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EM wave propagation inside matter - in regions with no free 
charges and no free currents ( the medium is an insulator/non-
conductor).

For this situation, Maxwell’s equations become:
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The medium is assumed to be linear, homogeneous and 
isotropic- thus the following relations are valid in this 
medium:

and

 ε = electric permittivity of the medium.
 ε = εo (1 +χe), χe = electric susceptibility of the medium.
 μ = magnetic permeability of the medium.
 μ = μo (1 +χm), χm = magnetic susceptibility of the medium.

 εo = electric permittivity of free space = 8.85 × 10−12 Farads/m.

μo = magnetic permeability of free space = 4 × 10−7 Henrys/m.
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Maxwell’s equations inside the linear, homogeneous and 
isotropic non-conducting medium become:

In a linear /homogeneous/isotropic medium, the speed of 
propagation of EM waves is:
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The E and B fields in the medium obey the following wave 
equation:

52/3/2014



For linear / homogeneous / isotropic media:

If thus
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Note also that since are dimensionless

quantities, then so is

Define the index of refraction - a dimensionless quantity- of the 
linear / homogeneous / isotropic medium as:
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For linear / homogeneous / isotropic media:

because

For many (but not all) linear/homogeneous/isotropic 
materials:

( True for many paramagnetic and diamagnetic-type materials)

Thus
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The instantaneous EM energy density associated with a 
linear/homogeneous/isotropic material

with
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The instantaneous Poynting’s vector associated with a 
linear/homogeneous/isotropic material

The intensity of an EM wave propagating in this medium is:

Where
102/3/2014



The instantaneous linear momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

The instantaneous angular momentum density associated with an
EM wave propagating in this medium is:
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Total instantaneous EM energy:

Total instantaneous linear 
momentum:

Instantaneous EM 
Power:

Total instantaneous angular 
momentum:
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Suppose the x-y plane forms the boundary between two linear media. A 
plane wave of frequency ω- travelling in the z- direction and polarized in the 
x- direction- approaches the  interface from the left
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Incident EM plane wave (in medium 1):

Reflected EM plane wave (in medium 1):
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Transmitted EM plane wave (in medium 2):

In this situation the E -field - polarization vectors are all 
oriented in the same direction

or equivalently:
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At the interface between the two linear / homogeneous /
isotropic media -at z = 0 in the x-y plane- the boundary
conditions 1 – 4 must be satisfied for the total E and B -fields
immediately present on either side of the interface:
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( ٣ to x-y boundary, i.e. in the +zˆ direction)

(║ to x-y boundary, i.e. in x-y plane)
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For plane EM waves at normal incidence on the boundary at z =
0- lying in the x-y plane- no components of E or B (incident,
reflected or transmitted waves) - allowed to be along the ±zˆ
propagation direction(s) - the E and B-field are transverse fields -
constraints imposed by Maxwell’s equations.

BC -1) and BC- 3) impose no restrictions on such EM waves since:

⇒ The only restrictions on plane EM waves propagating with
normal incidence on the boundary at z = 0 are imposed by BC-2)
and BC- 4).
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At z = 0 in medium 1) (i.e. z ≤ 0) we must have:

While at z = 0 in medium 2) (i.e. z ≥ 0) we must have:
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BC 2) -Tangential E is continuous @ z = 0) requires that:

BC 4) -Tangential H is continuous @ z = 0) requires that:
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Using explicit expressions for the complex E and B fields 

The above boundary condition relations become
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Cancelling the common e−iωt factors on the LHS & RHS of
above equations - we have at z = 0 ( everywhere in the x-y
plane- must be independent of any time t):
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→ Solve above equations simultaneously for

Let us define:
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BC 4) -Tangential H continuous @ z = 0- relation becomes:

BC 2) -Tangential Ε continuous @ z = 0 - gives:

BC 4) -Tangential H continuous @ z = 0- reduces to

with
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Add and Subtract BC -2) and BC- 4) relations:

Insert the result of eqn. (2+4) into eqn. (2−4):
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Now if the two media are both paramagnetic or
diamagnetic- such that

Common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then
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Then

We can alternatively express these relations in terms of
the indices of refraction n1 and n2:
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Now since:

δ = phase angle (in radians) defined at the zero of time - t = 0

Then for the purely real amplitudes
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The relations between real amplitudes become:
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Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic
media for for the following cases:
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What fraction of the incident EM wave energy is reflected ?
What fraction of the incident EM wave energy is
transmitted?
In a given linear/homogeneous/isotropic medium with

