

A powerful tool for biomolecular communication and a 3D encyclopedia of biomolecules

Joel L. Sussman, Eran Hodis & Jaime Prilusky Weizmann Institute of Science

Visit Proteopedia's main page: http://proteopedia.org

Let's explore!

- 1. Go to http://proteopedia.org and type 'Hemoglobin' in the empty white search box on the left-hand toolbar, then press 'Go'.
- 2. Explore the first section. Stop before 'Hemoglobin subunit binding O2'

Let's explore!

Hands-on:

1. Now type '**Peptide**' in the empty white search box on the left hand toolbar and press 'Go'. Explore this page.

Let's explore!

- 1. Navigate back to the 'Main Page' by clicking the link 'Main Page' on the left-hand toolbar.
- 2. Scroll down to 'What can Proteopedia do for me' and in the 'Educators' column, click on the link 'tutorials or molecular scenes', you will be taken to a new page.
- 3. Now click on the link titled 'Structural_Templates'
- 4. Scroll down to the section titled 'Secondary structure elements'.
- 5. Explore this section, but stop before the section titled 'Turns and loops'

STOP (PAUSE) HERE

WHAT ARE WE GOING TO LEARN?

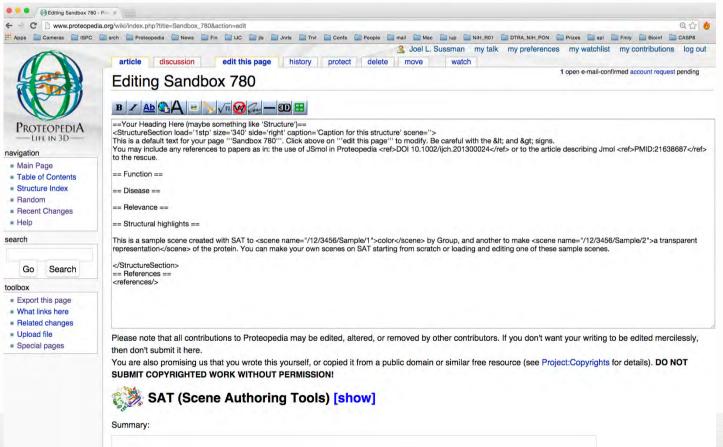
How to create your own pages in Proteopedia, including 3D structures and green scene links.

HOW TO EDIT A PAGE (1)

- 1. Go to http://proteopedia.org
- 2. Use the search box to get to your assigned Sandbox page.
- 3. You will need to log in to edit the page. Log in with a guest account.
- 4. On your assigned Sandbox page, click on "edit this page".
- 5. Then scroll down and click the "save page" button. This will 'create' and save your Sandbox page for further editing..

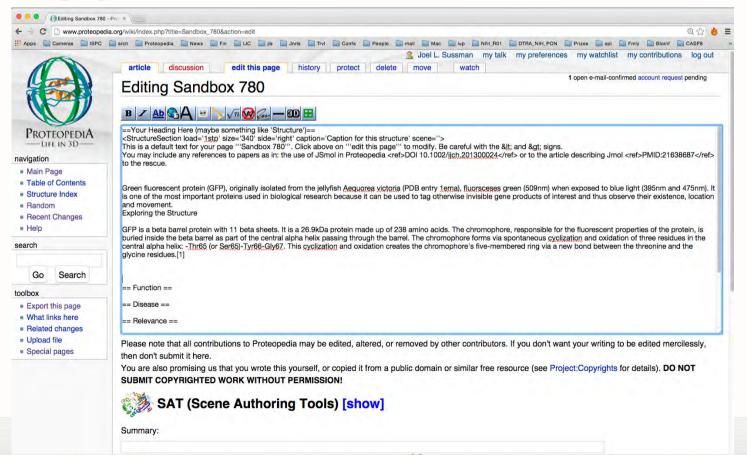
HOW TO EDIT A PAGE (2)

Your page should now look like this:

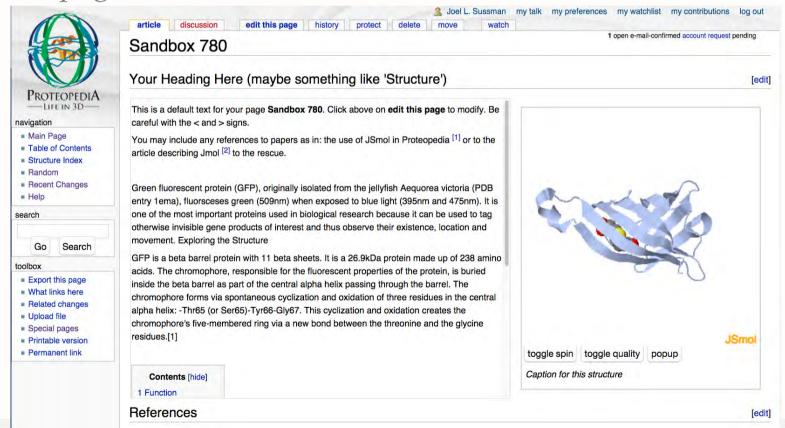


HOW TO EDIT A PAGE (3)

- 1. Open a new browser window and navigate to the page "Sandbox" (with no additional number) in Proteopedia.
- 2. Clink on the link to reach an example page on Green Fluorescent Protein. We will recreate this page in Proteopedia as an example.
 - http://proteopedia.org/w/User:Joel_L._Sussman/GFP_Test_Page
 - -- keep this page open throughout the workshop.
- 3. Select the two paragraphs of text, and copy them (ctrl-v). Start from "Green Fluorescent Protein..." and include the heading "Exploring the Structure" as well as both paragraphs.
- 4. Go back to the browser window with your assigned Sandbox page (the one you cleared earlier), and click "edit this page".
- 5. Insert a blank line just after the automatic text on that page that ends with '...to the rescue'
- 6. After the blank line, paste the text that you copied in step (3). Save using the "Save page" button.


