

2580-5

Joint ICTP-IAEA College on Identification and Assessment of Nationally Appropriate Mitigation Actions (NAMAs) in Energy System Development to Help Combat Climate Change

5 - 9 May 2014

Introduction to Methodologies for Economic Evaluation of Alternative Projects

Ahmed Irej Jalal
Planning and Economic Studies Section
Department of Nuclear Energy
IAEA

Introduction to Methodologies for Economic Evaluation of Alternative Projects

Ahmed Irej Jalal
Planning and Economic Studies Section
Department of Nuclear Energy

Economic Analysis of Alternative Projects

Economic analysis aims at identifying and comparing economic and social benefits accruing to the economy and society from alternative projects.

Economic Comparison of Projects

Project A:

- Investment: \$ 10,000 1st yr
- Project life: 6 years,
- Net Benefits: \$5,000 2nd yr; \$4,000 3rd yr;
 \$3000 4th yr; \$2,000 5th yr and \$1,000 6th yr

Project B:

- Investment: \$10,000 1st yr and \$5,000 2nd yr
- Project life: 6 years,
- Net Benefits: \$5,500 each year of operation

Cash flows of the two projects

Comparison of cash flows of the two projects

	Cash Flow (US \$)			
Yr	Project A	Project B		
1	-10000	-10000		
2	5000	-5000		
3	4000	5500		
4	3000	5500		
5	2000	5500		
6	1000	5500		
Total	5000	7000		

Value of a \$1 Federal Reserve Note in 1913 Dollars (Source: US Bureau of Labor Statistics)

Time Value of Money

$$F_t = P_X(1+r)^t$$

$$P = \frac{F_t}{(1+r)^t}$$

P = present value; F = future value

t = time; r = rate

Comparison of cash flows of the two projects

	Cash Flow (US \$)					
Yr	Project A		Project B			
	Nominal	Discounted	Nominal	Discounted		
1	-10000	-10000	-10000	-10000		
2	5000	4762	-5000	-4762		
3	4000	3628	5500	4989		
4	3000	2592	5500	4751		
5	2000	1645	5500	4525		
6	1000	784	5500	4309		
Total	5000	3410	7000	3812		

Discount Rate 5%

Comparison of cash flows of the two projects

	Cash Flow (US \$)				
Yr	Project A		Project B		
	Nominal	Discounted	Nominal	Discounted	
1	-10000	-10000	-10000	-10000	
2	5000	4545	-5000	-4545	
3	4000	3306	5500	4545	
4	3000	2254	5500	4132	
5	2000	1366	5500	3757	
6	1000	621	5500	3415	
Total	5000	2092	7000	1304	

Discount Rate 10%

Net Present Value vs Discount Rate

Economic Comparison

Two Widely used techniques

- Present value Analysis
 All cash flows are converted to the same point in time
- Annual Equivalent Cost Analysis
 All cash flows are converted to an equivalent annual amount (annuity)

Both techniques yield the same Decision Preference

Criteria for Evaluation of Projects

- Criteria based on present value
 - Maximum net present value
 - Minimum present value of costs
 - Minimum levelised cost of generation
 - Maximum Benefit-to-cost ratio

Criteria based on yield
 Criterion of internal rate of return

...atoms for peace.