The time-averaged energy density in the EM wave is:
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The time-averaged Poynting’s vector is:

The intensity of the EM wave is:

The three Poynting’s vectors associated with this problem
are such that
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For a monochromatic plane EM wave at normal incidence 
with 

The three Poynting’s vectors associated with this problem are
such that
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Take the ratios                                                    - then square them:

and
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Define the reflection coefficient as:

Define the transmission coefficient as:
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For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with

Reflection coefficient:

Transmission coefficient:
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But:

Thus Reflection and Transmission  coefficient:
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Thus:

⇒EM energy is conserved at the
interface/boundary between two L/H/I media
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A monochromatic plane EM wave incident at an oblique
angle θinc on a boundary between two linear/
homogeneous/isotropic media, defined with respect to the
normal to the interface- as shown in the figure below:
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The incident EM wave is:

The reflected EM wave is:

The transmitted EM wave is:
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All three EM waves have the same frequency-

The total EM fields in medium 1
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Must match to the total EM fields in medium 2:

Using the boundary conditions BC1) → BC4) at z = 0.

At z = 0- four boundary conditions are of the form:

They must hold for all (x,y) on the interface at z = 0 - and also must
hold for all times t. The above relation is already satisfied for
arbitrary time, t - the factor e−iωt is common to all terms.
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The following  relation must hold for all (x,y) on interface at 
at z = 0:

When z = 0 - at interface we must have:

@ z = 0 
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The above relation can only hold for arbitrary (x, 
y, z = 0) iff ( = if and only if):
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The problem has rotational symmetry about the z –axis- without 
any loss of generality - choose k to lie entirely within the x-z 
plane- that is no component of k in y-direction as shown in the 
figure on next slide

The transverse components of are all equal and 
point in the +xˆ direction.
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The incident, reflected, and transmitted wave vectors form a plane
- called the plane of incidence- which also includes the normal to
the surface -here the z axis.

From the figure- we see that:

Angle of Incidence = Angle of Reflection Law of 
Reflection!
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For the transmitted angle - θtrans we see that:

In medium 1):

where

and

In medium 2):
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Which can also be written as:

Since θtrans refers to medium 2) and θinc refers to medium 1)

532/3/2014



Using three laws of geometrical optics we can see that :

everywhere on the interface at z = 0 -in the x-y plane

Thus 

everywhere on the interface at z = 0 -in the x-y plane and
valid also for all time(s) t, since ω is the same in either
medium (1 or 2).
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The BC 1) → BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two
linear/homogeneous/isotropic media become:

BC 1): Normal ( z-) component of D continuous at z = 0 (no
free surface charges):

BC 2): Tangential (x-, y-) components of E continuous at z = 0:
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BC 3): Normal (z-) component of B continuous at z = 0:

BC 4): Tangential (x-, y-) components of H continuous at
z = 0 (no free surface currents):

Note that in each of the above, we also have the relation
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For a monochromatic plane EM wave incident on a
boundary between two L / H/ I media at an oblique angle
of incidence - three possible polarization cases to consider:

Transverse Electric (TE) 
Polarization

Transverse Magnetic 
(TM) Polarization
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•A monochromatic plane EM wave is incident on a boundary
at z = 0 -in the x-y plane between two L/H/I media - at an
oblique angle of incidence.
•The polarization of the incident EM wave is transverse (٣ )
to the plane of incidence (containing the three wave-vectors
and the unit normal to the boundary nˆ = +zˆ ).
•The three B-field vectors are related to their respective E -
field vectors by the right hand rule - all three B-field vectors
lie in the x-z plane (the plane of incidence)
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The four boundary conditions on the complex E and B
fields on the boundary at z = 0 are:
BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

BC 2) Tangential (x-, y-) components of E continuous at z = 0:
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BC 3) Normal (z-) component of B continuous at z = 0:
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Using the Law of Reflection on the BC 3) result:

Using Snell’s Law / Law of Refraction:

Reduces to  BC2)
612/3/2014



BC 4) Tangential (x-, y-) components of H continuous at z = 0 
(no free surface currents):

Using the Law of Reflection on the BC 4) result:
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From BC 1) → BC 4) actually have only two independent 
relations for the case of transverse electric (TE) polarization:

Define:

Then eqn. 2) becomes:
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Adding  and subtracting Eqn’s  1 &2 to get:

Plug eqn. (2+1) into eqn. (2−1) to obtain:
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with
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Incident Intensity

