Crystallographic refinement

Roberto A. Steiner

roberto.steiner@kcl.ac.uk

with many slides contributed by Pavel Afonine

Crystallography workshop - Trieste 23-27 April 2012

University of London

Key aspects of refinement

Crystallographic refinement is the process by which an initial structural model is modified to produce an updated model that is more consistent with the <u>experimental data</u> and <u>known (bio)chemistry</u>.

Updated model...what does that mean?

Atoms are added/removed Atoms are moved ADPs change their values Occupancies can also change

Refinement is an iterative process which is generally terminated by the user. Phil Evans introduced the concept of refinement *at tedium* (until one is too bored to continue..)

ISSN 0907-4449

Volume 68

Part 4

April 2012

Model building, refinement and validation

Proceedings of the CCP4 study weekend

Guest Editors Roberto A. Steiner

Bernhard Rupp Charles Ballard

Organisers

Shirley Miller Damian Jones Laura Johnston Wendy Cotterill

Acta Crystallographica Section D Biological Crystallography

Editors: E. N. Baker and Z. Dauter

journals.iucr.org International Union of Crystallography Wiley-Blackwell

REFMAC5 - CCP4i

🛑 😑 🔵 📉 CCP4 Program Suite 6.4	4.0 CC	CP4Inte	ti 😑 😑 📃 📉 Run Refmac5									
			Refinement method (REFI TYPE)									
Refinement 🛁	14	17:0	Job title									
🕨 Model Preparation 📃 🔼	13	12:5	Do restrained refinement 🛁 using no prior phase information 🛁 input									
Costrain Conaration	11	08 1	In Refinement method (REFI TYPE)									
Bun Befmac5	10	08 I 08 I	no twin refinement									
buy NOS Played Refinement	8	08 1	18 I Use Prosmart: no (low re									
	7	7 07 I I Run Coot:findwaters to automatically add/remove waters to refined structure										
Model Completion & Anarysis	5	07 I	MTZ in hromone_I02_0 #21	📕 Browse 🛛 Vi								
	4	07 I	FP Sigma		-							
	2	07 I	MTZ out hromone_102_0 :===21	Browse	View							
	1	07 I	PDB in hromone_102_0 #21	Browse	View							
				Browse	View							
				510 % 30	010 **							
			LIB in hromone_102_021 Merge LIBINS	Browse	View							
			Output lib hromone_I02_021	Browse	View							
	1		Refmac keyword file hromone_102_021	Browse	View							
			Data Harvesting									
Refinement Parameters												
			Setup Geometric Restraints									
			Setup Non-Crystallographic Symmetry (NCS) Restraints									
			🔟 use automatically generated 🛛 local NCS restraints 👘 🖂 NCS restraints									
No NCS restraints are currently defined												
Edit list 🛁												
		Monitoring and Output Options										
			Scaling									
			Conmetric norometere									
			Run - Save or Restore -	Close								
						1						

phenix.refine GUI

00	phenix.refine	\odot							
Preferences Help	Run Abort Save Graphics ReadySet NCS TLS Restraints Xtriage								
Configure		4 b x							
Input data Refinemen	t settings Output								
Strategy		(
Refinement strategy:									
Restraints and weightin	g								
NCS restraints	Find NCS restraints automatically NCS type : global								
Reference mod	del restraints 📃 Secondary structure restraints 📃 Use experimental phase restraints								
Optimize X-ray/stereochemistry weight Optimize X-ray/ADP weight Refinement target weights									
(PDB interpretation) (Define NCS groups) (NCS options) (Custom geometry restraints) ?)									
Other options									
Automatically	add hydrogens to model 🛛 Update waters 💭 Simulated annealing (Cartesian)								
Simulated annealing (Torsion angles) Fix bad sidechain rotamers									
Target function : ML	Scattering table : n_gaussian 🗘 Twin law :								
Number of processors : 1 () Global refinement parameters (All parameters)									
Idle	Project: CRIP native								

Real space refinement

 $\rho(xyz) = \frac{1}{V} \sum_{ij} (2m|F_{obs}(hkl)| - D|F_{calc}(hkl)|) \exp\left[-2\pi i(hx + ky + lz) + i\varphi_{calc}(hkl)\right]$

$$\rho\left(xyz\right) = \frac{1}{V} \sum_{\text{hkl}} \left(m \left| F_{\text{obs}}(hkl) \right| - D \right| F_{\text{calc}}(hkl) \right| \exp\left[-2\pi i \left(hx + ky + lz\right) + i\varphi_{\text{calc}}(hkl)\right]$$

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Garib N. Murshudov,^a* Pavol Skubák,^b Andrey A. Lebedev,^a Navraj S. Pannu,^b Roberto A. Steiner,^c Robert A. Nicholls,^a Martyn D. Winn,^d Fei Long^a and Alexei A. Vagin^a

^aStructural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, England, ^bBiophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands, ^cRandall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, England, and ^dSTFC Daresbury Laboratory, Warrington WA4 4AD, England

Correspondence e-mail: garib@ysbl.york.ac.uk

REFMAC5 for the refinement of macromolecular crystal structures

This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Å can be achieved thanks to low-resolution refinement tools such as secondarystructure restraints, restraints to known homologous structures, automatic global and local NCS restraints, 'jelly-body' restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback-Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.

Received 14 July 2010 Accepted 10 January 2011

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Pavel V. Afonine,^a* Ralf W. Grosse-Kunstleve,^a Nathaniel Echols,^a Jeffrey J. Headd,^a Nigel W. Moriarty,^a Marat Mustyakimov,^b Thomas C. Terwilliger,^b Alexandre Urzhumtsev,^{c,d} Peter H. Zwart^a and Paul D. Adams^{a,e}

^aLawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, ^bLos Alamos National Laboratory, M888, Los Alamos, NM 87545, USA, ^cIGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France, ^dDépartement de Physique, Faculté des Sciences et des Technologies, Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, France, and ^eDepartment of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA

Towards automated crystallographic structure refinement with *phenix.refine*

phenix.refine is a program within the *PHENIX* package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major *phenix.refine* features, with extensive literature references for readers interested in more detailed discussions of the methods.

Received 27 September 2011 Accepted 11 January 2012

• Two ways of computing structure factor from atomic model

- For macromolecules the FFT-based method is much faster than the direct summation method
- Most of macromolecular refinement programs use *FFT-based method*
- FFT-based method is based on a number of approximations and therefore it is less accurate than direct summation; however, inaccuracies introduced by these approximations are negligible in most of practical cases

Structure factor formula (direct summation method)

$$\mathbf{F}(h,k,l) = \sum_{n=1}^{Natoms} q_n f_n(s) \exp\left(-\frac{B_n s^2}{4}\right) \exp\left(2i\pi \mathbf{r}_n \mathbf{s}\right)$$

$$f(s) = \sum_{k=1}^{p} a_k \exp\left(-\frac{b_k s^2}{4}\right) \quad \text{Gaussian approximation for atomic form-factor}$$

$$q_n, B_n \text{ and } \mathbf{r}_n = (\mathbf{x}_n, \mathbf{y}_n, \mathbf{z}_n) - \text{ atomic occupancy, isotropic B-factor and coordinates}$$

$$P \sim 5 \text{ (depends on approximation), } a_k \text{ and } b_k - \text{ parameters of approximation specific to atom type}$$

$$s^2 = \mathbf{h}^t \mathbf{G}^* \mathbf{h} \text{ , } \mathbf{h} - \text{ column-vector of Miller indices, } \mathbf{G}^* - \text{reciprocal-space metric tensor}$$

- Calculation time ~ number of reflections * number of atoms
- ✓ Formula above yields exact values for F

Structure factor formula (FFT-based summation)

Fundamental formula $\mathbf{F}(h, k, l) = \int_{V_{cell}} \rho(\mathbf{r}) \exp\{2\pi i \mathbf{s} \mathbf{r}\} dV$

Approximate way to compute this integral numerically:

$$\mathbf{F}(h,k,l) = \frac{V_{cell}}{N_X N_Y N_Z} \sum_{j_X}^{N_X - 1} \sum_{j_Y}^{N_Y - 1} \sum_{j_Z}^{N_Z - 1} \rho(j_X, j_Y, j_Z) \exp\{2\pi i (hj_X + kj_Y + lj_Z)\}$$

which is discrete Fourier transform of electron density:

$$\rho(r) = \sum_{n=1}^{Natoms} q_n \sum_{k=1}^{p} a_k \left(\frac{4\pi}{b_k + B_n} \right)^{3/2} \exp\left(-\frac{4\pi^2 \left| \mathbf{r} - \mathbf{r}_n \right|^2}{b_k + B_n} \right)$$

sampled at grid N_X, N_Y, N_Z in a sphere of radius R (~2 Å) around each atom.