HOW TO EDIT A PAGE (4)

Your page should now look like this (before editing):

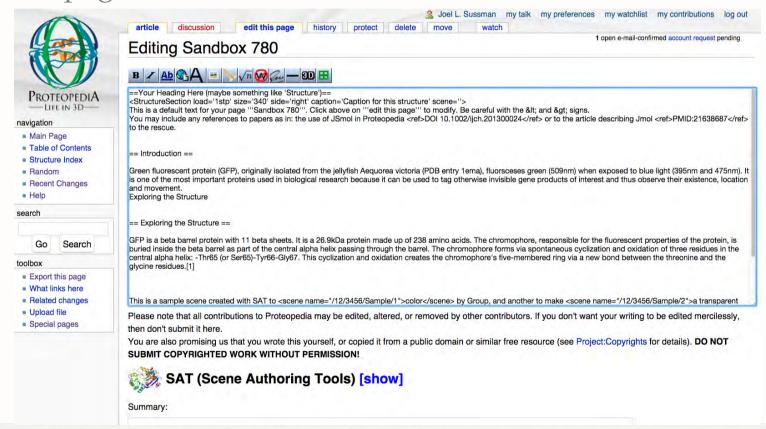

HOW TO EDIT A PAGE (5)

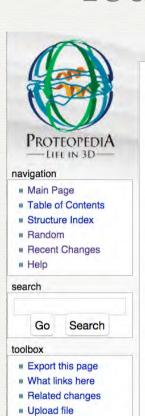
Your page should now look like this (after editing)

HOW TO EDIT A PAGE (6)

Your page should now look like this:

ADDING SECTION HEADINGS


- 1. In your assigned Sandbox page, now displaying your new text, click "edit this page".
- 2. We want to make "Introduction" and "Exploring the Structure" as a section headings.
- 3. Type the text "Introduction" just before the words: "Green fluorescent protein (GFP)," and select the button from the toolbar above the text-editing area with a big "A"
- 4. The result should be two equals signs on either side of the words "Introduction". It should look like this: ==Introduction==.
- 5. In a similar way type, add a heading: "Exploring the Structure", just before "GFP is a beta barrel protein with 11 beta sheets..."
- 6. Delete the headings: Function, Disease, Relevance, Structural highlights
- 7. Save the page using the "Save page" button.



ADDING SECTION HEADINGS

Your page should now look like this:

Special pages

Printable version

■ Permanent link

P 10 3113 dilat 113 W 13 dil 1113 dilita

3 Joel L. Sussman my talk my preferences my watchlist my contributions log out

1 open e-mail-confirmed account request pending

Sandbox 780

discussion

Your Heading Here (maybe something like 'Structure')

edit this page

This is a default text for your page **Sandbox 780**. Click above on **edit this page** to modify. Be careful with the < and > signs.

history


You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.

Introduction

Green fluorescent protein (GFP), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

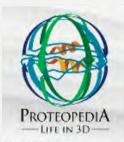
GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The chromophore, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the

References

edit

BOLD AND INTERWIKI LINKS

- 1. In your assigned Sandbox page, now displaying your new text, click "edit this page".
- 2. We want to make the word "GFP" bold. Select the word "GFP" and click on the button in the toolbar above the text-editing area with a big "B".



- 3. The result should be three single quotation marks on either side of the word "GFP" like so: "'GFP"
- 4. Now make "1ema" into an interwiki link, so that it leads to the Proteopedia page for the PDB entry 1ema. Do this by selecting the text "1ema" and clicking on the button in the toolbar above the text-editing area with a big, underlined, blue "Ab".

- 5. The result should be two square inward facing brackets on either side of the word "1ema". It should look like this: **[[1ema]]**
- 6. Save the page using the 'Save page' button.

navigation

- Main Page
- Table of Contents
- Structure Index
- Random
- Recent Changes
- Help

search

Search Go

toolbox

- Export this page
- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link

Sandbox 780

discussion edit this page history delete protect watch 1 open e-mail-confirmed account request pending

3 Joel L. Sussman

Your Heading Here (maybe something like 'Structure')

This is a default text for your page Sandbox 780. Click above on edit this page to modify. Be careful with the < and > signs.

You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.

Introduction

Green fluorescent protein (GFP), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The chromophore, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the

JSmol toggle spin toggle quality Caption for this structure

my talk my preferences my watchlist my contributions log out

References

[edit]

[edit]

HOW TO EDIT A PAGE (7)

- 1. We'd now like to add a 3D structure to the page (by adding a Jmol applet displaying the 3D structure for PDB entry 1ema, the structure of Green Fluorescent Protein).
- 2. In your assigned Sandbox page click on "edit this page".
- 3. In the text-editing area, change the text at the top
 - 1. from: load='1stp' to load='1ema'.
 - 2. from: caption='Caption for this structure' to caption='GFP (PDB entry [[1ema]])'
- 4. To make things cleaner, delete text: "This is a default text for your page "Sandbox 780". Click above on "edit this page" to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID: 21638687</ref> to the rescue."
- 5. Save the page using the "Save page" button

BOLD AND INTERWIKI LINKS

Permanent link

3 Joel L. Sussman my talk my preferences my watchlist my contributions log out

article discussion edit this page history protect delete move watch

1 open e-mail-confirmed account request pending

Sandbox 700

Your Heading Here (maybe something like 'Structure')

Introduction

Green fluorescent protein (**GFP**), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

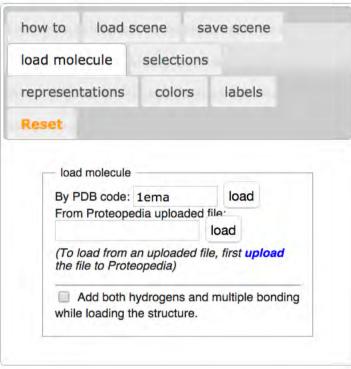
GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The chromophore, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residues.[1]