Reflection Intensity

Transmission Intensity
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•A monochromatic plane EM wave is incident on a boundary
at z = 0 in the x-y plane between two L / H/ I media at an
oblique angle of incidence.
•The polarization of the incident EM wave is now parallel to
the plane of incidence –(containing the three wave-vectors and
the unit normal to the boundary nˆ = +zˆ ).
• The three B -field vectors are related to E -field vectors by the
right hand rule –then all three B-field vectors are ٣ to the
plane of incidence {hence the origin of the name transverse
magnetic polarization}.
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The four boundary conditions on the complex E and B-fields
on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

BC 2) Tangential (x-, y-) components of E continuous at z = 0:
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BC 3) Normal (z-) component of B continuous at z = 0:

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):
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From BC 1) at z = 0:

From BC 4) at z = 0:

where:
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From BC 2) at z = 0:

where:

Thus for the case of transverse magnetic (TM) polarization:

Solving these two above equations simultaneously, we obtain:
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 Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.

 Comparing results for TE vs. TM polarization for the
cases of external reflection (n1 < n2) and internal
reflection n1 > n2)

Comment 1):
 When (Erefl /Einc)< 0 - Eorefl is 180o out-of-phase with Eoinc

since the numerators of the original Fresnel Equations
for TE & TM polarization are (1−αβ ) and (α − β )
respectively.
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Comment 2):
•For TM Polarization (only)- there exists an angle of incidence
where (Erefl /Einc)= 0 - no reflected wave occurs at this angle for
TM polarization!
•This angle is known as Brewster’s angle θB (also known as the
polarizing angle θP - because an incident wave which is a linear
combination of TE and TM polarizations will have a reflected
wave which is 100% pure-TE polarized for an incidence angle
θinc =θB =θP !!).
•Brewster’s angle θB exists for both external (n1 < n2) & internal
reflection (n1 > n2) for TM polarization (only).
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From the numerator of -the originally-derived

expression for TM polarization- when this ratio = 0 at

Brewster’s angle θB = polarizing angle θΡ - this occurs when (α

−β)=0 , i.e. when α = β .

and Snell’s Law:
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So what’s so interesting about this???

Comment 3):
For internal reflection (n1 > n2) there exists a critical angle of
incidence past which no transmitted beam exists for either TE
or TM polarization. The critical angle does not depend on
polarization – it is actually defined by Snell’s Law:

852/3/2014



For no transmitted beam exists → incident 

beam is totally internally reflected.

For the transmitted wave is actually exponentially 

damped – becomes a so-called:
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 Free charge and free currents are zero for propagation
through a vacuum or insulating materials such as glass or pure
water.
 Inside a conductor- free charges can move around in
response to EM fields contained therein- free current is not
zero.
 Assume that the conductor is linear/homogeneous/ isotropic
media.
 From Ohm’s Law

where σC = conductivity of the metal conductor (Ohm-1/m) and σC

=1/ ρC where ρC = resistivity of the metal conductor (Ohm-m).
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Assume that the linear/ homogeneous/isotropic conducting
medium has electric permittivity ε and magnetic permeability
μ. Maxwell’s equations inside such a conductor are thus:
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Electric charge is conserved- thus the continuity equation 
inside the conductor is:

thus:

1st order linear, homogeneous differential equation
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The general solution of this differential equation for the free 
charge density is of the form:

A damped exponential!!!
The continuity equation inside a conductor tells us that any free
charge density initially present at time t = 0 is exponentially
damped in a characteristic time = charge relaxation
time.
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Maxwell’s equations for a charge-equilibrated conductor
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These equations are different from the previous
derivation(s) of monochromatic plane EM waves
propagating in free space and in linear/homogeneous/
isotropic non-conducting materials. Re-derive the wave
equations for E and B. Apply ׏ × ( ) to equations 3) and 4):

We get

and
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General solution(s) - are usually in the form of an oscillatory
function times a damping term ( a decaying exponential) – in the
direction of the propagation of the EM wave. A complex plane-
wave type solutions for E and B associated with the above wave
equation(s) are of the general form:
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With (frequency-dependent) complex wave number:
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The imaginary part of k that is - κ= Աm(k) results in an
exponential damping of the monochromatic plane EM wave with
increasing z:

These solutions satisfy the above wave equations for any 
choice
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The characteristic distance over which E and B are
reduced to 1/e=0.3679- of their initial values (at z = 0)
is known as the skin depth
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 The above plane wave solutions satisfy the above wave 
equations(s). 