- Source of inaccuracy: replacement of continues integral with discrete summation and truncation of atomic density within a sphere R.
- ✓ Calculation time ~ density calculation + FFT ~ $K_{grid}^*(V_{atom}/V_{crystal}) + K_{grid}^*\ln(K_{grid})$, where $K_{grid} = N_X N_Y N_Z$

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Introduction to macromolecular refinement

Dale. E. Tronrud

Howard Hughes Medical Institute and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA

Correspondence e-mail: dale@uoxray.uoregon.edu The process of refinement is such a large problem in function minimization that even the computers of today cannot perform the calculations to properly fit X-ray diffraction data. Each of the refinement packages currently under development reduces the difficulty of this problem by utilizing a unique combination of targets, assumptions and optimization methods. This review summarizes the basic methods and underlying assumptions in the commonly used refinement packages. This information can guide the selection of a refinement package that is best suited for a particular refinement project. Received 5 April 2004 Accepted 21 September 2004

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

Model parameters or how we parameterize the crystal content

Non-atomic model parameters (Bulk solvent, anisotropy, twinning)

- Macromolecular crystals contain ~20-80% of solvent (mostly disordered)
- Crystal-specific: description of anisotropy or twinning

Atomic model parameters

• Total model structure factor used in refinement, *R*-factor and map calculation:

$$\mathbf{F}_{\text{MODEL}} = k_{\text{OVERALL}} e^{-s\mathbf{U}_{\text{CRYSTAL}} s^{t}} \left(\mathbf{F}_{\text{CALC}_\text{ATOMS}} + k_{\text{SOL}} e^{-\frac{B_{\text{SOL}} s^{2}}{4}} \mathbf{F}_{\text{MASK}} \right)$$
Anisotropy
Bulk-solvent contribution

 $U_{CRYSTAL}$ is 3x3 symmetric anisotropy scale matrix with 6 refinable parameters:

$$\left(\begin{array}{cccc} U_{11} & U_{12} & U_{13} \\ & U_{22} & U_{23} \\ & & U_{33} \end{array}\right)$$

- symmetry constraints apply

Crystal System	Restrictions on U
Triclinic	None
1-2	
Monoclinic	$U_{13}=U_{23}=0$ when $\beta=\alpha=90^{\circ}$
3-15	$U_{12}=U_{23}=0$ when $\gamma=\alpha=90^{\circ}$
	$U_{12}=U_{13}=0$ when $\gamma=\beta=90^{\circ}$
Orthorhombic	$U_{12} = U_{13} = U_{23} = 0$
16-74	
Tetragonal	$U_{11}=U_{22}$ and $U_{12}=U_{13}=U_{23}=0$
75-142	
Rhombohedral	$U_{11}=U_{22}=U_{33}$ and $U_{12}=U_{13}=U_{23}$
(trigonal)	
143-167	
Hexagonal	$U_{11}=U_{22}$ and $U_{13}=U_{23}=0$
168-194	
Cubic	$U_{11}=U_{22}=U_{33}$ and $U_{12}=U_{13}=U_{23}=0$ (=isotropic)
195-230	

Protein Hydration Observed by X-ray Diffraction

Solvation Properties of Penicillopepsin and Neuraminidase Crystal Structures

Jian-Sheng Jiang and Axel T. Brünger

The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 U.S.A.

Solvation in macromolecular crystal structures was studied by analyzing X-ray diffraction data of two proteins, penicillopepsin and neuraminidase. The quality of several solvent models was assessed by complete cross-validation in order to prevent overfitting the diffraction data. Radial solvent distribution functions were computed from electron density maps using phases obtained from multiple isomorphous replacement and from the protein's atomic model combined with the best solvent model. Distribution functions were computed around hydrophilic and hydrophobic groups on the protein's surface. Averaging of the distribution functions was performed in order to reduce the influence of noise. The first solvation shell is characterized by a peak in the average distribution functions. At 1.8 Å resolution, polar groups show a sharp peak while non-polar groups show a broad one. The distinction between hydrophobic and hydrophilic solvation sites is lost when using lower resolution (2.8 Å) diffraction data. Higher-order solvation shells are not observed in the average distribution functions. We hope that site-specific radial distribution functions obtained from high-quality diffraction data will produce a picture of macromolecular solvation consistent with available experimental data and computational results.

Keywords: X-ray crystallography; solvation; refinement; cross-validation; radial distribution function

Figure 1. Schematic illustration for the 4 solvent models that were tested; flat model, radial shell model, difference map model and density modification model. The models are described in detail in the text.

(a) Histogram of the occupancies of water molecules. (b) Histogram of the distribution of hydrogen-bond lengths for all water molecules (grey bars) and for ordered fully occupied waters. The distances from water molecules to the nearest N or O protein atom are plotted.

[Steiner et al., (2001)]

Model parameters – Bulk solvent and anisotropy

Flat Bulk Solvent model (currently best available and most popular model):

- Electron density in solvent regions is flat with some average value k_{SOL} (e/Å³)
- Solvent mask: a binary function: 0 in Macromolecular and 1 in Solvent region
- \mathbf{F}_{MASK} are structure factors calculated from Bulk solvent mask
- Contribution to the model structure factor:

$$\mathbf{F}_{\text{BULK}} = k_{\text{SOL}} e^{-\frac{B_{\text{SOL}} s^2}{4}} \mathbf{F}_{\text{MASK}}$$

- B_{SOL} is another bulk solvent parameter defining "how deeply bulk solvent penetrates into a macromolecular region"

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

P. V. Afonine,^a* R. W. Grosse-Kunstleve,^a P. D. Adams^{a,b} and A. Urzhumtsev^{c,d}

^aLawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, ^bDepartment of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA, ^cIGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France, and ^dUniversité de Lorraine: Département de Physique – Nancy 1, BP 239, Faculté des Sciences et des Technologies, 54506 Vandoeuvre-lès-Nancy, France

Correspondence e-mail: pafonine@lbl.gov

Bulk-solvent and overall scaling revisited: faster calculations, improved results

A fast and robust method for determining the parameters for a flat (mask-based) bulk-solvent model and overall scaling in macromolecular crystallographic structure refinement and other related calculations is described. This method uses analytical expressions for the determination of optimal values for various scale factors. The new approach was tested using nearly all entries in the PDB for which experimental structure factors are available. In general, the resulting R factors are improved compared with previously implemented approaches. In addition, the new procedure is two orders of magnitude faster, which has a significant impact on the overall runtime of refinement and other applications. An alternative function is also proposed for scaling the bulk-solvent model and it is shown that it outperforms the conventional exponential function. Similarly, alternative methods are presented for anisotropic scaling and their performance is analyzed. All methods are implemented in the Computational Crystallography Toolbox (cctbx) and are used in PHENIX programs.

Received 13 December 2012 Accepted 5 January 2013

Non-atomic model parameters: Twinning

Atomic model parameters

Example of a PDB atom descriptors:

						Position				Larger-scale disorder						
ATOM	25	CA	PRO	A	4	31	. 309	29	. 489	26.0	44	1.00	57.79		С	
ANISOU	25	CA	PRO	A	4	844	3	7405	61	10	2093	; –	-24	-80	С	
						Loca	el mo	bility	, (sma	ll har	mon	ic vib	ration)			

Atomic model parameters

- Position (coordinates)
- Local mobility (ADP; Atomic Displacement Parameters or *B*-factors):

Diffraction data represents time- and space-averaged images of the crystal structure: time-averaged because atoms are in continuous thermal motions around mean positions, and space-averaged because there are often small differences between symmetry copies of the asymmetric unit in a crystal. ADP is to model the *small* dynamic displacements as isotropic or anisotropic *harmonic* displacements.

- Larger-scale disorder (occupancies)

Larger displacements (beyond harmonic approximation) can be modeled using occupancies ("alternative conformations/locations").