This is a sample scene created with SAT to color by Group, and another to make a

toggle spin toggle quality popup

GFP (PDB entry 1ema)

[edit]


[edit]

References

ADDING A GREEN SCENE LINK (1)

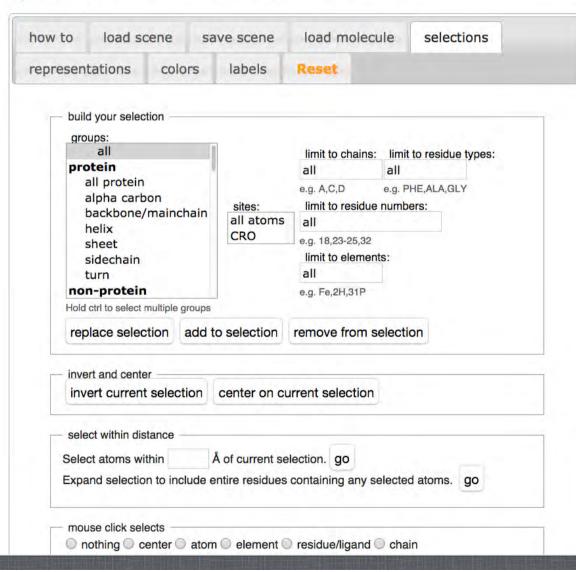
- 1. Now that we have a 3D model on the page, let's create a green scene link that shows 1ema as it looks in the the left part of the 2D image on the GFP Sample page where we got our text. (go back to that page to see what the picture looks like: http://proteopedia.org/wiki/index.php/User:Joel_L._Sussman/GFP_Test_Page)
- 2. To create a green scene link, we will need to use the *Protopedia Scene Authoring Tools*.
- 3. In your assigned Sandbox page, click on "edit this page".
- 4. Scroll down to the bold text that says "Scene authoring tools [show]" next to a colorful molecule. Click on "show" to expand the Scene Authoring Tools.
- 5. Click on the tab "load molecule" in the Scene Authoring Tools.
- 6. Load the PDB file 1ema by entering the PDB code "1ema" in the input box next to the words "By PDB code:" and then pressing the adjacent button marked "load".

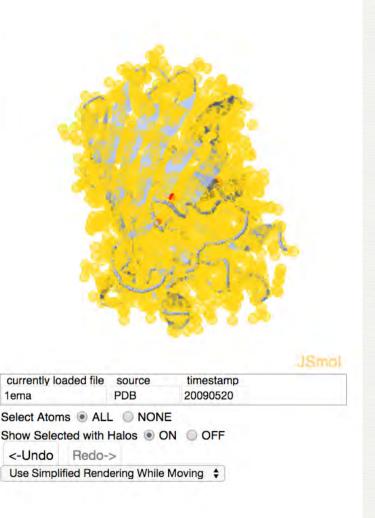
currently loaded file source timestamp
1ema PDB 20090520

Select Atoms • ALL • NONE
Show Selected with Halos • ON • OFF
<-Undo Redo->

Use Simplified Rendering While Moving •

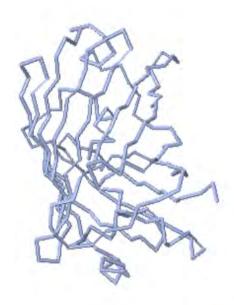
To enable buttons below, save your scene, if desired, then hide the Scene Authoring Tools.


Summary:


ADDING A GREEN SCENE LINK (2)

- 1. Now we have 1ema loaded into the Scene Authoring Tools' Jmol applet. The idea behind the Scene Authoring Tools (SAT) is to create the exact scene that you would like to have load when your green link is clicked. This is generally done by first loading a PDB file into the SAT's applet, then using the "selections", "representations", "colors", and "labels" tabs to manipulate the 3D model into the desired state, finally saving the green scene link using the "save scene" tab.
- 2. Our structure is currently displayed in cartoon representation. The first step in recreating the picture in the *Molecule of the Month* is to display the molecule in backbone representation.
- 3. Click on the "selections" tab.
- 4. In the "all or nothing and halos" section, click on the "select all" button.
- 5. Nothing changed because "selection halos" were not on. Turn them on by marking the checkbox next to the word "selection halos".
- 6. Selection halos serve to show you what is currently selected. They will not be displayed when the green scene link you eventually create is clicked.

SAT (Scene Authoring Tools) [hide]


ADDING A GREEN SCENE LINK (3)

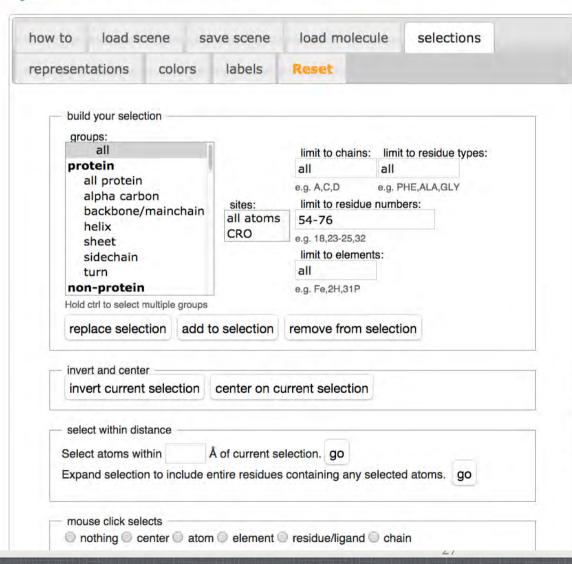
- 1. Now that we have everything selected, click on the "representations" tab of the SAT.
- 2. Mark the checkbox next to "backbone" in the section titled "set selection representation".
- 3. Click on the "set representation" button.
- 4. Notice the representation of the 3D model has changed from cartoon to backbone. To help see this better, turn off the selection halos by unmarking the checkbox next to "selection halos".

