## The Euro-CORDEX Initiative

A new generation of regional climate scenarios for Europe

A. F. Prein<sup>1</sup>, A. Gobiet<sup>1</sup>, D. Jacob<sup>2</sup>,

C. Teichmann<sup>2</sup>, H. Truhetz<sup>1</sup>



<sup>&</sup>lt;sup>1</sup> Wegener Center for Climate and Global Change, University of Graz, Austria

<sup>&</sup>lt;sup>2</sup> Climate Service Center, Hamburg, Germany

# EURO-CORDEX Basics Specifications

#### Spatial resolution:

- EUR-11: 0.11 degree (12.5 km)

- EUR-44: 0.44 degree (50 km)

Driving GCMs: CMIP5

#### GHG scenarios:

- rcp4.5, rcp8.5 (focus)
- rcp2.6 (few simulations)

#### Periods:

- Hindcast (ERA Interim): 1989 – 2008

- Control: 1951 - 2005

- Scenario: 2006 – 2100



Region (center of boundaries):

~ 27° N – 72° N, ~338° W – 45° E

(details: http://wcrp.ipsl.jussieu.fr/SF\_RCD\_CORDEX.html)

#### **EURO-CORDEX Community**

- 29 actively contribution groups
- Leading institutions in the field of regional climate modeling in Europe
- Voluntary effort, contributions are funded by the contributors
- Coordination: D. Jacob (CSC Germany) and A. Gobiet (University of Graz, Austria)

#### **EURO-CORDEX Models**

- 12 different GCMs from CMIP 5 (NorESM1-M, HadGEM2-ES, MPI-ESM-LR, CNRM-CM5, EC-EARTH, IPSL-CM5A-MR, ACCESS1-3, CanESM2, MIROC5, GFDL-ESM2M, CISRO-Mk3-6-0, CCSM4)
- 10 different RCMs: WRF (different configurations), CCLM, ALADIN, REMO, REGCM, HIRHAM, RACMO, ARPEGE, RCA, PROMES
- Inclusion of Empirical Statistical Downscaling (ESD) → under discussion



#### **EURO-CORDEX Basics**

## 0.44° vs. 0.11° Simulations

GCM ~150 km

## Representation of orography

e.g., European Alps

EURO-CORDEX 0.44 50 km

**EURO-CORDEX 0.11 12.5** km





## **EURO-CORDEX Basics**

## 0.44° vs. 0.11° Simulations

# Atmospheric Dynamics Specific Humidity ~3000 m 20.-24. Dec. 2008

#### **EURO-CORDEX 0.44**

~64 x computational costs

# [CCLM-COM 0.44° Hindcast (WEGC)]

#### **EURO-CORDEX 0.11**



[CCLM-COM 0.11° Hindcast (BTU)]



## **EURO-CORDEX Basics**

## 0.44° vs. 0.11° Simulations

# Atmospheric Dynamics Specific Humidity ~3000 m 20.-24. Dec. 2008

#### **EURO-CORDEX 0.44**

~64 x computational costs



#### **EURO-CORDEX 0.11**



[CCLM-COM 0.11° Hindcast (BTU)]



0

finishe/published

#### **EURO-CORDEX Basics**

## **Status EURO-CORDEX Simulations**

#### 0.11° Simulations

#### 40 0.11° Hindcast 30 20 hindcast: 16 10 0 finishe/published planed running 40 0.11° Control 30 20 control: 22 10 0 finishe/published running planed 0.11° Scenarios 40 rcp26: 5 30 rcp45: 16 Σ42 20 rcp85: 21 10

runnina

planed

#### 0.44° Simulations





# EURO-CORDEX Basics Aims of EURO-CORDEX







# EURO-CORDEX Basics Aims of EURO-CORDEX

1. JOINT MODEL EVALUATION

- I. RCM evaluation (multi-model)
- II. Reference datasets

1. JOINT MODEL EVALUATION





#### "Standard" Evaluation [Kotlarski et al., 2014]



- Basic features of European climate captured
- Shortcomings for selected metrics, seasons and regions.,
- Comparison with ENSEMBLES: Comparable, partly smaller error ranges.

#### Heat Waves Evaluation [Vautard et al. 2013]

Bias of 90th centile



- Heat waves well captured, but modulations in strengths
- Strong dependence on land-atmosphere processes and convection
- No improvement at higher resolution

#### Added Value of High Resolution (EUR-11) Simulations

[Prein et al. 2014]

# Precipitation Extremes (Q97.5)

- 8 RCMs in 0.44 and 0.11 deg. resolution
- Analysis of various aspects of extreme precipitation.
- Analysis on 0.44 deg. grid



- Clearly added value (red circles) in orographically influenced areas
- Less added value in flat regions

#### **Evaluation Summary**

- "Standard evaluation"
  - Ensemble mean biases comparable to ENSEMBLES(partly smaller error ranges)
- Simulations have skill to represent specific aspects like:
  - heat waves
  - climate classifications
- Added value of high resolution (EUR-11 compared to EUR-44)
  - demonstrated for mean and extreme precipitation.
- More studies in preparation

# EURO-CORDEX Basics Aims of EURO-CORDEX

1. JOINT MODEL EVALUATION

- I. RCM evaluation (multi-model)
- II. Reference datasets

1. JOINT MODEL EVALUATION

## 2A. GCM-RCM MATRIX

- I. GCM evaluation
- II. GCM-RCM Matrix



2B. JOINT ANALYSIS OF PROJECTIONS



#### **Principles of GCM selection in EURO-CORDEX**

- 1. Avoid GCMs with very weak performance over Europe
- 2. Spread of CMIP5 simulations should be sampled adequately
- 3. Modeling groups decide independently on the choice of GCM

#### 1. GCM Performance [UNICAN, ETHZ, UNIGRAZ, ...]

Spatial biases, annual cycles, upper air paramter evaluation, multi-parameter model performace indices, ...