Data quality (resolution, completeness) defines how detailed the model is

Model parametrization should match data quality (mostly resolution)

Data quality (resolution, completeness) defines how detailed the model is

Model parameterization: coordinates

Hierarchy of atomic displacements

Atomic Displacement Parameters (ADP or "B-factors")

Hierarchy of atomic displacements

<u>Total ADP</u>: $\mathbf{U}_{\text{TOTAL}} = \mathbf{U}_{\text{CRYST}} + \mathbf{U}_{\text{GROUP}} + \mathbf{U}_{\text{LOCAL}}$ **U**_{TOTAL} **U**_{GROUP} **U**_{LOCAL} **U**_{CRYST} isotropic anisotropic U_{TLS} U_{LIB} U_{SUBGROUP}

Atomic Displacement Parameters (ADP or "B-factors")

• <u>Total ADP</u> $U_{TOTAL} = U_{CRYST} + U_{GROUP} + U_{LOCAL}$

U_{CRYST} – lattice vibrations; accounted for by overall anisotropic scale (6 parameters).

$$\mathbf{F}_{\text{MODEL}} = k_{\text{OVERALL}} e^{-\mathbf{s}\mathbf{U}_{\text{CRYSTAL}} \mathbf{s}^{t}} \left(\mathbf{F}_{\text{CALC}_\text{ATOMS}} + k_{\text{SOL}} e^{-\frac{B_{\text{SOL}} \mathbf{s}^{2}}{4}} \mathbf{F}_{\text{MASK}} \right)$$

Atomic Displacement Parameters: TLS

[Schomaker & Trueblood (1968) On the rigid-body motion of molecules in crystals Acta Cryst. B24, 63-76]

- T describes anisotropic translational displacement (units: Å²).
- L describes rotational displacement (libration) of the rigid group (units: rad²).
- S describes the correlation between the rotation and translation of a rigid body that undergoes rotation about three orthogonal axes that do not intersect at a common point.
- A is anti-symmetric tensor; a function of atomic coordinates and TLS origin.

research papers

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

M. D. Winn,^a* M. N. Isupov^b and G. N. Murshudov^{a,c}

^aDaresbury Laboratory, Daresbury, Warrington WA4 4AD, England, ^bDepartment of Chemistry and Biological Sciences, University of Exeter, Exeter EX4 4QD, England, and ^cChemistry Department, University of York, Heslington, York YO1 5DD, England

Correspondence e-mail: m.d.winn@dl.ac.uk

Use of TLS parameters to model anisotropic displacements in macromolecular refinement

An essential step in macromolecular refinement is the selection of model parameters which give as good a description of the experimental data as possible while retaining a realistic data-to-parameter ratio. This is particularly true of the choice of atomic displacement parameters, where the move from individual isotropic to individual anisotropic refinement involves a sixfold increase in the number of required displacement parameters. The number of refinement parameters can be reduced by using collective variables rather than independent atomic variables and one of the simplest examples of this is the TLS parameterization for describing the translation, libration and screw-rotation displacements of a pseudo-rigid body. This article describes the implementation of the TLS parameterization in the macromolecular refinement program REFMAC. Derivatives of the residual with respect to the TLS parameters are expanded in terms of the derivatives with respect to individual anisotropic U values, which in turn are calculated using a fast Fourier transform technique. TLS refinement is therefore fast and can be used routinely. Examples of TLS refinement are given for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a transcription activator GerE, for both of which there is data to only 2.0 Å, so that individual anisotropic refinement is not feasible. GAPDH has been refined with between one and four TLS groups in the asymmetric unit and GerE with six TLS groups. In both cases, inclusion of TLS parameters gives improved refinement statistics and in particular an improvement in R and free R values of several percent. Furthermore, GAPDH and GerE have two and six molecules in the asymmetric unit, respectively, and in each case the displacement parameters differ significantly between molecules. These differences are well accounted for by the TLS parameterization, leaving residual local displacements which are very similar between molecules and to which NCS restraints can be applied.

Received 30 May 2000 Accepted 19 October 2000

Rigid-body motion

General displacement of a rigid-body point can be described as a rotation along an axis passing through a fixed point together with a translation of that fixed point.

 $\underline{\mathbf{u}} = \underline{\mathbf{t}} + \mathbf{D}\underline{\mathbf{r}}$

for small librations $\underline{u} \approx \underline{t} + \underline{\lambda} \times \underline{r}$

D = rotation matrix $\underline{\lambda}$ = vector along the rotation axis of magnitude equal to the angle of rotation

TLS parameters

Dyad product: $\underline{uu}^{\mathsf{T}} = \underline{tt}^{\mathsf{T}} + \underline{t\lambda}^{\mathsf{T}} \times \underline{r}^{\mathsf{T}} - \underline{r} \times \underline{\lambda} \underline{t}^{\mathsf{T}} - \underline{r} \times \underline{\lambda} \underline{\lambda}^{\mathsf{T}} \times \underline{r}^{\mathsf{T}}$

ADPs are the time and space average

$$U_{TLS} = \langle uu^T \rangle = T + S^T \times \underline{r}^T - \underline{r} \times S - \underline{r} \times L \times \underline{r}^T$$

 $T = \langle \underline{t}\underline{t}^{\mathsf{T}} \rangle$ $L = \langle \underline{\lambda}\underline{\lambda}^{\mathsf{T}} \rangle$ $S = \langle \underline{\lambda}\underline{t}^{\mathsf{T}} \rangle$

6 parameters, TRANSLATION
6 parameters, LIBRATION
8 parameters, SCREW-ROTATION
Choice of TLS groups and resolution

00	TLS Motion Determination Home									
	+ 🗟 http://skuld.bmsc.washington.edu/~tlsmd/	0								
60 M	The Human Protein Atlas Cooling Baths SAW TM - Sciand Writing CloneRanger Anaerobic Fern in E. coli KCLmail Mail Google Apple (342) VKrail PubMed PDB Enzyscreen RONN NLS HPRD EPS	is j								
	TLS Motion Determination Home									
	Home Start a New Job Job Status Examples Documentation									
	TLS Motion Determination (TLSMD) analyzes a macromolecular crystal structure for evidence of flexibility, e.g. local or inter-domain motions. It does this by partitioning individual chains into multiple segments that are modeled as rigid bodies undergoing TLS (Translation/Libration/Screw) vibrational motion. It generates all possible partitions up to a maximum number of segments. Each trial partition is scored by how well it explains the observed atomic displacement parameters ("B values") that came out of crystallographic refinement.									
	Submit your structure using the <u>Start a New Job</u> page. TLSMD is computationally expensive, so jobs are handled by a run queue. You can monitor the progress of your run on the <u>Job Status</u> page. The server will notify you by Email when the job has finished. Backbone displacement of HIV Protease + inhibitor (1T3R). Both A and B chains of the homodimer are partitioned into 5 TLS groups by TLSMD. Click here to view an animated GIF, or here for an interactive Jmol animation of chain A. The complete analysis is here.									
	 The server returns: Statistics for each model that describe how well it accounts for the thermal motion observed in the crystal structure. Various plots and graphical images showing the implied inter-domain or other motions. An animation of the implied motion via the <u>Jmol</u> Java applet Modified PDB files and TLS input files that can be used for further crystallographic refinement in <u>Refmac5</u> or <u>phenix.refine</u>. These same files can be used for more detailed inspection and figure generation in the <u>TLSView</u> interactive viewer. 									
	More information about TLS groups, interpretation of the TLS parameters, and interactive visualization of TLS models can be found in the reprints below, and in the <u>TLSView</u> Manual. TLSView is part of the <u>Python Macromolecular Library (mmLib)</u> .									
	Note: TLSMD is a work in progress. Expect it to change. Please let us know of any problems, suggestions, or blinding revelations inspired by the analysis. If you use TLSMD results to refine or analyze your structure, please cite the papers below.									
	Please cite: Contact us: TLSMD: J Painter & E A Menitt (2008) <u>Acta Cryst. D62, 439-450</u> reprint: (PDF) Ethan Menitt <menitt_at_u.washington.edu> server: J Painter & E A Menitt (2008) <u>J. Appl. Cryst. 39, 109-111</u> reprint: (PDF) Christoph Champ <champc_at_u.washington.edu></champc_at_u.washington.edu></menitt_at_u.washington.edu>									
	Last Modified 26 October 2011									
phenix.refine also offers a TLS selection routine										
Re	solution is not a problem. There are only 20 more									

parameters per TLS group

Atomic Displacement Parameters (ADP or "B-factors")

• <u>Total ADP</u> $U_{TOTAL} = U_{CRYST} + U_{GROUP} + U_{LOCAL}$

- **U**_{LOCAL} local vibration of individual atoms.
 - Depending on data amount and quality, it can be less precise (isotropic) or more precise (anisotropic).
 - These vibrations are expected to be very small due to assumption of rigidity of interatomic bonds (vibrating atoms cannot stretch the bond much).