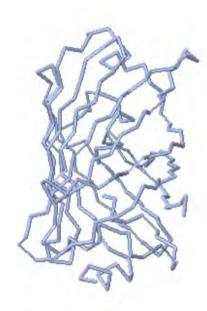
SAT (Scene Authoring Tools) [hide]

epresen	tations	colors	labels	Reset			
- set	selection rep	resentation					
	call and stic	k 🗌 stick/wi	reframe 90	spacefi	II 100%	dots 1	00%
•	oackbone 9	0 tra	ce 90	ribbon	art cart	oon	
	strands	□ rocke	et 🔲	meshribbon 2	.5	surface 🗌	halos
	nd stick is a co		of a representat wireframe and s	tion-type blank ch pacefill.	nooses its d	efault setting.	

currently loa	aded file source	timestamp	
1ema	PDB	20090520	
Select Atom	s ALL NON	IE	
Show Selec	ted with Halos 🔘	ON OFF	
<-Undo	Redo->		
Use Simpli	fied Rendering While	Moving \$	

To enable buttons below, save your scene, if desired, then hide the Scene Authoring Tools.

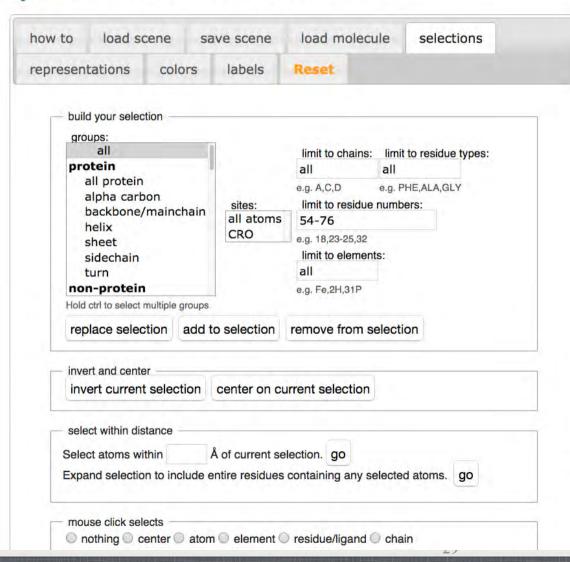

Summary:

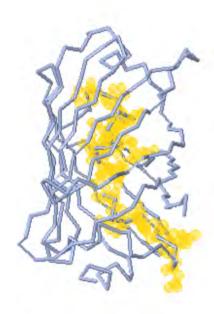

ADDING A GREEN SCENE LINK (4)

- 1. Now we want to select the segment of the protein that runs through the barrel and color it green.
- 2. To make a selection, click on the "selections" tab.
- 3. We will select the segment that runs through the barrel by its residue numbers. To do this we need to know the first and the last residue numbers that make up this segment.
- 4. Notice that when you hover with your mouse over an atom in the Jmol applet, information about that atom is displayed, including the residue that atom is part of, and the residue number. Use this "hover" feature to find the residue numbers for the beginning and the end of the segment we are interested in.
- 5. Enter the starting and ending residue numbers, separated by a hypen, into the input box under the text "limit to residue numbers:".

SAT (Scene Authoring Tools) [hide]

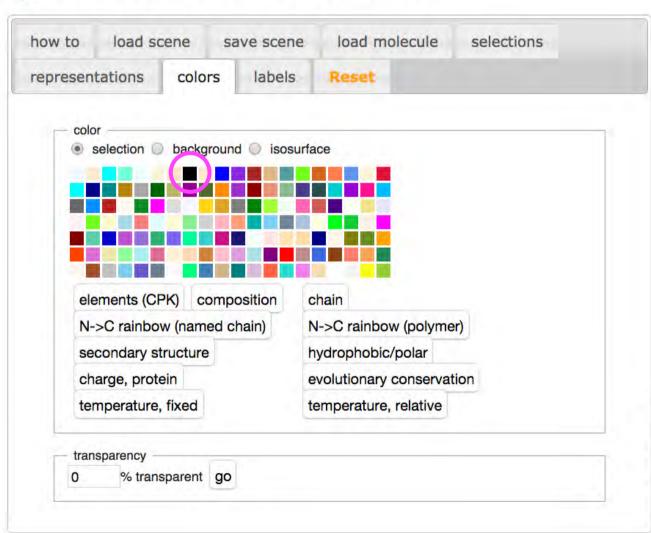
JSmol

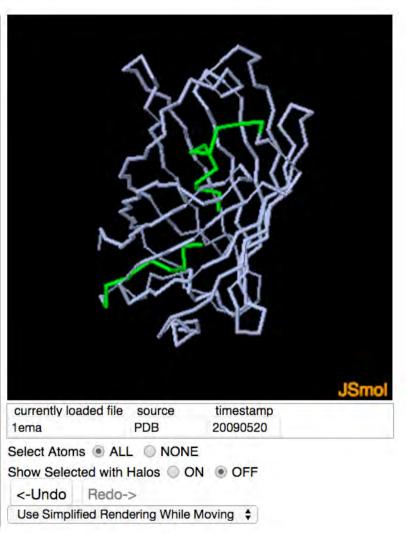

currently loaded fill 1ema	e source PDB	timestamp 20090520	
Select Atoms A Show Selected wit			
<-Undo Red	0->		
Use Simplified Re	ndering While	Moving ≜	


ADDING A GREEN SCENE LINK (5)

- 1. Having entered the starting and ending residue numbers of the chain segment into the "limit by residue numbers" input box, we are ready to make a selection that is limited only to the stretch of residues that we desire.
- 2. Before making our new selection, let's turn on selection halos so we see the change in the selection take place. Mark the checkbox next to "selection halos". Notice that everything is selected.
- 3. Now go ahead and make the new selection by clicking "replace selection". This will replace the old selection (everything) with our new selection (limited to a stretch of residues).

