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The crystal lattice
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Miller indices (hkl) of lattice planes:

number of divisions the plane-set cuts into a (h), b (k), and c (1)
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Bragg’'s Law
(nA=2d,,,sind

A

(hki)

Consider diffraction as
selective reflection :

Only certain angles of
reflection (0)
are selected when X-rays of

a given wavelength ()
are reflected by the lattice
planes described by Miller
Indices(hkl)

with a characteristic
interplanar distance (d, )

The Reciprocal Lattice

The reciprocal lattice is an abstract concept, unlike the crystal
(real space) lattice, that is very useful in visualizing diffraction
geometry when used together with the Ewald sphere

construction.

The reciprocal lattice is defined by three vectors a*, b*, ¢* (in
the same way that the crystal lattice is defined by the three

vectors a, b, c) as follows

a*=(bxc)/V b*=(cxa)/V c*=(axb)/V V=unitcell volume

This definition implies:

a.a*=1 b.b*=1 c.c*=1
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A two dimensional example

b*

—Xa*

B

a

The reciprocal vectors are perpendicular to the planes of the real crystal lattice, so a* is
perpendicular to (100), b* to (010) c* to (001)

|a*| is the spacing between the (bc) planes,
|b*| between the (ca) planes,
|c*| between the (ab) planes

For the special case of an orthogonal lattice (only),

la*| =1/]al, |b*|=1/|bl, |c*|=1/|c|; a*[[la b*|[]Ib c*|]lc

We define the scattering vector S (or d*) for a particular reciprocal lattice point as:
S = ha*+kb*+lc*

The Ewald Sphere Construction

S=s-5, s, istheincident beam vector
) P s isthe diffracted beam vector
S  isthe scattering vector

M g O

The general condition for diffraction is illustrated by the vector equation
S=s-5,

In the triangle MOP, sin(0) = OP/OM = Ad*/2 = \/2d

Because s, and s have the same length (1/A),
we can generalise this diagram by drawing a sphere of radius

1/ So
[sol = Is| =1/A

S is the diffraction vector in reciprocal space

For a crystal, S may only take certain values, S =h a* + kb* + | c*
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The Ewald sphere is only a construction but is very useful to understand the
geometry of diffraction. Confusingly, it has two origins:

M is the centre of the sphere, and may be considered as the position of the crystal,
since this is the source of the secondary (diffracted) beam s;

O is the origin of reciprocal space, the origin of the diffraction vector S, and the
centre of the reciprocal lattice

As the crystal rotates, the reciprocal lattices rotates in exactly the same way

Diffraction only occurs when a Diffracted beam
reciprocal lattice point lies on the /’
sphere
S
So S
a

w8 70
Xray bea

A two dimensional example

Xrays
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In three dimensions

As a reciprocal lattice point passes through the Ewald sphere, a
diffracted beam is observed along the line from the sphere
centre to the reciprocal lattice point

http://escher.epfl.ch/x-ray/diff.mpeg

What happens on the detector

Reciprocal lattice point
on sphere

(_» Spoton defector
Xd
Xray beam [

X
(beam) Yg

Z (rotation axjs)

Detector

As the crystal rotates, each lattice point in turn passes through the
sphere, and a spot is recorded on the detector.

We can use the Ewald construction to understand

¢ what diffraction images look like

¢ how to collect a complete dataset without missing bits




Ewald sphere

Ewald construction helps to understand

e what diffraction images look like
* how to collect a complete dataset without missing

bits

We can imagine the reciprocal lattice sitting on
the crystal on the camera, and rotating as the

crystal rotates

Resolution sphere
radius 1/dmax

Ewald sphere
radius 1/h

Xray beam

Detector position

For a maximum resolution of d,,,,
all diffraction vectors S must lie
within a resolution sphere of
radius 1/d

max

As the crystal rotates, the

=
/

Cone of diffractic

semi-angle 20

A detector centered on the
beam collects the whole

cone
_—

This gives optimum
efficiency and simple
strategy

The corners of a square
detector collect incomplete
data —

diffracted beams all lie within a
cone of semi-angle 26,,,

Md,.,=25sin 6,

on

Detector
For long axes (close spot
separation) it may be
- necessary to use a long
detector distance and an
offset detector