Contributions to equivalent isotropic Bs

[Howlin, B. & al. (1993) TLSANL: TLS parameteranalysis program for segmented anisotropic refinement of macromolecular structures, J. Appl. Cryst. 26, 622-624]

Contribution to equivalent isotropic Bs

Occupancy: large-scale disorder that cannot be modeled with harmonic model (ADP)

- Occupancy is the fraction of molecules in the crystal in which a given atom occupies the position specified in the model.
- If all molecules in the crystal are identical, then occupancies for all atoms are 1.00.

- We may refine occupancy because sometimes a region of the molecules may have several distinct conformations.
- Refining occupancies provides estimates of the frequency of alternative conformations.

ATOM	1	Ν	AARG	A	192	-5.782	17.932	11.414	0.72	8.38	Ν
ATOM	2	CA	AARG	A	192	-6.979	17.425	10.929	0.72 1	0.12	С
ATOM	3	С	AARG	A	192	-6.762	16.088	10.271	0.72	7.90	С
ATOM	7	N	BARG	A	192	-11.719	17.007	9.061	0.28	9.89	Ν
ATOM	8	CA	BARG	A	192	-10.495	17.679	9.569	0.28 1	1.66	С
ATOM	9	С	BARG	A	192	-9.259	17.590	8.718	0.28 1	2.76	С

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

• <u>Structure refinement</u> is a process of changing a model parameters in order to optimize a goal (target) function:

T = F(Experimental data, Model parameters, A priori knowledge)

- Experimental data a set of diffraction amplitudes Fobs (and phases, if available).
- Model parameters: coordinates, ADPs, occupancies, bulk-solvent, ...
- *A priori* knowledge (restraints or constraints) additional information that may be introduced to compensate for the insufficiency of experimental data (finite resolution, poor data-to-parameters ratio)
- Typically: $T = T_{\text{DATA}} + \mathbf{w}^* T_{\text{RESTRAINTS}}$
 - T_{DATA} relates model to experimental data
 - $T_{\text{RESTRAINTS}}$ represents *a priori* knowledge
 - w is a weight to balance the relative contribution of T_{DATA} and $T_{\text{RESTRAINTS}}$

$$f = \sum_{\underline{h}} w(\underline{h}) (|F_o| - |F_c|)^2$$

Least-squares crystallographic function

NOT ENOUGH INFORMATION !!!

2.0 Å resolution 2500 non-H atoms (325 aa)

22000 reflections

x,y,z,isoADPs param x,y,z,anisoADPs param obs/var ratio = 2.2 obs/var ratio = 0.9777

Restraints

$$f = \sum_{\underline{h}} w(\underline{h}) (|F_{0}| - |F_{c}|)^{2} + \sum_{\underline{h}} w(\underline{h}) (B_{0} - B_{c})^{2} + \sum_{\underline{h}} w(\underline{h}) (A_{0} - A_{c})^{2} + \sum_{\underline{h}} w(\underline{h}) (A_{0} - A_{c})^{2} + \sum_{\underline{h}} \sum_{\underline{h}} w(\underline{h}) (A_{0} - A_{c})^{2} + \sum_{\underline{h}} \sum_{\underline{h}} \dots$$

Least-squares crystallographic function

Restraint functions

Bond lengths Angles

•••

[Waser, J. (1963), Least-squares refinement with subsidiary conditions, Acta Cryst. 16, 1091-1094] [Konnert, J. (1976), A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units, Acta Cryst. A32, 614-617]

R and R_{free} statistics

$f = \Sigma w(\underline{h})(|F_o| - |F_c|)^2$

The 'conventional' R factor compares the observed structure amplitudes $|F_{obs}|$ to those calculated from the current model $|F_{calc}|$. It is defined as

$$R = \frac{\sum_{h} \left| \left| F_{\text{obs}} \right| - \left| F_{\text{calc}} \right| \right|}{\sum_{h} \left| F_{\text{obs}} \right|}.$$
(1)

As with other R factors, some authors express it as a percentage. Thus 'R = 20%' is the same as 'R = 0.2'.

The R factor is calculated over a group of reflections h, which may be all the observed reflections, or a particular group. Frequently an R factor is calculated over small ranges or 'bins' of resolution, to give an idea of the performance of the model as resolution is increased.

Problems with LS

$$f = \sum_{h} w(\underline{h}) (|F_{o}| - |F_{c}|)^{2}$$

Least-squares crystallographic function

Assumption

The distribution of amplitudes is Gaussian with completely known variances

The above assumption can be considered reasonable only at the very final stages of refinement

Rice distribution

The best model is the one which has the highest probability given a set of observations and a certain prior knowledge.

Bayes' theorem P(M;O) = P(M)P(O;M)/P(O) Screening for disease D.

On average 1 person in 5000 dies because of D. P(D)=0.0002
Let P be the event of a positive test for D.
P(P;D)=0.9, i.e. 90% of the times the screening identifies the
 disease.
P(P;not D)=0.005 (5 in 1000 persons) false positives.

What is the probability of having the disease if the test says it is positive?

Maximum likelihood and the Bayesian view

The best model is the most consistent with the data

Statistically this can be expressed by the likelihood L(O,M)

Bayes' theorem P(M;O) = P(M)P(O;M)/P(O) = P(M)L(O;M)L(O;M)

 $\max P(M;O) \Leftrightarrow \min -\log P(M;O) = \min \left[-\log P(M) - \log L(O;M)\right]$

[Probability Theory: The Logic of Science by E.T.Jaynes; http://bayes.wustl.edu] [Bricogne, G. & al. (1997), Methods in Enzymology. 276] [Murshudov, G.N. & al. (1997), Refinement of macromolecular structures by the maximumlikelihood method, Acta Cryst. D53, 240-255] $\max P(M;O) \Leftrightarrow \min -\log P(M;O) = \min \left[-\log P(M) - \log L(O;M)\right]$

Prior knowledge contibutions and observations are assumed to be independent (this is a limitation)

$$P(M) = \prod_{R} P_{j}(M) \implies -\log P(M) = -\sum_{R} \log P_{j}(M)$$
$$L(O;M) = \prod_{N} L_{i}(O;M) \implies -\log L(O;M) = -\sum_{N} \log L_{i}(O;M)$$

Target function

A function that relates model parameters to experimental data. Typically looks like this:

$$T = T_{\text{DATA}}(F_{\text{OBS}}, F_{\text{MODEL}}) + wT_{\text{RESTRAINTS}}$$

Least-Squares (reciprocal space)

$$T_{\text{DATA}} = \sum_{s} \mathbf{w}_{s} \left(F_{s}^{\text{OBS}} - k F_{s}^{\text{MODEL}} \right)^{2}$$

- Widely used in small molecule crystallography

- Used in macromolecular crystallography in the past

• <u>Maximum-Likelihood (reciprocal space; much better option for macromolecules)</u>

$$T_{\text{DATA}} = \sum_{s} (1 - K_{s}^{cs}) \left(-\frac{\alpha_{s}^{2} \left(F_{s}^{MODEL}\right)^{2}}{\varepsilon_{s} \beta_{s}} + ln \left(I_{0} \left(\frac{2\alpha_{s} F_{s}^{MODEL} F_{s}^{OBS}}{\varepsilon_{s} \beta_{s}} \right) \right) \right) + K_{s}^{cs} \left(-\frac{\alpha_{s}^{2} \left(F_{s}^{MODEL}\right)^{2}}{2\varepsilon_{s} \beta_{s}} + ln \left(\cosh \left(\frac{\alpha_{s} F_{s}^{MODEL} F_{s}^{OBS}}{\varepsilon_{s} \beta_{s}} \right) \right) \right) \right)$$

Target function

• Maximum-Likelihood (reciprocal space; option of choice for macromolecules)

$$ML = T_{\text{DATA}} = \sum_{s} (1 - K_{s}^{cs}) \left(-\frac{\alpha_{s}^{2} \left(F_{s}^{MODEL}\right)^{2}}{\varepsilon_{s} \beta_{s}} + ln \left(I_{0} \left(\frac{2\alpha_{s} F_{s}^{MODEL} F_{s}^{OBS}}{\varepsilon_{s} \beta_{s}}\right)\right)\right) + K_{s}^{cs} \left(-\frac{\alpha_{s}^{2} \left(F_{s}^{MODEL}\right)^{2}}{2\varepsilon_{s} \beta_{s}} + ln \left(cosh \left(\frac{\alpha_{s} F_{s}^{MODEL} F_{s}^{OBS}}{\varepsilon_{s} \beta_{s}}\right)\right)\right) \right)$$

- α and β account for model imperfection:
 - α is proportional to the error in atomic parameters and square of overall scale factor;
 - β is proportional to the amount of missing (unmodelled) atoms.
- α and β are estimated using test reflections by minimization of ML function w.r.t. α and β in each relatively thin resolution bin where α and β can be assumed constant.
 - This is why ML-bases refinement requires *test set reflections*^(*) that should be defined sensibly:
 - Each resolution bin should contain at least 50 randomly distributed test reflections.