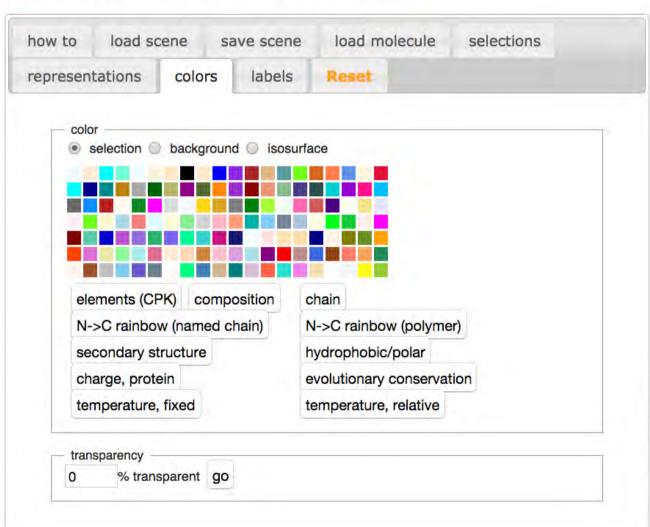
SAT (Scene Authoring Tools) [hide]

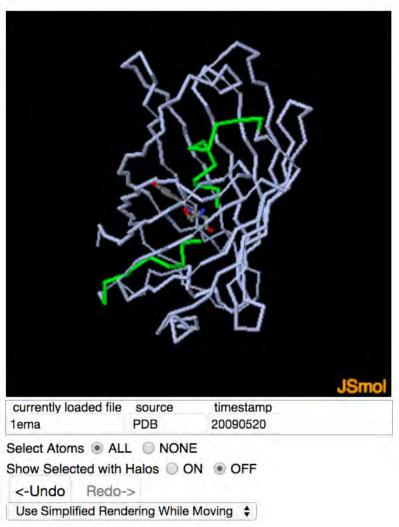

1ema	PDB	20090520
Select Atom	s ALL NON	É
Show Selec	ted with Halos 🍥 0	ON OFF
<-Undo	Redo->	
Use Simpli	fied Rendering While	Moving \$


ADDING A GREEN SCENE LINK (6)

- 1. With the chain segment selected, it's time to change its color to match the image in the Molecule of the Month.
- 2. Click on the "colors" tab of the Scene Authoring Tools.
- 3. Click on a lime color in the color palette to change the color of the selected chain segment. Turn off selection halos to better view the change in color.
- 4. Now let's make the background black.
- 5. In the section titled "color", mark the button next to "background". Now any color you select from the color palette will affect the background
 - instead of the selection.
- 6. Click on the color black in the color palette.

SAT (Scene Authoring Tools) [hide]





ADDING A GREEN SCENE LINK (7)

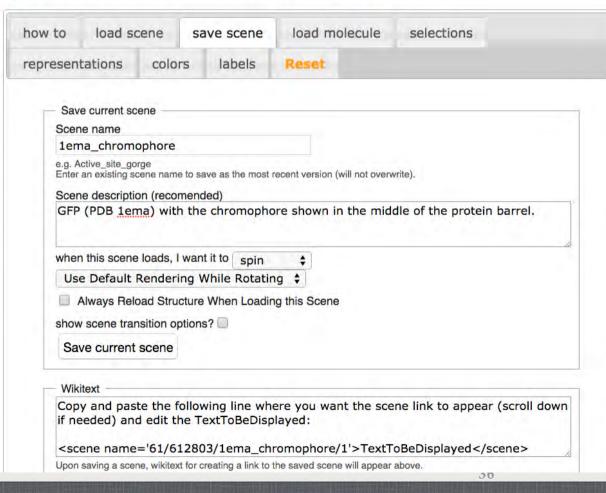
- 1. All that's left is to show the chromophore and color it in the CPK scheme.
- 2. Click on the "selections" tab.
- 3. In the input box under "limit to residue types:" type "CRO". (In the PDB file, the chromophore is listed as a residue with type "CRO")
- 4. Click on the "replace selection" button. Turn on selection halos.
- 5. Click on the "representations" tab.
- 6. In the section titled "set selection representation" mark the checkbox next to stick/wireframe. Click on the "set representation" button.
- 7. Click on the "colors" tab.
- 8. In the section titled "color" click on the button titled "CPK (by element)".
- 9. Turn off selection halos to better view the new color.

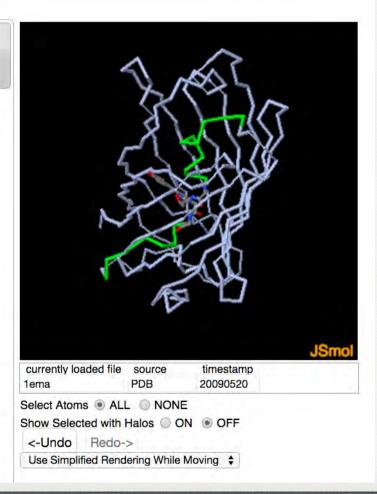
SAT (Scene Authoring Tools) [hide]

ADDING A GREEN SCENE LINK (8)

- 1. Notice that connection between the chromophore & the chain is missing, but is seen in the original picture: http://proteopedia.org/wiki/index.php/User:Joel_L. Sussman/GFP_Test_Page. Let's visualize those missing bonds in the chain.
- 2. Click on the "selections" tab; in the 'build your selection' box, under 'groups' select 'backbone/ mainchain'; In the input box under "limit to residue numbers:" type "64,68". (These are the numbers of the residues directly preceding and following the chromophore.)
- 3. Click on the "add to selection" button.
- 4. Click on the "representations" tab.
- 5. In the section titled "set selection representation" mark the checkbox next to stick/wireframe. Click on the "set representation" button.
- 6. Click on the "colors" tab.
- 7. In the section titled "color" click on the button titled "CPK (by element)".
- 8. Turn off selection halos to better view the new color.