 Maxwell’s equations rule out the presence of any 
longitudinal i.e, z- component of E and B.

 E and B are purely transverse waves (as before)- even in a 
conductor.

 Consider a linearly polarized monochromatic plane EM
wave propagating in the +zˆ -direction in a conducting
medium.

then
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The complex wave-number
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Then we see that:

has

has
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inside a conductor, E and B are no longer in phase with each other!!!

Phases of E and B

With phase difference:

We also see that:
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The real/physical E and B fields associated with linearly 
polarized monochromatic plane EM waves propagating in a 
conducting medium are exponentially damped:
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where

and
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The real part of k- determines the spatial wavelength λ (ω)-the
propagation speed v(ω ) and also the index of refraction
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Definition of the skin depth in a conductor:
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In the presence of free surface charges σ and free surface
currents- the BC’s for reflection and refraction at e.g. a
dielectric-conductor interface become:

BC 1): (normal D at interface):

BC 2): (tangential E at interface):

BC 3): (normal B at interface):

BC 4): (tangential H at interface):

1092/3/2014



Where  n21→ is a unit vector ٣ to the interface - pointing 
from medium (2) into medium (1).

Incident EM wave [medium (1)]:

and
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Reflected EM wave [medium (1)]:

and

Transmitted EM wave [medium (2)]:

and

complex wave-number in (conducting) medium (2) is:
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In medium (1) EM fields are:

In medium (2) EM fields are:
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Apply BC’s at the z = 0 interface in the x-y plane:

but
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Thus we obtain:

with

The relations for reflection/transmission of EMW at normal incidence on a
non-conductor/conductor boundary are identical to those obtained for
reflection / transmission of EMW at normal incidence on a
boundary/interface between two non-conductors- except for the replacement
of β with a complex β.
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For the case of a perfect conductor- the conductivity

Thus, for a perfect conductor, we see that:
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For a perfect  conductor the reflection and transmission 
coefficients are:

We also see that for a perfect conductor - for normal
incidence- the reflected wave undergoes a 180 degree phase
shift with respect to the incident wave at the interface at z = 0
in the x-y plane. A perfect conductor screens out all EM
waves from propagating in its interior.
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For a good conductor- the conductivity is large- but finite. The 
reflection coefficient R for monochromatic plane EM waves at 
normal incidence on a good conductor is not unity- but close 
to it. {This is why good conductors make good mirrors!}. 

Where
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Define

Thus, the reflection coefficient R for monochromatic plane 
EM waves at normal incidence on a good conductor is:

with
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Obviously, only a small fraction of the normally-incident
monochromatic plane EM wave is transmitted into the good
conductor- since

Note that the transmitted wave is exponentially attenuated
in the z-direction; the E and B fields in the good conductor
fall to 1/e of their initial {z = 0} values (at/on the interface)
after the monochromatic plane EM wave propagates a
distance of one skin depth in z into the conductor:

1202/3/2014



Note also that the energy associated with the transmitted
monochromatic plane EM wave is ultimately dissipated in the
conducting medium as heat.
In metals - the transmitted wave is absorbed in the metal- we
can only study the reflection coefficient R.
A full description of the physics of reflection from the surface
of a metal conductor as a function of angle of incidence-
requires the use of a complex dispersion relation

1212/3/2014



The electromagnetic state of matter at a given observation point 
r at a given time t is described by four macroscopic quantities:

1.) The volume density                 
of free charge:

2.) The volume density 
of electric dipoles:

3.) The volume density 
of magnetic dipoles:

4.) The free electric current 
/unit area:

⇐ electric polarization

⇐ magnetization

⇐ {free} current density
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These four quantities are related to the macroscopic E and B fields by the 
four Maxwell equations for matter
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Then Maxwell’s equations in matter, for
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We also have Ohm’s Law

and the Continuity eqn.

Then applying the curl operator to Faraday’s Law:

We thus obtain the inhomogeneous wave equation:

{and a similar one for B }
1262/3/2014



For non-conducting or poorly-conducting media, i.e.
insulators/ dielectrics- the first two terms on the RHS are
important – they explain many optical effects such as
dispersion (frequency-dependence of the index of refraction),
absorption . . .

Note that the                                          term is often zero- P uniform 
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For good conductors (e.g. metals), the conduction term

is the most important, because it explains the opacity of
metals (e.g. in the visible light region) and also explains the
high reflectance of metals.