(*) *Test reflections* – a fraction of reflections (5-10%) put aside for cross-validation.

- Why Maximum-Likelihood target is better than Least-Squares (in a nutshell):
 - ML accounts for model incompleteness (missing, unmodeled atoms) while LS doesn't;
 - ML automatically downweights the terms corresponding to reflections with the poor fit (poorly measured inaccurate F_{OBS} , high resolution reflections at the beginning of refinement, etc.)
- *R*-factors in LS and ML refinement:
 - *R*-factor is expected to decrease during LS based refinement, since the LS target and *R*-factor formula are very similar:

$$R = \frac{\sum |F_{\text{OBS}} - F_{\text{MODEL}}|}{\sum F_{\text{MODEL}}} \qquad LS = \sum_{s} (F_{\text{OBS}} - F_{\text{MODEL}})^{2}$$

 In ML based refinement the *R*-factor may eventually decrease (and this is what typically happens in practice) but this is not implied by the ML target function

LS vs ML

[Pannu, N.S. & Read, R.J. (1996), Improved structure refinement through maximum-likelihood , Acta Cryst. A52, 659-668]

Summary objective function

• ML target functions are typically superior to LS target functions

• There are limitations in current ML implementations

• LS is acceptable when the model is complete (SHELXL uses LS with direct summation - no FFT)

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

Restraints in refinement of individual coordinates

Fourier images at different data resolution:

- At lower resolution the electron density is not informative enough to keep the molecule geometry sensible
- Therefore there is a need to bring in some additional a priori knowledge that we may have about the molecules in order to keep the geometry ...
- This knowledge is typically expressed *either* as an additional term to the refinement target (*restraints* term):

$E_{\text{TOTAL}} = w * E_{\text{DATA}} + E_{\text{RESTRAINTS}}$

or strict requirement that the model parameter must exactly match the prescribed value and never change during refinement (*constraints*).

Restraints in refinement of individual coordinates

 A priori chemical knowledge (restraints) is introduced to keep the model chemically correct while fitting it to the experimental data at lower resolution (less resolution, stronger the weight W):

$E_{\text{TOTAL}} = w * E_{\text{DATA}} + E_{\text{RESTRAINTS}}$

 $E_{\text{RESTRAINTS}} = E_{\text{BOND}} + E_{\text{ANGLE}} + E_{\text{DIHEDRAL}} + E_{\text{PLANARITY}} + E_{\text{NONBONDED}} + E_{\text{CHIRALITY}} + E_{\text{NCS}} + E_{\text{RAMACHANDRAN}} + E_{\text{REFERENCE}} + \dots$

- Higher resolution less restraints contribution (can be completely unrestrained for well ordered parts at subatomic resolution).
- Typically, each term in $E_{RESTRAINTS}$ is a harmonic (quadratic) function: E = Σ weight * $(X_{model} - X_{ideal})^2$
- weight = 1/σ(X)² is the inverse variance, in least-squares methods (*e.g.* 0.02 Å for a bond length)
- Making σ(X) too small is NOT equivalent to constraints, but will make weight infinitely large, which in turn will stall the refinement.

Restraints: bonds and angles

• Bond distances:

 $E = \Sigma_{bonds}$ weight * $(d_{model} - d_{ideal})^2$

• Bond angles:

 $E = \Sigma_{angles} weight * (\alpha_{model} - \alpha_{ideal})^2$

Alternatively, one can restrain1-3 distances:

Restraints: dihedral (torsion) angles

- Dihedral or torsion angle is defined by 4 sequential bonded atoms 1-2-3-4
 - Dihedral = angle between the planes 123 and 234
 - Torsion = looking at the projection along bond B-C, the angle over which one has to rotate A to bring it on top of D (clockwise = positive)

- Three possible ways to restraining dihedrals:
 - E = $\Sigma_{\text{dihedrals}}$ weight * $(\chi_{\text{ideal}} \chi_{\text{model}})^2$ (if only one target value for the dihedral)
 - E = $\Sigma_{\text{dihedrals}}$ weight * (1 + cos (n χ_{model} + χ_{shift})) (n = periodicity)
 - E = $\Sigma_{1-4-pairs}$ weight * $(d_{model} d_{ideal})^2$ (sign ambiguity unless $\chi = 0^{\circ}$ or 180°, *i.e.* both χ and - χ give rise to the same 1-4 distances)

- A chiral molecule has a non-superposable mirror image
- Chirality restraints (example: for C α atoms) defined through chiral volume:

 $V = (\mathbf{r}_{N} - \mathbf{r}_{CA}) \bullet [(\mathbf{r}_{C} - \mathbf{r}_{CA}) \times (\mathbf{r}_{CB} - \mathbf{r}_{CA})]$

sign depends on handedness ($V_D = -V_L$)

$$E = \Sigma_{chiral} weight * (V_{model} - V_{ideal})^2$$

 Alternatively, chirality restraints can be defined by an "improper torsion" ("improper", because it is not a torsion around a chemical bond)

Example: for C α : torsion (C α -N-C-C β) = +35° for L-aa, -35° for D-aa

$$E = \Sigma_{chiral} weight * (\chi_{ideal} - \chi_{model})^2$$

- Planarity (double bonds, aromatic rings):
 - Identify a set of atoms that has to be in plane, and then for each set, minimise sum of distances to the best-fitting plane through the atoms

 $\mathsf{E} = \Sigma_{\mathsf{planes}} \Sigma_{\mathsf{atoms_in_plaine}} weight * (\underline{\mathbf{m}} \cdot \underline{\mathbf{r}} - d)^2$

- Restrain the distances of all atoms in the plane to a dummy atom that lies removed from the plane
- Define a set of ("fixed", "non-conformational") dihedral angles (or improper torsions) with target values of 0° or 180°:

(CB-CG-CD1-CE1) = 180(CG-CD1-CE1-CZ) = 0(CD1-CE1-CZ-OH) = 180(CD1-CE1-CZ-CE2) = 0(CE1-CZ-CE2-CD2) = 0(CZ-CE2-CD2-CG) = 0(CE2-CD2-CG-CD1) = 0

Restraints: non-bonded

• Simple repulsive term: $E = \Sigma_{nb} weight * (d_{model} - d_{min})^4$ (only if $d_{model} < d_{min}$)

 Combined function: Van der Waals and electrostatics terms E = E_{attractive} + E_{repulsive} + E_{electrostatic} =

Sources of target ("ideal") values for constraints and restraints

- Libraries (for example, Engh & Huber) created out of small molecules that are typically determined at much higher resolution, use of alternative physical methods (spectroscopies, etc).
- Analysis of macromolecular structures solved at ultra-high resolution
- Pure conformational considerations (Ramachandran plot), tabulated secondary structure parameters
- QM (quantum-chemical) calculations

Specific restraints for refinement at low and very low resolution

• At low(ish) resolution the electron density map is not informative enough and a set of local restraints are insufficient to maintain known higher order structure (secondary structure), and the amount of data is too small compared to refinable model parameters ...

• ... therefore one needs to bring in more information in order to assure the overall correctness of the model:

- Reference model
- Secondary structure restraints
- Ramachandran restraints
- NCS restraints/constraints

Specific restraints for refinement at low and very low resolution

Reference model:

- If you are lucky, there may be a higher resolution structure available that is similar to low resolution structure
- Use higher resolution information to direct low-resolution refinement

 Reference point restraint for isolated atoms (water / ions): sometime density peak may not be strong enough to keep an atom in place (due to low resolution or low site occupancy, for example), so it can drift away from it. Use harmonic restraint to peak position.