ADDING A GREEN SCENE LINK (9)


- 1. Our scene is done, so let's save it and put it into the page.
- 2. Click on the "save scene" tab in the Scene Authoring Tools.
- 3. Give your scene a name and a description by entering text in the "Name" and "Description" text-areas.
- 4. Let's make our scene spin when it loads. In the drop down menu next to the text "when this scene loads, I want it to" choose the option "spin".
- 5. Click on the "save scene" button.


Please note that all contributions to Proteopedia may be edited, altered, or removed by other contributors. If you don't want your writing to be edited mercilessly, then don't submit it here.

You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Project:Copyrights for details). **DO NOT SUBMIT COPYRIGHTED WORK WITHOUT PERMISSION!**

SAT (Scene Authoring Tools) [hide]

ADDING A GREEN SCENE LINK (9)

- 1. As soon as we saved our scene, some wikitext appeared in the text-area titled "Wikitext" that was previously empty.
- 2. The new text in the "Wikitext" text-area instructs you to copy a line in the text-area & paste it in the text of the Proteopedia page where you would like the green scene link to appear. The line looks similar to this: <scene name='61/612803/1ema_chromophore/1'>TextToBeDisplayed</scene>>
- 3. Highlight that line in the "Wikitext" text-area and copy it.
- 4. Scroll up the page, past the Scene Authoring Tools to the text-editing area of the Proteopedia page.
- 5. Find the word "chromophore" in the text-editing area. Highlight it and replace it by pasting the text you previously copied in step (3).

Editing Sandbox 780

==Your Heading Here (maybe something like 'Structure')==

<StructureSection load='1ema' size='340' side='right' caption='GFP (PDB entry [[1ema]])' scene=''>

== Introduction ==

Green fluorescent protein ("'GFP"), originally isolated from the jellyfish Aequorea victoria (PDB entry [[1ema]]), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

== Exploring the Structure ==

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The <scene name='61/612803/1ema_chromophore/1'>TextToBeDisplayed</scene>, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residues.[1]

ADDING A GREEN SCENE LINK (10)

- 1. The text that you just pasted from the "Wikitext" section of the Scene Authoring Tools creates a green scene link wherever you place it in the Proteopedia page.
- 2. The word "TextToBeDisplayed" will be the part that shows up as the text of the green link on the page.
- 3. Change "TextToBeDisplayed" to say "chromophore. It should look something like:
 - <scene name='Sandbox_780/1ema_chromophore/1'>chromophore</scene>
- 4. Scroll down to the bold text "Scene Authoring Tools [hide]" next to the colored molecule, and click on "hide" to hide the Scene Authoring Tools.
- 5. Scroll down and click on "Save page" to save the Proteopedia page you edited.
- 6. Try clicking on the new green scene link you have created.

article discussion

edit this page

history

protect

delete

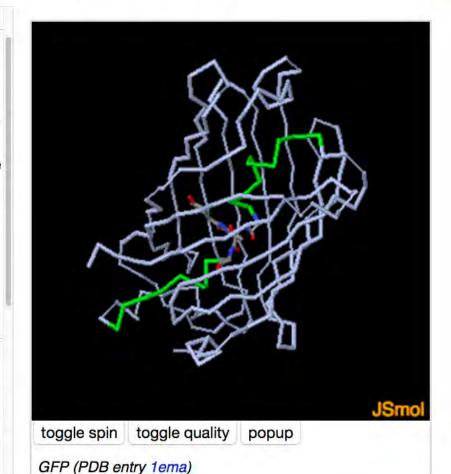
move

watch

1 open e-mail-confirmed account request pending

Sandbox 780

Your Heading Here (maybe something like 'Structure')


[edit]

Introduction

Green fluorescent protein (**GFP**), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The **chromophore**, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing

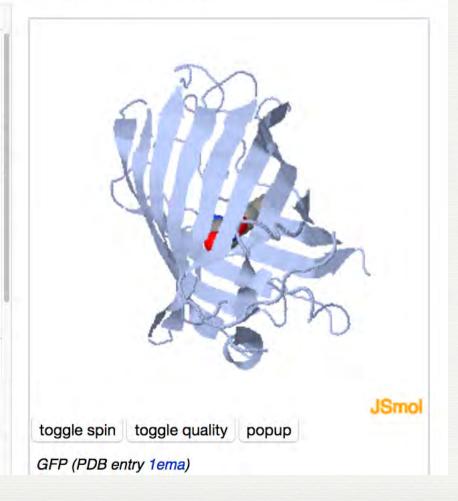
ADDING A 'HEADING'

- 1. To make the page look nicer, need add a 'Heading' to first paragraph.
- 2. Go back and Edit your page
- 3. Change, in the top line of your text
 - ==Your Heading Here (maybe something like 'Structure')==<StructureSection. . .
 - to
- 4. Save page

article discussion edit this page history protect delete move watch

Sandbox 780

Example page for Green fluorescent protein (GFP)


[edit]

Introduction

Green fluorescent protein (**GFP**), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The **chromophore**, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing.