This gives a lower efficiency,
and to get complete data

requires a complicated
strategy
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The appearance of diffraction images

Reciprocal lattice points lie in
layers (planes). Each plane
intersects the sphere in a
circle, and the spots projected
on the detector lie in ellipses

If the crystal is rotated through
a small angle,each circle is
broadened into a lune. All the
spots in a lune belong to one
plane of the reciprocal lattice
(not necessarily a principal
plane)

Examples of lunes in
rotation images

Lunes corresponding
to different sets of
planes

A series of successive rotation images showing the lunes moving up the image
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A diffraction movie of lysozyme
diffraction

These images were recorded by a CMOS flat panel detector C7942 by Hamamatsu Photonics. The crystal was cooled by liquid
nitrogen and rotated by 0.5 deg/frame. The data were recorded at BL38B1 in SPring-8. (http://yagi.spring8.or.jp/lysozyme.html)

The size of spots in reciprocal space
and on the detector

Real observed diffraction is complicated by the imperfections of real crystals and X-ray
beams

The X-ray beam
¢ the incident beam has a finite width and is not exactly parallel (beam divergence)
¢ the beam is not entirely monochromatic (dispersion)

The crystal

e the crystal has a finite size

e the crystal is not perfect, but may be considered a mosaic of blocks in
slightly different orientations (mosaicity)

The effect of these factors can be considered as a broadening of the reciprocal lattice
points, giving them a non-zero size and therefore a finite reflecting range
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The size of spots in reciprocal space
and on the detector

Beam divergence § and mosaicity n
add up to increase the angular width
of the diffracted beam

High mosaicity causes
broadening of the lunes
Most obvious along the

‘L rotation axis
- @ .

rotation angle ¢

Reflection width in rotation
= +m + geometric factor

(geometric factor depends on angle between the rotation axis & S)

Crystal Mosaicity (Nn)

angular measure of the degree of long-range order of the unit cells
within a crystal. Lower mosaicity indicates better ordered crystals and
hence better diffraction

Highly exaggerated representation
of crystal mosaicity

Typical values for a protein crystal 0.05° - 0.7 degree
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Overlaps and rotation range

Current integration programs assume that spots
are resolved, both on the detector and on
rotation ¢. This means that the intensity goes
down to background all round the spot

Resolution is a problem for large unit cells, high
mosaicity and high resolution

Overlap between spots on the detector is easy to
see, but to understand

Overlap on ¢ we need to look in reciprocal space

Overlaps and rotation range

When a closely-spaced row of spots
(eg along a*) is moving perpendicularly into
the sphere, their diffracted beams almost

All diffracted beams coincide.
superimpose The spots are on top of each other on the
7 detector, and are only separated on ¢

lattice spacing a*

Maximum slice width = (a*/d*) - w =d/a -w
angular spot w = reflection width =6 + n
separation

1/resolution = d* —a*/d* Example:

cell = 2004,

resolution = 24,
width =0.3°
Maximum Slice = 0.27°

If possible, orient a long axis along the
rotation axis to minimise overlap problems
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Completeness: total rotation range
and the blind region

In a rotation of 180° above, the lower
boundary of the initial sphere sweeps out
the volume coloured green & the upper
boundary the light brown part. The dark
brown part is measured twice, and the
blue part not at all

To use the Ewald sphere construction to
understand which parts of reciprocal space
are measured, it is easier to fix the
“resolution sphere” of all reciprocal lattice
points within a maximum resolution, and to
rotate the Ewald sphere. The region
collected is the volume swept out by the
leading and trailing surfaces of the sphere