Secondary structure restraints

•

- H-bond restraints for alpha helices, beta sheets, RNA/DNA base pairs
- This requires correct annotation of secondary structure elements:
 - . It can be done automatically using programs like DSSP / KSDSSP
 - Or... manually....or with *ProSMART*

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449	Low-resolution refinement tools in <i>REFMAC5</i>					
Robert A. Nicholls, Fei Long and Garib N. Murshudov*	Two aspects of low-resolution macromolecular crystal struc- ture analysis are considered: (i) the use of reference structures and structural units for provision of structural prior informa- tion and (ii) map sharpening in the presence of noise and	Received 2 November 2011 Accepted 28 December 2011				
Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England	the effects of Fourier series termination. The generation of interatomic distance restraints by <i>ProSMART</i> and their subsequent application in <i>REFMAC5</i> is described. It is shown that the use of such external etructural information can					
Correspondence e-mail: garib@mrc-lmb.cam.ac.uk	enhance the reliability of derived atomic models and stabilize refinement. The problem of map sharpening is considered as an inverse deblurring problem and is solved using Tikhonov regularizers. It is demonstrated that this type of map sharpening can automatically produce a map with more structural features whilst maintaining connectivity. Tests show that both of these directions are promising, although more work needs to be performed in order to further exploit structural information and to address the problem of reliable electron-density calculation.					

research papers

Specific restraints for refinement at low and very low resolution Ramachandran restraints

- steer outliers towards favored region
- should only be used at low resolution
- should never be used at higher resolution, since it is one of the few precious validation tools (sometimes compare to "real-space analog of Rfree")

Specific restraints for refinement at low and very low resolution: NCS

NCS (non-crystallographic symmetry) restraints/constraints

- Multiple copies of a molecule/domain in the asymmetric unit that are assumed to have similar conformations (and sometimes B-factors)
- Restrain positional deviations from the average structure E = Σ_{atoms} weight * Σ_{NCS} |**r** - <**r**>|²
- Different weights for different parts of the model possible

NCS restraints and B-factors

NCS (non-crystallographic symmetry) restraints/constraints

- Similarly for B-factors: $E = \Sigma_{atoms}$ weight * Σ_{NCS} (B -)² \odot In case when TLS is used, the NCS is applied to U_{LOCAL}

<u>Total ADP</u>: $\mathbf{U}_{\text{TOTAL}} = \mathbf{U}_{\text{CRYST}} + \mathbf{U}_{\text{GROUP}} + \mathbf{U}_{\text{LOCAL}}$

Bs from NCS related chains

Specific restraints for refinement at low and very low resolution: NCS

- Potential problem when using position-based NCS restraints:
 - Restraining whole will introduce substantial errors (hinge does not obey NCS)

- Solution:
 - Need to use finer-grained NCS groups (in this example treat each domain separately), OR
 - Instead of restraining atomic positions, restrain the orientation of atom with respect to its neighbours → construct restraint target in torsion angle space.

Ramachandran, secondary structure and NCS restraints: when to use ?

- Ramachandran and secondary structure restraints should be used only at very low resolution^(*), when you essentially should use it to assure correctness of your structure (~3-3.5A or even lower, depends on data and model quality)
- NCS restrains:
 - Unlike Ramachandran and secondary-structure, NCS restraints should be used at higher resolution (2A and lower)
 - Some big crystallography names state that NCS should always be used in refinement (if available)
 - This is not quite true: at higher resolution, say lower than 2A, using NCS may rather harm then help, because it may wipe out the naturally occurring differences between NCS-related copies visible at that resolutions
 - Suggestion: simply try refining with and without NCS restraints and see what works better – this is the most robust way to find out!

(*) Urzhumtsev, A., Afonine, P.V. & Adams P.D. (2009). On the use of logarithmic scales for analysis of diffraction data. Acta Cryst. D65, 1283-1291.

Restraints in refinement of individual isotropic ADP

$$E_{\text{TOTAL}} = w * E_{\text{DATA}} + E_{\text{RESTRAINTS}}$$

- Similarity restraints: $E = \Sigma_{all \text{ pairs of bonded atoms}} \text{ weight } * (B_i B_j)^2$
- Knowledge-based restraints: $E = \Sigma_{all \text{ pairs of bonded atoms}} \text{ weight * } (|B_i B_j| \Delta_{ij})^2$ where Δ_{ij} comes from a library of values collected from well-trusted structures for given type of atoms.

$E_{\text{TOTAL}} = w * E_{\text{DATA}} + E_{\text{RESTRAINTS}}$

- A better way of defining restraints for isotropic ADPs is based on the following facts:
 - A bond is almost rigid, therefore the ADPs of bonded atoms are similar (Hirshfeld, 1976);
 - ADPs of spatially close (non-bonded) atoms are similar (Schneider, 1996);
 - The difference between the ADPs of bonded atoms, is related to the absolute values of ADPs. Atoms with higher ADPs can have larger differences (Ian Tickle, CCP4 BB, March 14, 2003).

$$\mathbf{E}_{\text{RESTRAINTS}} = \sum_{i=1}^{N_{\text{ALL ATOMS}}} \left[\sum_{j=1}^{M_{\text{ATOMS IN SPEHRE}}} \frac{1}{r_{ij}^{\text{distance_power}}} \frac{\left(\mathbf{U}_{i} - \mathbf{U}_{j}\right)^{2}}{\left(\frac{\mathbf{U}_{i} + \mathbf{U}_{j}}{2}\right)^{\text{average_power}}} \right|_{\text{sphereR}}$$

• Distance power, average power and sphere radius are some empirical parameters

A nuance about using similarity restraints

- Total ADP is: $\mathbf{U}_{\text{TOTAL}} = \mathbf{U}_{\text{CRYST}} + \mathbf{U}_{\text{GROUP}} + \mathbf{U}_{\text{LOCAL}}$
- Similarity restraints should be applied to U_{LOCAL}
- Applying it to $\mathbf{U}_{\text{TOTAL}}$ is much less justified

Example of constraints

- Rigid body refinement: mutual positions of atoms within a rigid groups are forced to remain the same, while the rigid group can move as a whole. 6 refinable parameters per rigid group (3 translations + 3 rotations).
- Constrained rigid groups: torsion angle parameterization. Reduction of refinable parameters by a factor between 7 and 10.
- Occupancies of atoms in alternative conformations: occupancies of alternate conformers must add up to 1.
- Group ADP refinement: mutual distribution of all B-factors within the group must remain the same. One refinable B-factor per group.
- Constrained NCS refinement: a number of *N* NCS related molecules or domains are assumed to be identical. Reduction of refinable parameters by a factor N.

- Do not confuse restraints and constraints

Constraints: model property = ideal value

Restraints: model property ~ ideal value

Constraints in occupancy refinement

- As it stands, occupancy refinement is always a constrained refinement...
- When we do not refine occupancy we essentially constrain its value to whatever value comes from input model (typically 1)

- Refining occupancies of alternative conformations we apply two constraints:
 - Occupancies of atoms within each conformer must be equal
 - Sum of occupancies for each set of matching atoms taken over all conformers must add to 1. Ideally, it should be less than or equal to 1, since we may not be including all existing conformers; however inequality constraints are very hard to handle in refinement.

ATOM	1	N	AARG	A	192	-5.782	17.932	11.414	0.72	8.38	N
ATOM	2	CA	AARG	A	192	-6.979	17.425	10.929	0.72	10.12	С
ATOM	3	С	AARG	A	192	-6.762	16.088	10.271	0.72	7.90	С
ATOM	7	N	BARG	A	192	-11.719	17.007	9.061	0.28	9.89	N
ATOM	8	CA	BARG	A	192	-10.495	17.679	9.569	0.28	11.66	С
ATOM	9	С	BARG	A	192	-9.259	17.590	8.718	0.28	12.76	С

- Refinement target $E_{\text{TOTAL}} = w * E_{\text{DATA}} + E_{\text{RESTRAINTS}}$
 - the weight *w* is determined automatically
 - in most of cases the automatic choice is good
- If automatic choice is not optimal there are two possible refinement outcomes:
 - structure is over-refined: *Rfree-Rwork* is too large. This means the weight *w* is too small making the contribution of E_{DATA} too large.
 - weight *w* is too large making the contribution of restraints too strong. This results increase of *Rfree* and/or *Rwork*.
 - A possible approach to address this problem is to perform a grid search over an array of *w* values and choose the one *w* that gives the best *Rfree* and *Rfree-Rwork*.
- A random component is involved in *w* calculation. Therefore an ensemble of identical refinement runs each done using different random seed will result in slightly different structures. The *R*-factor spread depends on resolution and may be as large as 1...2%.