1 open e-mail-confirmed account request pending

ADDING A REFERENCE

- 1. Let's cite a reference in our page. Look at the reference at the bottom of our original example page: http://proteopedia.org/wiki/index.php/User:Joel_L._Sussman/GFP_Test_Page.
- 2. We *could* add the reference by typing it out -- that's the long way.
- 3. A much easier way is to refer to the paper by its PubMed ID: Click on 'edit this page' for your 'Sandbox' page. At the end of the 2nd paragraph, after the words 'the glycine residues', add the text '<ref>PMID:8703075</ref>'.
- 4. '<ref>' is called the opening reference tag, and '</ref>' is the closing tag. Together they enclose the text 'PMID:' which stands for PubMed ID, and then the actual PubMed ID of the reference you want to cite.
- 5. You've added the citation, but you still need to specify where the bibliography will appear -- the list of all cited references in the page. This was automatically added when you created your page, *i.e.* the line '<references/>' after the last paragraph.
- 6. To simplify, **delete** text "This is a sample scene created with SAT. . . of these sample scenes."
- 7. Save the page.

Editing Sandbox 780

- == Example page for Green fluorescent protein ('''GFP''')== <StructureSection load='1ema' size='340' side='right' caption='GFP (PDB entry [[1ema]])' scene=''>
- == Introduction ==

Green fluorescent protein ("'GFP"'), originally isolated from the jellyfish Aequorea victoria (PDB entry [[1ema]]), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

== Exploring the Structure ==

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The <scene name='61/612803/1ema_chromophore/1'>chromophore</scene>, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residue: <ref>PMID:8703075</ref>.

</StructureSection>

== References ==

<references/>

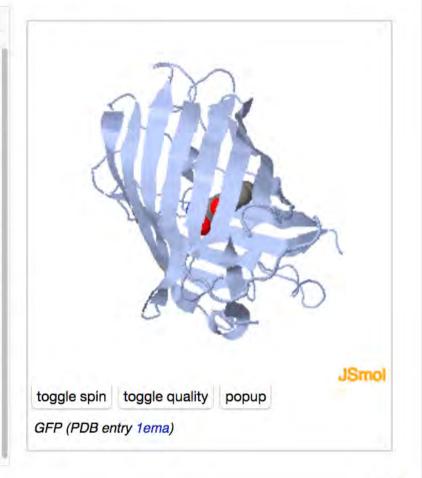
Example page for Green fluorescent protein (GFP)

[edit]

Introduction

Your page

should

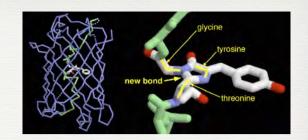

now look

like this:

Green fluorescent protein (**GFP**), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The **chromophore**, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residues^[1].



References

[edit]

 ↑ Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392-5. PMID:8703075 ☑

ADDING A 2D IMAGE (1)

- Let's add a 2D image to our page. View our example page http://proteopedia.org/wiki/index.php/User:Joel L. Sussman/GFP Test Page and save the big picture to your computer by right-clicking on it and choosing an option like "Save as..." or "Save to desktop". Save the image (1ema.gif) to your desktop.
- We now need to upload the image to Proteopedia. Back in your Proteopedia 'Sandbox' page, click on the 'upload file' link in the left-hand toolbar

search	
Go	Search
toolbox	
Export t	his page
What lin	nks here
Related	changes
■ Upload	file
Special	pages
Printable version	
■ Permanent link	

ADDING A 2D IMAGE (2)

- 1. At the 'upload file' page, next to 'Source filename:' click on the 'Choose file' button. Using the interface that pops up, browse to and select the 2D image we saved (1ema.gif). Choose File
- 2. On the 'upload file' page, make sure to change the 'Destination filename' from '1ema.gif' to something unique like '1ema_Workshop_579.gif' where 'Workshop' is the name of your workshop, and '579' is your 'Sandbox' number.
- 3. Under 'Summary' type a short summary of what we see in the picture 1ema.gif.
- Click on the 'Upload file' button. **Upload file**

- 5. Your file will be uploaded and you will be taken to it's new page in Proteopedia.
- 6. Copy the image's name, so you have it for later:

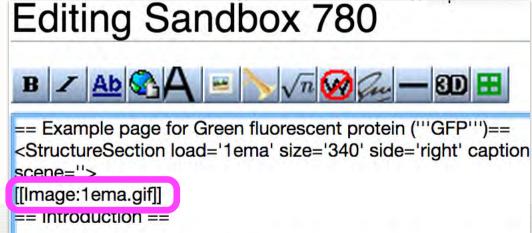
ADDING A 2D IMAGE (3)

Hands-on:

- 1. Go back to your 'Sandbox' page and click on 'edit this page'.
- 2. Click on the text-editing area just befpre text "Green fluorescent protein . . ." and hit carriage return to add one blank line.
- 3. Click so that your cursor is in the white space you just created.
- 4. Now click on the button that looks like a picture. This will insert wiki-text for a 2D image. Editing Sandbox 780

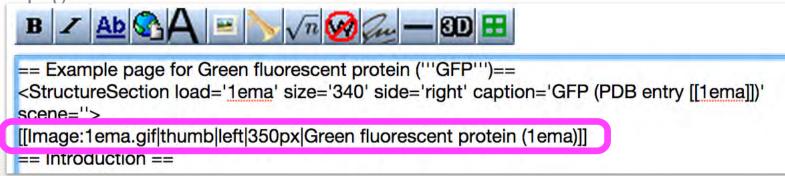
$\mathbf{B} \times \underline{\mathbf{Ab}} \mathbf{Ab} \mathbf{A} = \sqrt{n} \mathbf{Ab} \mathbf{Ab} \mathbf{B} \mathbf{B}$

== Example page for Green fluorescent protein ('''GFP''')== <StructureSection load='1ema' size='340' side='right' caption= scene=''>


<--- Cursor here</pre>

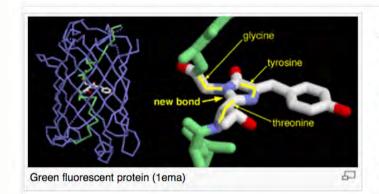
== Introduction ==

Green fluorescent protein ("'GFP"), originally isolated from the entry [[1ema]]), fluorsceses green (509nm) when exposed to blue


ADDING A 2D IMAGE (4)

- 1. After you clicked on the button that looks like a picture, some wiki-text should have popped up that says '[[Image:Example.jpg]]'.
- 2. Note that this format of double square brackets is the same format as for internal links that we created earlier to '1ema' ([[1ema]]).
- 3. Change the word 'Example.jpg' to the name of your image (remember, you copied the name of your image before, now it comes in handy, you may paste it.)
- 4. The final result should look something like this '[[Image:1ema_Workshop_579.jpg]]'
- 5. Save the page.

