

2580-4

Joint ICTP-IAEA College on Identification and Assessment of Nationally Appropriate Mitigation Actions (NAMAs) in Energy System Development to Help Combat Climate Change

5 - 9 May 2014

Energy Technologies for Mitigating Climate Change

Mark Howells (Director and Prof) division of Energy Systems Analysis Royal Institute of Technology (KTH) SWEDEN ICTP 2014 04 05

Energy Technologies for Mitigating Climate Change

Mark Howells (Director and Prof) division of Energy Systems Analysis Royal Institute of Technology (KTH), SWEDEN www.desa.kth.se

Energy development

- Energy is needed for development
 - Societal
 - « Economic
 - Environmental
- All services require energy
- Fossil fuels:
 - Cheap and plentiful
 - Emit GHG emissions

Growth in primary energy demand and potential

Scenarios of GHG mitigation potential

- Our emissions are on the increase
- What pathways are considered 'safe'
- What are the options to reduce GHGs
 - * Technical
 - Behavioural
- What is acceptible?
- What is nationally appropriate?

All the options

- Cost on the y-axis
- Reduction potential on the x-axis
- Combination of supply and demand

Source: Global GHG Abatement Cost Curve v2.0

Capital investment required

- Funding and access to capital can be clear barrier
- Can influence the choice of technology that might fit
- Can form the basis of a NAMA application

Technology and policy

- Technology deployment
 - * Cost
 - Applicatiblity
 - Ease of use
 - ...
 - * Policy
- Fits well with the concept of NAMAs...

GHG Emissions - where they are (1)

- Sectoral split is important
- Determines where to focus
- Each sector has special charachteristics
 - GHG / Energy
 - Sustainable development
 - Appropriate PAMs etc

GHG Emissions – Where they are (2)

- Growth is occouring in emerging economies
- Opportunity to change direction now
- With long term gain
 - Cleaner growth (less adaptation)
 - Lower operating costs
 - Smaller infrastructure stock

Abatement potential

- By sector and technology
- **& Electricity**
 - Direct
 - « Indirect
- Industry
- Forestry
- Agriculture

A note – why the opportunity is in emerging economies

- Infrastructure is long lived
- Patterns of production can be difficult to change

Infrastructure dynamics

- Considering infrastrucutre
 - New build is 'best'
 - Retrofit
- Other

Low Carbon Technologies – Power sector

- Energy efficiency
- Nuclear
- Renewables
 - Variable
 - Conventional
- Carbon Capture and Storage
- Higher efficiency

Low Carbon Technologies – Petrochemicals

- Efficiency
- Co-generation
- Flaring
- Carbon Capture and Storage

Low Carbon Technologies - Chemicals

- Energy Efficiency
- Fuel Switching
- Combined Heat and Power
- Process change
- Carbon Capture and Storage

Low Carbon Technologies - Cement

- Process change
- Fuel switching
- Waste heat recovery
- Carbon Cature and Storage

Low Carbon Technologies – Transport (1)

- * Efficiency
- Hybrids
- Electrification
- Biofuel
- Mode switching

Low Carbon Technologies – Transport (2)

- Efficiency
- Hybrids
- Electrification
- Biofuel
- Mode switching

Low Carbon Technologies - Buildings

- Where is energy used?
 - Thermal comfort
 - Water heating
 - Appliances
 - Lighting
 - « Other...

Low Carbon Technologies - Buildings

- Efficiency
 - * HVAC
 - Water heating
 - Appliances
 - Building retrofit
 - Building design
- Fuel switching

Low Carbon Technologies – Forestry

- Land use change:
 - Slash and burn agriculture
 - Pasture land
 - Timber harvesting
 - Afforestation
 - Forrest restoration
 - Agriculture intensification

Low Carbon Technologies - Agriculture

- Nutrient (fertilizer) management
- Livestock and methane
- Grassland management
- Organic soil restoration

Which of these could fit your NAMAs?

- Sustainable development
- Fits into current national development
- GHG mitigation potential
- Financing potential
- Transformative
- National economy links
- Develop data, scenarios and MVR

Many thanks

References: Global Energy Assesment, IIASA Pathways to a low carbon economy, McKinsey & Co