Dictionary

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use

Alexei A. Vagin, Roberto A. Steiner,‡ Andrey A. Lebedev, Liz Potterton, Stuart McNicholas, Fei Long and Garib N. Murshudov*

Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England

‡ Current address: IFOM – The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy

Correspondence e-mail: garib@ysbl.york.ac.uk

One of the most important aspects of macromolecular structure refinement is the use of prior chemical knowledge. Bond lengths, bond angles and other chemical properties are used in restrained refinement as subsidiary conditions. This contribution describes the organization and some aspects of the use of the flexible and human/machine-readable dictionary of prior chemical knowledge used by the maximum-likelihood macromolecular-refinement program REFMAC5. The dictionary stores information about monomers which represent the constitutive building blocks of biological macromolecules (amino acids, nucleic acids and saccharides) and about numerous organic/inorganic compounds commonly found in macromolecular crystallography. It also describes the modifications the building blocks undergo as a result of chemical reactions and the links required for polymer formation. More than 2000 monomer entries, 100 modification entries and 200 link entries are currently available. Algorithms and tools for updating and adding new entries to the dictionary have also been developed and are presented here. In many cases, the *REFMAC5* dictionary allows entirely automatic generation of restraints within REFMAC5 refinement runs.

Received 19 April 2004 Accepted 22 September 2004

The use of prior knowledge requires its organised storage.

Organisation of dictionary

DICTIONARY http://www.ysbl.york.ac.uk/~alexei/dictionary.html LIBCHECK http://www.ysbl.york.ac.uk/~alexei/libcheck.html

Links and Modifications

Description of monomers

In the files: a/A##.cif

Monomers are described by the following catagories:

_chem_comp _chem_comp_atom _chem_comp_bond _chem_comp_angle _chem_comp_tor _chem_comp_chir _chem_comp_plane_atom

Monomer library (_chem_comp)

Monomer library (_chem_comp_atom)

loop_				
chem	_comp_ato	m.c	comp_id	
chem	comp_ato	m.a	itom_id	
chem	comp_ato	m.t	ype_symbol	
chem	comp ato	m.t	ype energy	
chem	_comp_ato	m.p	oartial_cha	rge
ALA	N	N	NH1	-0.204
ALA	Н	Η	HNH1	0.204
ALA	CA	С	CH1	0.058
ALA	HA	Η	HCH1	0.046
ALA	CB	С	CH3	-0.120
ALA	HB1	Η	HCH3	0.040
ALA	HB2	Η	HCH3	0.040
ALA	HB3	Η	HCH3	0.040
ALA	C	С	C	0.318
ALA	0	0	0	-0.422

Monomer library (_chem_comp_bond)

<u> </u>													
_chem_comp_bond.comp_id													
_chem_comp_bond.atom_id_1													
_chem_comp_bond.atom_id_2													
chem comp bond.type													
chemcompbond.valuedist													
_chem_comp_bond.value_dist_esd													
ALA N H single	0.860	0.020											
ALA N CA single	1.458	0.019											
ALA CA HA single	0.980	0.020											
ALA CA CB single	1.521	0.033											
ALA CB HB1 single	0.960	0.020											
ALA CB HB2 single	0.960	0.020											
ALA CB HB3 single	0.960	0.020											
ALA CA C single	1.525	0.021											
ALA C O double	1.231	0.020											

Monomer library (_chem_comp_chir)

```
loop_
_chem_comp_chir.comp_id
_chem_comp_chir.id
_chem_comp_chir.atom_id_centre
_chem_comp_chir.atom_id_1
_chem_comp_chir.atom_id_2
_chem_comp_chir.atom_id_3
_chem_comp_chir.volume_sign
ALA chir 01 CA N CB C negativ
```

positiv, negativ, both, anomer

Current status of the dictionary

Currently, there are about

- 9000 monomers with a complete description
- 100 modifications
- 200 links

Cis-peptides, S-S bridges, sugar-, DNA-, RNA-links are automatically recognized.

What happens when you run REFMAC5?

You have only monomers for which there is a complete description

the program carries on and takes everything from the dictionary

You have a monomer for which there is no description (or only a minimal description)

Minimal description or no description

In the case you have monomer(s) in your coordinate file for which there is no description (or minimal description) *REFMAC5* generates for you a complete library description (monomer.cif) and then it <u>stops</u> so you can check the result.

If you are satisfied you can use monomer.cif for refinement. <u>The</u> description generated in this way is good only if your coordinates are good (CSD, EBI, any program that can do energy minimization).

A more general approach for description generation requires the use of the graphical program *SKETCHER* from CCP4*i*. *SKETCHER* is a graphical interface to *LIBCHECK*.

Alternatively, you can use the *PRODRG2* server http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html

Even better use the GRADE server (Global Phasing) http://grade.globalphasing.org/cgi-bin/grade/server.cgi

SKETCHER

🔶 CCP4 Program Suite 5.0.beta	🔶 Moi	nomer Libra	ry Sketcher	۹								_	
List of jobs (finished or running)	<u>File E</u> dit												
Refinement	MOUSE Shift-left	BUTTONS	Left:rotate R	Right:drag Co	ntrol-left:z	oom Control- hift-right:Click	-right:Selec	t active ator	m Vne				
Run Refmac5	Do n	othing			ragment o	nine right. Caler	Ox						
Edit Restraints in PDP File										C =	CI	0 =	
Monomer Library Sketcher	-0									C =	C2	0 - 0	
Merge monomer ingranes	<u>к</u>									c –	ជ	0 - 0	
NCS Phased Refinement	$\mathbf{\dot{\mathbf{P}}}$	\odot								C =	C4	0 -	
Tidy Waters	X	0 ₩ 0			A					с –	C5	0 -	
Create/Edit TLS File	Undo k	ast edit		C#		Q.				C =	C6	0 -	
Analyse aniso U parameters	Recentre View										0 -		
Analyse TLS parameters	Mouse mode C - C8 0										0 -		
Run Sfcheck & Procheck	🔶 Edit M	Aonomer		C5	L.	G 3				C =	C9	0 -	
	🔶 Move	Fragment											\neg
					e	ſ		FN		Centre S	ign B/3	F/4 1/5 2/6	3
						Run Refmac5	9						
													Help
					Do	restrained	refinement	using	no prio	r phase infor	mation	inpu	t j
						Cycle with ARP_	waters to an	alyse solvent	phase and F()M	•		
						Generate weight	æd difference	maps files in	Hendrickson-	Lattmann co	efficients		
					мт	Z in ACA2003_1	-					Browse	View
					FP	7 4 040000	•		Sigma			_	
						2 out ACA2003						Browse	View
					PDI	B out ACA2003	1 -					Browse	View
					Libr	ary ACA2003 1	-					Browse	View
					Dat	a Harvesting							
						Create harves	t file in projec	t harvesting o	lirectory	-			

REFMAC5 can handle complex chemistry

Links and Modifications in practice

At the top of the PDB file:

0	1			2			3		4		5			6		7	
12345678	8901	L2345	67	8901	123	8456789	012	234567	8901	2345	67890	123	34567	890123	3456789	01234	56789
LINK		C6	В	BEN	В	1				01	BMAF	S	2			BE	N-MAF
LINK		OE2)	GLU	А	67		1.8	95	ZN	ZN	R	5			GL	U-ZN
LINK				GLY	Η	127					GLY	Η	133			gaj	р
LINK				MAF	S	2					MAN	S	3			BE	TA1-4
SSBOND	1	CYS	Α	298	3	CYS	A	298						45	555		
MODRES		MAN	S		3	MAN-k	D-D									RE	NAME

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Andrev A. Lebedev,^a* Paul Young,^b Michail N. Isupov,^c Olga V. Moroz,^d Alexev A. Vagin^d and Garib N. Murshudov^e

^aCCP4, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0OX, England, ^bYork Digital Library, University of York, Heslington, York YO10 5DD, England, ^cHenry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England, ^dStructural Biology Laboratory, University of York, Heslington, York YO10 5DD, England, and eStructural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England

Correspondence e-mail: andrev.lebedev@stfc.ac.uk

JLigand: a graphical tool for the CCP4 template-restraint library

Biological macromolecules are polymers and therefore the restraints for macromolecular refinement can be subdivided into two sets: restraints that are applied to atoms that all belong to the same monomer and restraints that are associated with the covalent bonds between monomers. The CCP4 template-restraint library contains three types of data entries defining template restraints: descriptions of monomers and their modifications, both used for intramonomer restraints, and descriptions of links for intermonomer restraints. The library provides generic descriptions of modifications and links for protein, DNA and RNA chains, and for some post-translational modifications including glycosylation. Structure-specific template restraints can be defined in a user's additional restraint library. Here, JLigand, a new CCP4 graphical interface to LibCheck and REFMAC that has been developed to manage the user's library and generate new monomer entries is described, as well as new entries for links and associated modifications.