1282/3/2014
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In a non-conducting, linear, homogeneous, isotropic
medium there are no free electrons

Atomic electrons are permanently bound to nuclei of atoms
comprising the medium. There exist no preferential
directions in such an {isotropic} medium.

Suppose each atomic electron (charge –e) in a dielectric is
displaced by a small distance from its equilibrium position,
e.g. by application of a static electric field .

r

 rE 
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The resulting macroscopic electric polarization (aka electric
dipole moment per unit volume) is:

where:

(atomic) electron number density

and the induced atomic (molecular) electric dipole moment is:

(here- where is the vector displacement of

the atomic electron from its equilibrium position.
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Thus:

The atomic electrons are each elastically bound to their
equilibrium positions with a force constant ke. The force
equation for each atomic electron is thus:
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If the E-field varies with time

Due to a monochromatic EM plane wave incident on
an atom- the above relation is incorrect !

The static polarization is therefore given by:
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A more correct way to treat this situation is to consider 
the bound atomic electrons as classical, damped, forced 
harmonic oscillators -described by inhomogeneous 2nd-
order differential equation 
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Suppose the driving term varies periodically in time with
angular frequency ω

because

Then the inhomogeneous force equation becomes:

with
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In the steady- state, we have:

Since physically represents the {vector} spatial displacement
of each atomic electron from its equilibrium position,
then:
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Thus:
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Divide this equation through out by me :

Define:

characteristic/natural resonance frequency.
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Then:

or:

Now:

Ρ is now complex and frequency-dependent!!!
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Thus

For ω = 0 

Static polarization is in-phase with
1412/3/2014



Note also that the phase of (complex) depends on the

frequency lags behind by a phase angle

When:

When:
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• From the above formula- note that if the damping constant, 

 =0 then P =0, the polarization          is then always in-phase 

with          because if  = 0 , then

 ωP
~

 ωE
~

• The electric polarization is purely real! Physically - a
damping constant of γ = 0 means that the width Γ = γ/ 2π
of the atomic/molecular resonance is infinitely narrow,

 ωP


• And there are no dissipative processes present at the
microscopic atomic/molecular level in this macroscopic
medium - γ has SI units of radians/second.
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Note further that in the above expression is actually the 
internal macroscopic electric field of the dielectric:

E
~

intE
~

The sum of the macroscopic external applied electric field 
and the macroscopic electric field due to the polarization of 
the dielectric medium.
The electric field due to polarization of the medium is:
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Therefore:

where:
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Now solve for       : Skipping writing out some of the complex 
algebra, we obtain:

P
~

where:

=

effective angular 
resonance frequency 
of bound atomic 
electrons
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Now if              - field associated with a monochromatic 
plane EM wave propagating in a dielectric medium:

This formula is identical e.g. to the {complex} displacement
amplitude formula for a driven harmonic oscillator and for
many other physical systems exhibiting a {damped}
resonance-type behavior.

E
~

E
~

ext




Because of the linear relationship between the polarization     andP
~

1472/3/2014



Gauss’ Law becomes since 

The wave equation for a dielectric medium with

and

with:
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Or:

with:

The general solution to this dispersive wave equation is 
of the form:

with complex
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and

It shows that the complex wave-number is explicitly
dependent on the angular frequency ω , i.e.

Thus a monochromatic plane EM waves propagating in a
dispersive dielectric medium are exponentially attenuated,
because of complex wave-number
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That is the

term corresponds to absorption/dissipation in the macroscopic 
dielectric, and is proportional to the damping constant γ .

Note that we can also write:

The macroscopic electric susceptibility

is also now complex and is also frequency-dependent, e.
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term corresponds to absorption/dissipation in the
macroscopic dielectric and is physically related to the
damping constant γ . The corresponding dissipative energy
losses at the microscopic, atomic/molecular level in the
macroscopic dielectric ultimately wind up as heat!