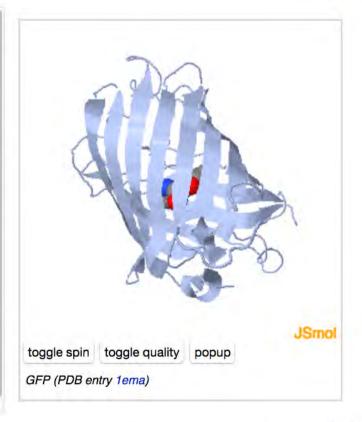
ADDING A 2D IMAGE (5)


- 1. At this point you should see the 2D image on your page, but it should be huge -- way too big for us. Let's change that -- click on 'edit this page'
- 2. Change '[[Image:1ema.gif]]' by adding additional parameters, each separated by a vertical bar '|'
- 3. You should change it to read: '[[Image:1ema.gif | thumb | left | 350px | Green fluorescent protein (1ema)]]'
- 4. This specifies that the image should be a thumbnail on the left side of the page of size 350 pixels and with the caption 'Green fluorescent protein (1ema)'.
- 5. Save the page.

Sandbox 780

Example page for Green fluorescent protein (GFP)

[edit]


Introduction

Green fluorescent protein (GFP), originally isolated from the jellyfish Aequorea victoria (PDB entry 1ema), fluorsceses green (509nm) when exposed to blue light (395nm and 475nm). It is one of the most important proteins used in biological

research because it can be used to tag otherwise invisible gene products of interest and thus observe their existence, location and movement. Exploring the Structure

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The **chromophore**, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: - Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residues^[1].

References

[edit]

1. † Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392-5. PMID:8703075

ADDING A QUIZ

Hands-on:

- 1. We want to add a quiz to the page to test the reader's comprehension. Click on 'edit this page'.
- 2. Add the following text after the line '<references/>'
- 3. '==Quiz==' is a section heading as before. The rest is wiki-text for a quiz. Save page.

The question is between two curly brackets. Each potential answer is on its own line. A wrong answer is preceded by a minus ('-') sign and the correct answer by the plus ('+') sign.

```
<references/>
==Quiz==
<quiz display=simple>
{How many alpha helices are in this structure?}
- One
- None
+ Eleven
- Twelve
</Quiz>
```

Exploring the Structure

GFP is a beta barrel protein with 11 beta sheets. It is a 26.9kDa protein made up of 238 amino acids. The **chromophore**, responsible for the fluorescent properties of the protein, is buried inside the beta barrel as part of the central alpha helix passing through the barrel. The chromophore forms via spontaneous cyclization and oxidation of three residues in the central alpha helix: -Thr65 (or Ser65)-Tyr66-Gly67. This cyclization and oxidation creates the chromophore's five-membered ring via a new bond between the threonine and the glycine residues^[1].

References

[edit]

1. ↑ Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392-5. PMID:8703075 ☑

Quiz

[edit]

- 1. How many alpha helices are in this structure?
 - One
 - None
 - Eleven
 - Twelve

Submit

-Try taking your quiz by selecting an answer and clicking on the 'Submit' button.-

YOUR OWN ACCOUNT

- If you want to use Proteopedia in the future to create your own pages, please request your own account in your own name. You can do this now if you want!
- Request an account in your name by logging out of guest account and clicking "log in / request account" at top right corner of website. Enter the information that is requested, and your account will be approved by Prof. Eric Martz (Univ of Mass).

HELP RESOURCES

- General Help: http://www.proteopedia.org/w/Help:Contents
- Editing Help: http://www.proteopedia.org/w/Help:Editing
- Wikitext Cheatsheet: http://en.wikipedia.org/wiki/Wikipedia:Cheatsheet
- Scene Authoring Tools Help: http://www.proteopedia.org/w/
 Scene authoring tools
- Proteopedia Video Guide: http://www.proteopedia.org/w/
 Proteopedia: Video Guide

- Lac Repressor : http://www.proteopedia.org/w/Lac_repressor
- 2q66 Poly(A) polymerase : http://www.proteopedia.org/w/2q66
- HIV-1 Protease:
 http://www.proteopedia.org/w/HIV-1_protease
- Avian Influenza Neuraminidase, Tamil and Relenza:
 http://www.proteopedia.org/w/Avian_Influenza, Tamiflu_and_Relenza
- Recoverin: a calcium-activated myristoyl switch:
 http://www.proteopedia.org/w/Recoverin, a calcium-activated myristoyl switch
- A Physical Model of the β2-Adrenergic Receptor

 http://proteopedia.org/w/Group:SMART:A_Physical_Model_of_the_β2-Adrenergic_Receptor

References:

- Hodis, Prilusky, Martz, Silman, Moult & Sussman (2008) "Proteopedia a scientific 'wiki' bridging the rift between 3D structure and function of biomacromolecules" *Genome Biol* **9**, R121.
- Prilusky, Hodis, Canner, Decatur, Oberholser, Martz, Berchanski, Harel & Sussman (2011) "Proteopedia: A status report on the collaborative, 3D webencyclopedia of proteins and other biomolecules" *J of Struct Biol* **175**, 244-252.
- Hanson, Prilusky, Renjian, Nakane & Sussman (2013) "JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia" *Israel J of Chem* **53**, 207-216.