,(0) —
J 3e m

The general solution to this dispersive wave equation is
of the form:

o~
—»

E_ (z,t) = E’oef(
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Frequency Dependent Complex
Wave-number

and ]Ez—m_z_l_|_(ﬁeez] 1

2 2 -
g,m, o —@" —iyo

It shows that the complex wave-number is explicitly
dependent on the angular frequency o, i.e.

E(a)) =k(o)+ix()
Thus a monochromatic plane EM waves propagating in a

dispersive dielectric medium are exponentially attenuated,
because of complex wave-number

— —

E_(z1)= Eoei(&_m) = E’ae_mei(hm) :
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Frequency Dependent
Susceptibility

Pt

That is the K(a)) = Sm(k(a}))

term corresponds to absorption/dissipation in the macroscopic
dielectric, and is proportional to the damping constant vy .

Note that we can also write:

~
—_—

P(z,t,w)=¢,7, (w)f’m (z,t,)

The macroscopic electric susceptibility J, (co)

is also now complex and is also frequency-dependent, e.

7.(0)=x.(0)+ig, ()
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Frequency Dependent
Susceptibility

Where ge(w)ZSm(je(a)))
term corresponds to absorption/dissipation in the
macroscopic dielectric and is physically related to the
damping constant y . The corresponding dissipative energy

losses at the microscopic, atomic/molecular level in the
macroscopic dielectric ultimately wind up as heat!
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Frequency Dependent
Susceptibility

~ The complex electric susceptibility is:

7 (0) [ 2 | (o) it (o)

2 2 -
g m, [a)l — —1750]

Before proceeding this, we need to discuss another aspect of
our model - namely that in most linear dielectric materials,
the atoms comprising the material are multi-electron atoms,
and consequently there are many different binding energies -
the outer shell atomic electrons are weakly bound- hence have

small k, and thus small o, =k, /m, ,
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Dispersion In Complex Dielectric
Media

Whereas the inner-shell electrons are much more tightly

bound- hence have larger k, - larger o, =.\/k,/m,

In complex media- dielectrics with more than one kind of
atom- electrons can be shared between atoms - i.e. they are
bound to molecules - which can be weakly bound in some
molecules.

There can be also be molecular resonances e.g. in the
microwave and infra-red regions of the EM spectrum -
atomic resonances are typically in the optical and UV
regions (for the outer-most shell electrons), as well as in the
far UV and x-ray regions (for the inner-shell electrons)!
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Dispersion In Complex Dielectric
Media

Allowing for all such resonances - we can write the complex
electric polarization p as a summation over all of the
resonances present in the linear dielectric as follows:

ne’ | S =

= e J
Ban)=" S T, (=
m, j=1 I:(Ulj — —Zyjﬂ):l
2 ”3’32 ké'j
where: @;; =, |@,; — and: @,; =
3gﬂm€ e

S =oscillator strength of jth resonance, defined such that
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Dispersion Complex Dielectric
Media

osC __

Physically: J;" = fractional strength of the jth resonance
and yj = 2n*width of the jth resonance.

Thus, we see that the complex electric susceptibility

7.(0)= 2.(0) + £, ()
s 1) 20| S L e (o) i (0

2 2
j=1 [Cf)lj — @ —zy}.w]
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Frequency Dependent Complex
Electric Permittivity

The complex electric permittivity
E(w)=¢, (1 + 7. (w)) =¢(w)+ig(w)

of a dispersive, linear dielectric medium is:

2 . ose
ne /;
L = D
em, )| 5 I:"’U — @ =1y .

§(w)=go(l+je(m))=gﬂ Eg(a))+ig(m)

with the relations: g(a)) — ER@(E (a))) =g (1 + X (a)))
and g(a))zﬁm(é"(a)))za‘oé’e(w)
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Dispersive Wave Solution

Thus, monochromatic plane EM wave solutions to the
dispersive wave equation are of the form:

= z'(fa;:—mt)

E’(z, l, a)) = e

With complex wave-number

E(a))=k( —I—H{ \/5

Thus: | = = (ko = _ (kz—o
E_ (zt,0)=E*™ =E % ¢t

ext 0 o L J

exponential

damping

of EM wave
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Frequency Dependent Complex
Refractive Index

Introducing a frequency-dependent complex wave-number

k (CO) =k (60) + 1K ( CU) is equivalent to introducing a
frequency-dependent complex index of refraction

fi(w)=n(w)+in(w)