Where

with
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∴ The complex electric susceptibility is:

Before proceeding this, we need to discuss another aspect of
our model – namely that in most linear dielectric materials,
the atoms comprising the material are multi-electron atoms,
and consequently there are many different binding energies –
the outer shell atomic electrons are weakly bound- hence have
small ke and thus small

1532/3/2014



Whereas the inner-shell electrons are much more tightly 
bound- hence have larger ke - larger

In complex media- dielectrics with more than one kind of
atom- electrons can be shared between atoms – i.e. they are
bound to molecules - which can be weakly bound in some
molecules.
There can be also be molecular resonances e.g. in the
microwave and infra-red regions of the EM spectrum –
atomic resonances are typically in the optical and UV
regions (for the outer-most shell electrons), as well as in the
far UV and x-ray regions (for the inner-shell electrons)!
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Allowing for all such resonances - we can write the complex
electric polarization as a summation over all of the
resonances present in the linear dielectric as follows:

P
~

where: and:

oscillator strength of jth resonance, defined such that
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Physically: fractional strength of the jth resonance 
and  γj = 2π*width of the jth resonance.

Thus, we see that the complex electric susceptibility

is:
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The complex electric permittivity

of a dispersive, linear dielectric medium is:

with the relations:

and
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Thus, monochromatic plane EM wave solutions to the
dispersive wave equation are of the form:

With complex wave-number

Thus:
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Introducing a frequency-dependent complex wave-number

is equivalent to introducing a

frequency-dependent complex index of refraction

For a linear, dispersive dielectric, the complex index of refraction 
and complex wave-number are related to each other by:
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and

The complex index of refraction is related to the complex 
electric permittivity

and thus the complex electric susceptibility via the relation
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Squaring both sides:

But:

1612/3/2014



Since:

then:

Using the “standard”
trick:
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and

Then equating the real and imaginary parts of the LHS & RHS 
of the above equation, we obtain the real part as:
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2 equations and 2 unknowns: {n(ω ) & η (ω)}
→ solve for n(ω)&η(ω )

First define:

And the imaginary part as
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(n.b. x (ω ) >0 - is always positive)

Then:

and
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Thus:

⇐ multiply equation through by

Or:
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Define:

Then:

with
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Solutions  or roots of this quadratic equation are of the form:

i.e.

n.b. the term:
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→ Must select +ive root on physical grounds - since x≡ n2 > 0 

Finally- we obtain:

Complex index of refraction:

Frequency Dependent Complex Frequency Dependent Complex 
Refractive Index Refractive Index 
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Where:
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Explicit form of n(ω ) and η (ω ) is quite tedious – but these
can be reasonably-easily coded up and plots of n(ω ) vs. ω
and η (ω ) vs. ω can be obtained. We can also then obtain
the following:

The complex relations:

and

and thus:
and
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The frequency-dependent intensity/irradiance

of a monochromatic plane EM wave propagating in a linear,
dispersive dielectric is also exponentially decreased by a
factor of 1/e=e−1 of its original value in going a characteristic
distance of z= 1/α (ω )=1/ 2κ (ω) ≡atten(ω). Defining:
atten(ω) ≡ 1/α (ω )=1/ 2κ (ω) = intensity attenuation length –
which is analogous to the skin depth, δsc ≡1/κ for
conductors. However, note that δsc ≡1/κ is associated with
the attenuation of the E and B-fields, whereas attenuation
effects in intensity/irradiance, I varies as the square of the
E-field:
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hence:

In the exponential z-dependent term

since the energy densit(ies)

And intensity

are both proportional to E2 i.e. both proportional to
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we define the frequency-dependent absorption coefficient

Similarly, for the frequency-dependent complex index of 
refraction

we can also define the frequency-dependent extinction 
coefficient:
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Since:

thus:

The absorption coefficient:
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The extinction coefficient:

Typical values of the (real) index of refraction n(ω ) for
solids and liquids are n(ω )≈1.3−1.7 in the visible light
region of EM spectrum, e.g. nglass (ω ) = 1.5, n H2O (ω) =1.3,
nplastic(ω)= 1.7 .

Then if index of refraction of glass in the visible light region:
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Then:

Thus:

One equation & two unknowns:

→ Need another relation / independent constraint!!
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Note that glass doesn’t have significant absorption in the
visible light region –but such solid / liquid materials have
absorption coefficients for visible light in the range of:

Iintensity I falls off to 1/e=e−1 =0.3679 of initial (z = 0) value 
after light travels a distance ~ 10 – 100 m 

So suppose:

in glass for visible light, ωvis =1016 radians / sec
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Now:

n(ω ) > 1.5 for glass in visible light range of EM spectrum.

or:

<<1 in the visible light range for glass
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Then:

for

Now solve for

Has a solution when:
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Thus, for glass in the light region of the EM spectrum 

with as an explicit check we see that 

That is the refractive index of a glass in the visible light region
of EM spectrum

Refractive Index of GlassRefractive Index of Glass
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THANK YOU
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