Joint ICTP-IAEA College on Identification and Assessment of Nationally Appropriate Mitigation Actions (NAMAs) in Energy System Development to Help Combat Climate Change

$$
5 \text { - } 9 \text { May } 2014
$$

Introduction to Methodologies for Economic Evaluation of Alternative Projects

Ahmed Irej Jalal
Planning and Economic Studies Section
Department of Nuclear Energy
IAEA

Introduction to Methodologies for Economic Evaluation of Alternative Projects

Ahmed Irej Jalal
Planning and Economic Studies Section Department of Nuclear Energy

IAEA

Economic Analysis of Alternative Projects

Economic analysis aims at identifying and comparing economic and social benefits accruing to the economy and society from alternative projects.

Economic Comparison of Projects

- Project A:
- Investment : \$10,000 $1^{\text {st }} \mathbf{y r}$
- Project life: 6 years,
- Net Benefits: \$5,000 $2^{\text {nd }} \mathbf{y r}$; \$4,000 $3^{\text {rd }} \mathrm{yr}$; $\$ 30004^{\text {th }} \mathbf{y r} ; \mathbf{2 , 0 0 0} 5^{\text {th }} \mathrm{yr}$ and $\$ 1,0006^{\text {th }} \mathbf{y r}$
- Project B:
- Investment : \$ 10,000 $1^{\text {st }} \mathrm{yr}$ and $\$ 5,0002^{\text {nd }} \mathrm{yr}$
- Project life: 6 years,
- Net Benefits: \$5,500 each year of operation

IAEA

Cash flows of the two projects

Comparison of cash flows of the two projects

	Cash Flow (US \$)	
Yr	Project A	Project B
1	-10000	-10000
2	5000	-5000
3	4000	5500
4	3000	5500
5	2000	5500
6	1000	5500
Total	5000	7000

IAEA

Value of a \$1 Federal Reserve Note in 1913 Dollars (Source: US Bureau of Lab or Statistics)

Time Value of Money

$$
F_{t}=P_{X}(1+r)^{t}
$$

$$
P=\frac{F_{t}}{(1+r)^{t}}
$$

$$
P=\text { present value; } F=\text { future }
$$

value

IAEA
t = time; r = rate

Comparison of cash flows of the two projects

	Cash Flow (US \$)			
Yr	Project A		Project B	
	Nominal	Discounted	Nominal	Discounted
1	-10000	-10000	-10000	-10000
2	5000	4762	-5000	-4762
3	4000	3628	5500	4989
4	3000	2592	5500	4751
5	2000	1645	5500	4525
6	1000	784	5500	4309
Total	5000	3410	7000	3812

Discount Rate 5\%

Comparison of cash flows of the two projects

	Cash Flow (US \$)			
Yr	Project A		Project B	
	Nominal	Discounted	Nominal	Discounted
1	-10000	-10000	-10000	-10000
2	5000	4545	-5000	-4545
3	4000	3306	5500	4545
4	3000	2254	5500	4132
5	2000	1366	5500	3757
6	1000	621	5500	3415

Discount Rate 10\%

Net Present Value vs Discount Rate

IAEA

Economic Comparison

Two Widely used techniques

- Present value Analysis

All cash flows are converted to the same point in time

- Annual Equivalent Cost Analysis

All cash flows are converted to an equivalent annual amount (annuity)

Both techniques yield the same Decision Preference

Criteria for Evaluation of Projects

- Criteria based on present value
> Maximum net present value
> Minimum present value of costs
> Minimum levelised cost of generation
$>$ Maximum Benefit-to-cost ratio
- Criteria based on yield

Criterion of internal rate of return

IAEA

...atoms for peace.
\&IAEA