Defining restraints for the covalent linkage Lys-PLP using JLigand. Snapshots show the state of the JLigand interface after the following user actions: (a) loading monomers LYS and PLP from the restraint library, (b) removing O4A from PLP, (c) connecting C4A (PLP) with NZ (LYS) and defining the bond order and (d) regularization. The Save As Link menu has to be used to generate (e) an additional library file containing the following five data blocks: list of modifications, list of links, modifications LYSmod1 and PLPmod1 to be applied to LYS and PLP, respectively, and link LYS-PLP. The file header, tables of restraints for LYSmod1 and all the tables for PLPmod1 are omitted, as indicated by lines filled by tildes. H atoms are dealt with automatically. It is also possible to visualize them and handle them explicitly.

LYS

PLPnod1

0.000

0.020

3.400

3.000

3,000

1.260

120.000

120.000

120.000

change NS

delote #21

delets HEI

delete 323

2 046 2 C4

2 C4A

1 82

2 H4A

2 C4A

(e)

PLP .

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

Refinement convergence

• Landscape of a refinement function is very complex

Picture stolen from Dale Tronrud

- Refinement programs have very small convergence radii compared to the size of the function profile
 - Depending where you start, the refinement engine will bring the structure to one of the closest local minimum
- What does it mean in practice ? Let's do the following experiment: run 100 identical Simulate Annealing refinement jobs, each staring with different random seed...

Refinement convergence

• As result we get an ensemble of slightly different structures having small deviations in atomic positions, B-factors, etc... R-factors deviate too.

- Interpretation of the ensemble:
 - The variation of the structures in the ensemble reflects:
 - Refinement artifacts (limited convergence radius and speed)
 - Some structural variations
 - Spread between the refined structures is the function of resolution (lower the resolution higher the spread), and the differences between initial structures
 - Obtaining such ensemble is very useful in order to asses the degree of uncertainty the comes from refinement alone

It is not uncommon to find that structures characterized by small differences in *R* statistics have essentially the same information content. Biology is more robust than R factors.

Refinement target optimization methods

Gradient-driven minimization

- Follows the local gradient.
- The target function depends on many parameters many local minima.

Refinement target optimization methods

Simulated annealing (SA)

- SA is an optimization method which is good at escaping local minima.
- Annealing is a physical process where a solid is heated until all particles are in a liquid phase, followed by cooling which allows the particles to move to the lowest energy state.
- Simulated annealing is the simulation of the annealing process.
 - Increased probability of finding a better solution because motion against the gradient is allowed.
 - Probability of uphill motion is determined by the temperature.

• Grid search (Sample parameter space within known range $[X_{MIN}, X_{MAX}]$) Robust but may be time inefficient for many parameter systems, and not as accurate as gradient-driven. Good for small number of parameters (1-3 or so), and impractical for larger number of parameters.

Summary on optimization tools

Picture stolen from Dale Tronrud

Newton's method

Taylor expansion of the objective function $f(\underline{x})$ around a working \underline{x}_k

Macromolecules

The calculation and storage of <u>H</u> (H^{-1}) is very expensive

<u>H</u> in isotropic refinement has $4N \times 4N$ elements 2500 atoms \rightarrow 100 000 000 elements

<u>H</u> in anisotropic refinement has $9N \times 9N$ elements 2500 atoms \rightarrow 506 250 000 elements

Direct calculation

time $\propto N_{el} \times N_{refl}$

FFT methods

[Agarwal, 1978] [Murshudov et al., 1997] [Tronrud, 1999] [Urzhumtsev & Lunin, 2001] time $\propto c_1 N_{el} + c_2 N_{refl} \log N_{refl}$

Approximations

The magnitude of matrix elements decreases with the lenghtening of the interatomic distance

REFMAC5 uses the scoring method of minimisation

The objective function $f(\underline{x})$ is the likelihood L

Positive semidefinite

REFMAC5 uses the scoring method of minimisation

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Roberto A. Steiner, Andrey A. Lebedev and Garib N. Murshudov*

Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England

Correspondence e-mail: garib@ysbl.york.ac.uk

Fisher's information in maximum-likelihood macromolecular crystallographic refinement

Fisher's information is a statistical quantity related to maximum-likelihood theory. It is a matrix defined as the expected value of the squared gradient of minus the loglikelihood function. This matrix is positive semidefinite for any parameter value. Fisher's information is used in the quasi-Newton scoring method of minimization to calculate the shift vectors of model parameters. If the matrix is non-singular, the scoring-minimization step is always downhill. In this article, it is shown how the scoring method can be applied to macromolecular crystallographic refinement. It is also shown how the computational costs involved in calculation of the Fisher's matrix can be efficiently reduced. Speed is achieved by assuming a continuous distribution of reciprocal-lattice points. Matrix elements calculated with this method agree very well with those calculated analytically. The scoring algorithm has been implemented in the program REFMAC5 of the CCP4 suite. The Fisher's matrix is used in its sparse approximation. Tests indicate that the algorithm performs satisfactorily.

Received 13 June 2003 Accepted 21 August 2003

Properties of the scoring method

- As Fisher's information is positive semidefinite for any parameter value the shift <u>s</u> is always downhill (if the matrix is non-singular)
- The scoring method is linearly convergent at a rate which depends on the relative difference between the observed and expected information [Smyth, 1996]
- In short runs the scoring method often converges faster than Newton's method especially if the number of observations is big [Kale, 1961]
- Fisher's information is easier to calculate than the Hessian

Integral approximation of /

$$I_{p_{i}(n)p_{j}(m)} \cong K_{p_{i}p_{j}}q_{n}q_{n}\sum_{\underline{n}}W_{s}H_{p_{i}p_{j}}f_{n}^{0}f_{m}^{0}t_{n}t_{m}\text{trig}_{p_{i}p_{j}}\left(2\pi\underline{h}\underline{D}_{nm}\right)$$

$$Discrete\ reciprocal\ space$$

$$I\ depends\ on\ atom\ types,\ ADPs,\ interatomic\ distance$$

$$Continuous\ reciprocal\ space$$

$$Continuous\ reciprocal\ space$$

$$K_{p_{i}p_{j}}q_{n}q_{m}\int_{res.\ sphere}W_{s}H_{p_{i}p_{j}}f_{n}^{0}f_{m}^{0}t_{n}t_{m}\text{trig}_{p_{i}p_{j}}\left(2\pi\underline{h}\underline{D}_{nm}\right)$$

$$[Agarwal,\ 1978]$$

$$[Dodson,\ 1981]$$

$$[Templeton,\ 1999]$$

Analytical / versus integral /

Fast evaluation of /

Two-step procedure

 Tabulation step - a limited set of integrals are tabulated for different elements as a function of <u>D_{nm}</u> and B in a convenient coordinate system

2. Rotation step - the matrix element in the crystal system is calculated from the tabulated values using a rotation matrix

Key aspects of refinement

- Objective function
- Method of optimization
- Model parametrization
- Prior knowledge

- Model parameterization:
 - quality of experimental data (resolution, completeness, ...)
 - quality of current model (initial with large errors, almost final, ...)
 - data-to-parameters ratio (restraints)
 - individual *vs* grouped parameters
 - knowledge based restraints/constraints (NCS, reference higher resolution model, etc...)

Refinement target:

- ML target is the option of choice for macromolecules
- Real-space vs reciprocal space
- Use experimental phase information if available
- Optimization method:
 - Choice depends on the size of the task, refinable parameters, desired convergence radius

Typical refinement steps

Input data and model processing:

- Read in and process PDB file
- Read in and process library files (for non-standard molecules, ligands)
- Read in and process reflection data file
- Check correctness of input parameters
- Create objects that will be reused in refinement later on (geometry restraints,...)

Main refinement loop (macro-cycle; repeated several times):

- Bulk solvent correction, anisotropic scaling, twinning parameters estimation
- Update ordered solvent (water) (add or remove)
- Target weights calculation
- Refinement of coordinates (rigid body, individual) (minimization or Simulated Annealing)
- ADP refinement (TLS, group, individual isotropic or anisotropic)
- Occupancy refinement (individual, group, constrained)

• Output results:

- PDB file with refined model
- Various maps (2mFo-DFc, mFo-DFc) in various formats (CNS, MTZ)
- Complete statistics
- Structure factors

Refinement is:

- Process of changing model parameters to optimize a target function
- Various strategies are used (restraints, different model parameterizations) to compensate for imperfect experimental data

Refinement is NOT :

- Getting a 'low enough' R-value (to satisfy supervisors or referees)
- Getting 'low enough' B-values (to satisfy supervisors or referees)
- Completing the sequence in the absence of density