#### **CMIP5 GCMs feature a range of performances**

- → No distinct outlier
- → No imperative reason to disqualify specific GCMs as drivers for the EURO-CORDEX RCMs.

## 2. Sampling the range of climate change projected in

CMIP5 [UNIGRAZ, ETHZ]

 Analysis of CMIP5 climate change signals of temperature and precipitation over Europe

#### Aims:

- Avoid giving too much weight to specific GCMs
- Avoid biases in the ensemble mean
- Avoid underestimation of the ensemble spread





# 2. Sampling EUR-11:

- 7 GCMs
   (MPI-ESM, CNRM-CM5, and EC-EARTH in 4 realizations each)
- Temperature change range fully sampled
- Extremely wet GCMs missing



#### EUR-11 RCP4.5 GCMs 2071-2100 against 1961-1990 region: CORDEX.Europe, season: annual





# 2. Sampling EUR-44:

- 12 GCMs
- Temperature change range fully sampled
  - More cooler GCMs
- Extremely wet GCMs missing



#### EUR-44 RCP4.5 GCMs 2071-2100 against 1961-1990 region: CORDEX.Europe, season: annual



# EURO-CORDEX Basics Aims of EURO-CORDEX

1. JOINT MODEL EVALUATION

- I. RCM evaluation (multi-model)
- II. Reference datasets

1. JOINT MODEL EVALUATION

2A. GCM-RCM MATRIX

- I. GCM evaluation
- II. GCM-RCM Matrix

III. Projections analysis

2B. JOINT ANALYSIS OF PROJECTIONS



# First Analysis of EUR-11 Climate Change Signals [Jacob et al., 2013]

- Analysis based on 9 (RCP45) and 10 (RCP85)
   0.11 simulations
- Mean climate change
- Change in various indices relevant for Impacts,
   Adaptation, and Vulnerability (IAV) studies
- Results tested for robustness and significance
- EUR-11 confirms earlier findings (ENSEMBLES)
- More spatial detail
- RCMs provide higher daily precipitation intensities than GCMs

## **Precipitation Change**





[Jacob et al., 2013]

#### **Climate Projections Summary**

- First analyses of EURO-CORDEX (EUR-11) scenarios are available and published (Jacob et al., 2013)
  - So far no large surprises compared to earlier studies (ENSEMBLES).
  - More spatial details
- More studies in preparation
  - Hydrological Cycle [Georgievski et al.]
  - Climate Types Integrated Assessment [Halenka et al.]
  - Mediterranean cyclone simulation [Gaertner et al.]
  - Snow Cover Analysis [S. Kotlarski et al.] [C. Teichmann et al.]
  - •

# EURO-CORDEX Basics Aims of EURO-CORDEX

1. JOINT MODEL EVALUATION

- I. RCM evaluation (multi-model)
- II. Reference datasets

1. JOINT MODEL EVALUATION

2A. GCM-RCM MATRIX

- I. GCM evaluation
- II. GCM-RCM Matrix

III. Projections analysis

2B. JOINT ANALYSIS OF PROJECTIONS

3A. INTERFACE TO USERS

- I. Interfaces to user community
- **II.** Dissemination

3B. DISSEMINATION OF RESULTS



#### **User Interface Activities**

- Definition and analysis of impact relevant indices and ensemblebased derived products (ongoing, results partly already available)
- Provision of a bias corrected EURO-CORDEX dataset (ongoing)
  - Inter-comparison of BC Methods
- User guideline document (under development)

#### Published Papers (several more submitted or in preparation):

- Vautard, Robert, et al. "The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project." Climate dynamics (2013): 1-21.
- **Kotlarski**, Sven, et al. "Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble." *Geoscientific Model Development Discussions* 7 (2014): 217-293.
- **Jacob**, Daniela, et al. "EURO-CORDEX: new high-resolution climate change projections for European impact research." *Regional Environmental Change* (2013): 1-16.
- Additional Studies close to or already submitted

#### **User Workshops**

 National user workshops (organized by EURO-CORDEX community members together with suitable national institutions, Spring 2014)



### **Availability for Users**

- Data-Access (similar to CMIP5):
  - Connect to and register at one of the ESGF nodes
  - Select project "CORDEX"
  - Select domain "EUR-44", "EUR-44i", "EUR-11", or "EUR-11i"



# Status of the EURO-CORDEX simulations and their analysis

- 71 EUR-11 and EUR-44 scenario simulations finished, ~100 planned in total
- EUR-44 40 simulations published on ESGF
- EUR-11 24 simulations published on ESGF

#### **Summary**

- EURO-CORDEX is a progress compared to earlier activities:
  - spatial resolution (EUR-11: 12.5 km)
  - ensembles size (100 simulations planned)
  - community involvement (27 groups)
  - user interface
- First studies clearly indicate added value of high resolution.
- The large ensemble will allow statistically more sound estimation of expected climate change and its uncertainty.
- First joint evaluation studies [Kotlarski et al. 2014] and climate change analysis are finished [Jacob et al.,2013] and confirm previous studies (ENSEMBLES).
- Bias corrected datasets, derived indices and products, and a user guide will facilitate the dissemination in IAV assessment.

## Thanks for your attention!

Visit EURO-CORDEX at: www.euro-cordex.net