Because of Friedel’s law, this dataset is
complete (apart from the blind region), but
if complete anomalous differences are
required, then 180° + 26max is required
(unless there is symmetry)

The blind region

Diffraction vectors close to the rotation
axis will never pass through the sphere,

even in a 360° rotation
The blind region is smaller for short

wavelengths, as the Ewald sphere is

flatter

The blind region may be filled in by
collecting a second set of data,
offsetting the crystal by at least 6,
or by symmetry (except in P1)

If there is symmetry, offsetting from
an axis can remove or reduce the
blind region for a single setting
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Symmetry and total rotation range: an
orthorhombic example

Rotation of an orthorhombic A 90° rotation starting at
crystal by 90° starting from a diagonal collects the

an axis gives a complete PR .
dataset (except for the blind same 45° twice, and gives

region) incomplete data

Summary of strategy choices

Detector position
¢ Place detector far enough away to resolve spots (or reduce beam size)
e Use the whole detector area (don’t have blank region around edge)

¢ Don’t use an offset detector unless desperate for spot resolution. If you
have to offset the detector, be very careful in strategy planning

Total rotation range

o If possible, collect 180° (360° in P1 with anomalous). High redundancy is
Good, provided that radiation damage is not serious

e When rotating around (or close to) a symmetry axis of order n, the

minimum rotation is about 360°/n (more complicated in dihedral or cubic
symmetry)

¢ With an offset detector, a larger rotation range is needed, as only one
surface of the Ewald sphere is active rather than two

10/12/14
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Summary of strategy choices

Crystal orientation and rotation start point

¢ To remove the blind region, avoid rotating exactly around a symmetry axis

* To optimise anomalous differences with respect to absorption, rotate exactly
around a symmetry axis (even-fold only)

e Use a strategy program to determine range and start point

e Collect 180° or 360° and start anywhere

Image rotation range (slicing)

e Use a strategy program to determine optimum width

¢ Set width < (maximum resolution)/(longest axis not along spindle) - spotwidth
® Process data & check for overlaps

¢ Fine-slicing is more sensitive to readout noise and errors in synchronisation of
shutter opening and rotation (this potentially adds an error for each image) but this is
not an issue with Pilatus detectors.

2D vs 3D Data Integration and Coarse
vs Fine phi slicing

In 2D integration, the intensity of partially recorded reflections is evaluated separately on each image
and only summed at the data scaling stage.

In 3D integration, the different parts of a partially recorded reflection on different images are
assembled by the integration program to give a 3D profile (shoebox) of the reflection which is then
integrated to yield a “fully recorded” intensity.

Coarse phi slicing uses a rotation angle per image that is greater than the mosaic spread (plus beam
divergence), so there will be some fully recorded reflections.

Fine phi slicing uses a rotation angle per image that is significantly less than the crystal mosaic spread
(eg less than half), so that all reflections are partially recorded in that they are spread over several
images.

Note that fine sliced data can be processed using either 2D or 3D integration methods, because with
current software there is no difficulty scaling data that has no fully recorded reflections (this was not
always the case).

(See J. Pflugrath, Acta Cryst D55, 1718-1725, 1999 for a discussion of fine phi slicing).
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Advantages of fine phi slicing

Using an oscillation angle smaller than the reflection width (in phi) will improve signal
to noise for weak reflections by minimising the background:

! Ispol = Ilot - Ibck
Var(Ispm) = var(I,) + var(l, )
= Itol + Ibck
Background  [/0(I) = (I, - Tp)/(e + Ty

0 @ 10 For weak reflections, the background will
AP =1.0 dominate I /o(I).
AP =05
AD =025

Fine phi slicing should give better data but:

1) Assumes no errors in shutter synchronisation (demanding for very short (<0.5 sec)
exposures).

2) There will be detector readout noise in each image (except Pilatus).

(see J. Pflugrath, Acta Cryst D55, 1718-1725, 1999).
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