For a linear, dispersive dielectric, the complex index of refraction
and complex wave-number are related to each other by:

i(0)=(2)io)
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Frequency Dependent Complex
Refractive Index

(k{) (o))~

—

n(m)ﬂ-n(m)):[E)n(m)”[ﬂjq(m)

C

()= 2 (o) ant x(@)=[2]n(0)

The complex index of refraction is related to the complex
electric permittivity (c:-‘( a)) =1+ 7 ( w)

and thus the complex electric susceptibility via the relation

(w)= \/E(w)/ga = \/1+ 7. ()
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Frequency Dependent Complex
Refractive Index

Squaring both sides:

SRR Y P,

2 2 -
g, em, )| 3 [wlj—co —zyfja)]

( 2 B oscC _\
ne Z f

[ — /

i)

j=l1 |:w12j - wz _iij]_)
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Frequency Dependent Complex
Refractive Index

i (@) = (ET P (o) = IJ{ n ¢ ) 3 1o

2 2 -
= [colj - — z}/jw]

(n(@)+in(o)) =n* (0)+2in(0)n(w) -1 (o)

Using the “standard”
trick: 7 =

1 1 x+iy Xx+iy
— ~|

X—1y - x—iy x+iy x°+y
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Frequency Dependent Complex
Refractive Index

~ X ~ (= y
me(z):xz_l_yz Jm(z)=x2+y2

Then equating the real and imaginary parts of the LHS & RHS
of the above equation, we obtain the real part as:

nz(a))—ﬂz(&))ZI-l-nee Zn: L (wlj_w)

2
E m -__ 2 2 2 2
o' e | J1 |:(COU a ) +:PjC() :|
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Frequency Dependent Complex

Refractive Index

And the imaginary part as

|y

]

J=1

osC
Ji @

(@ -0") +7i0"

2 equations and 2 unknowns: {n(o ) & n (o)}

— solve for n(w)&n(w )

First define: « (a)) = [

E M

2
ne :}
e
o e
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Frequency Dependent Complex
Refractive Index

P (o)

2
[ ne
80 mﬂ

s

2

j=1

e (7 j‘”)

(% -0") +7i0"

(n.b. B, (o) >0 - is always positive)

Then:

and

7 (@) (@) =1+a, (o)

2n(0)1()=B.(0)|= [n(o)

p.()/2n(w)
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Frequency Dependent Complex

Thus:

Refractive Index

7 (o) 242] {1+, (o)

< multiply equation through by n’ (a))

Or:

2/3/2014
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Frequency Dependent Complex
Refractive Index

Define: x=n’ (a))
Then:
2
xz—(l+a{)x—(ﬂ"j -0 ax2+bx+c=0|
§ 2
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Frequency Dependent Complex
Refractive Index

Solutions or roots of this quadratic equation are of the form:

x_—bi\/bz—ﬂrac
2a
(B
+(1+Cfx)+\/(l+%) +4[?) : —
. 2 :E[(1+cxx)i\/(l+ax) +ﬁx]

1.e.

1 | N g\ b, 2
X_E(Hax) 1_\/1+((1+ax)J n.b. the term: [(1"'0%)} >0
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Frequency Dependent Complex
Refractive Index

— Must select +ive root on physical grounds - since x= n? > 0

, 1

x=r’=_(1+) ”V”((lfx%)T

Finally- we obtain:

@ elin(lm))= 1+a (o + |1+ ﬁx(m) 2
n()=Re(ii(w)) \[ ]1 \/1 ((1+a:x(a)))}
= :

Complex index of refraction:

2/3/2014 169



Frequency Dependent Complex
Refractive Index

U(m)zs,,,(ﬁ(m))zzzggz ()2 -
+a, (o) (o)
[1 . J1+\/1+[(1+ax(a)))] |
Where: J ( 2 2)
= nee 3 - a)lj_a)
o (m)—{ggme _;[(wfj_wz)2+7fw2]
o) =| [ - ﬁsc(yfw)
B, (o) {gome _;[(wfj_mz)zw,‘?wz]
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Frequency Dependent Complex
Refractive Index

Explicit form of n(w ) and 1 (® ) is quite tedious - but these
can be reasonably-easily coded up and plots of n(® ) vs. @
and n (o ) vs. ® can be obtained. We can also then obtain
the following:

The complex relations: /(@) =n(@)+in ()
M Ee)=k(o)in()=( 2]i(o)
and thus: k(w)=(§)n(M) K(m):(ﬂjn(fﬂ)
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Frequency Dependent Intensity

The frequency-dependent intensity/irradiance
I(z, aJ) = < g(z,t, a))D

of a monochromatic plane EM wave propagating in a linear,
dispersive dielectric is also exponentially decreased by a
factor of 1/e=e™! of its original value in going a characteristic
distance of z= 1/a (0 )=1/ 2x (®) ={,4n(®). Defining:
loien(®@) =1/a (0 )=1/ 2k (®) = intensity attenuation length -
which is analogous to the skin depth, 6, =1/x for
conductors. However, note that 0.. =1/« is associated with
the attenuation of the E and B-fields, whereas attenuation

effects in intensity/irradiance, [ varies as the square of the
E-field:
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Frequency Dependent Intensity

|I(z) = <‘§(z, t)D oc <Ejﬂ (z,t)>

hence: [(2) < Eje‘z’f("")z _ Eje-ﬂ(ﬂ’)z

W

In the exponential z-dependent terr ;2% (@)z

since the energy densit(ies) (u EM (Z N )>

And intensity ](Z) = <‘§(z,l‘)‘>

g . . —2 z
are both proportional to E? i.e. both proportional to € K@) ,
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Frequency Dependent Absorption
and Extinction coefficient

we define the frequency-dependent absorption coefficient

a(w)=2k(w)= l/faﬁen ()|

Similarly, for the frequency-dependent complex index of

refraction |
ﬁ(a)) = n(w)+z'77(a))

we can also define the frequency-dependent extinction
coefficient:

&(w)=2n()
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Frequency Dependent Absorption

coefficient

thus: a(a)) _

The absorption coefficient:

x(0)= 2x()=( &

C

e
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Frequency Dependent Extinction
coefficient

The extinction coefficient: éf (w) =27 ((g)

Typical values of the (real) index of refraction n(w ) for
solids and liquids are n(o )=1.3-1.7 in the visible light
region of EM spectrum, e.g. n () =15, n o (0) =1.3,
(w)=1.7.

glass
nplastic

Then if index of refraction of glass in the visible light region:

n(m)=V[l+ﬂ;(w)} 1+\/1+[1i£2)}2 15
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Frequency Dependent Refractive

Index
Then:
nz(m)=[l+a£(a))] 1+J1+£1i5‘2))] —(1.5)} =2.25
Thus: [

(1—|—a'x(60)) 1+\/1+( ﬁx(ﬂi’) Jz .

1+a, (o)

One equation & two unknowns: «, (Cf?) and /3 (@)

— Need another relation / independent constraint!!
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Frequency Dependent Refractive
Index

Note that glass doesn’t have significant absorption in the
visible light region -but such solid / liquid materials have
absorption coefficients for visible light in the range of:

a(w)= Zk(a)):(%]n(w) ~1072 =107 m™

lintensity I falls off to 1/e=e™! =0.3679 of initial (z = 0) value
after light travels a distance ~ 10 - 100 m

So suppose: |a(w)=2k(®)= [EJ n(®)=10"m"
C

in glass for visible light, ®,;, =10'° radians / sec
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Frequency Dependent Refractive
Index

8
n(m)=(£)cx(m):(3xm ]101 =3x10° <1
w

1016

Now: U(w)=[5x (‘D)J

2n(a))

n(o ) ~ 1.5 for glass in visible light range of EM spectrum.

1(0)=24.(0)  or

p.(@)=3n(»)=9x10" <<1in the visible light range for glass
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Frequency Dependent Refractive
Index

Then: | 2|
(1+a,(®)) 1+\/1+[1f;i2))J =4.50

Now solve for &, '(-‘1?)

RO REN
: \]l [l+ax(m)J _45%1+cxx(m))

Has a solution when: |, (@)=1.25| for |B,(®)=9x10" < «, (@)
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Refractive Index of Glass

Thus, for 7(@)=1.5 glass in the light region of the EM spectrum

with e, (@)=1.25 and g, (@)=9x10" 155 an explicit check we see that
n(w)=1.3

That is the refractive index of a glass in the visible light region
of EM spectrum
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