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Random Matrix Theory 

 E.Wigner (1955) : local statistical properties of spectra of 
complex quantum systems such as of heavy nuclei, are 
universal, and can be described by the RMT  

 The commonly used quantity is the level spacing 
distribution  

 Wigner surmise:  

 E.Wigner (1957) : “The problem of the spacing of levels is 
neither a terribly important one nor have I solved it.”  

( )2exp)( BsAssp −= β

E.Lansing, May 7, 2014 



Universality of chaos 

H-atom in magnetic  
            field             

Sinai billiard             

Excited molecule               
2NO

Acoustic modes in  
           quartz             

Spectra of vibrations  of  
a plate             

Microwave billiard            

E.Lansing, May 7, 2014 



Classical chaos 
         Quantum chaos:  
Deterministic quantum systems   

with strong chaos in the 
classical limit 

Wave chaos 
   Properties: 
 (a) spectrum 
 (b) eigenstates 
 (c) dynamics 

Deterministic quantum 
systems   without classical 
limit 

  Disordered quantum systems 
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Chaotic eigenstates as the condition 
                 for thermalization 

Statistical Physics, Vol.5 (Pergamon, Oxford, 1969)  

 M.Srednicki, “Chaos and quantum thermalization”, 
Phys. Rev. E 50 (1994) 888.  

 J.M.Deutsch, “Quantum statistical mechanics in a 
closed system, Phys. Rev. A 43 (1991) 2046.  

 L.D.Landau and E.M.Lifshitz: 

E.Lansing, May 7, 2014 



Many-body chaos 
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Chaos and thermalization in nuclei and atoms  
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Chaotic eigenstates in a gold atom 
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 Strength function: 

 Occupation numbers: 



Thermalization in an isolated gold atom 

 G.F.Gribakin, A.A.Gribakina, V.V.Flambaum, 
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Two-Body Interaction Model 
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r,p,q,k     single-particle states 

kqprV  two-body matrix elements (random or dynamical) 

m  number of single-particle states 

n  number of particles (“quaisi-particles”) 

kε  energy of single-particle states 
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 determines the basis in which the dynamics occurs 
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 The following problems have been considered: 
 
(a) the distribution of occupation numbers and its relevance to the 

canonical and Fermi-Dirac distribution; 
(b) criteria of equilibrium and thermalization; 
(c) the meaning of temperature, entropy and heat capacity; 
(d) the increase of temperature due to the interaction….” 
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Transition to “chaos”: chaotic eigenstates 
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Fermi-Dirac distribution 

 Circles: analytical description 
versus numerical data, 

 Diamonds: Fermi-Dirac with 
thermodynamical temperature  
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One-Dimensional Bose System 
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 G.P.Berman, F.Borgonovi, F.M.I., A.Smerzi – PRL 92 (2004) 030404 

It is known that                       corresponds to the mean-field 
regime  and                         is the Tonks-Girardeau regime 

∞→g/n
0→g/n

Transition occurs at      1≈g/n
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 - integrable system ! 



Transition from regular to irregular dynamics 

 At                all bosons occupy the level with          0=t 0=k
0=g( ground state for                 )          

What  is going on after  
switching on the 

interaction 
between bosons,                  
for              ?          

0≠g

0>t

 Experimental setup is  
proposed  to observe 

this transition 

 Numerical 
data 

Mm ≡
( )  ln MttS Γ≈
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Chaos and relaxation dynamics in 1/2-spin models  

 L.F.Santos, F.Borgonovi, F.M.I., Phys. Rev. Lett. 108  
(2012) 094102; Phys. Rev. E 85 (2012)  036209. 

 model  1 

 model  2 

 integrable 

 non-integrable 

5.0≈crλ
 - for transition from Poisson 

to Wigner-Dyson 
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Emergence of chaotic states  
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α n - basis of  - basis of H 0H



Delocalization in energy shell  
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Strength function: from Breit-Wigner to Gauss  

 BW is characterized by half-width:  
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 Transition to chaos occurs when  

σ≈Γ  !!  
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Strength functions (LDOS)  
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Abstract: “Bogolubov’s classical example of statistical relaxation 

in a many-dimensional linear oscillator is discussed. The 
relation of the discovered relaxation mechanism to quantum 
dynamics as well as to some new problems in classical 
mechanics is considered.” 
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Chaos in integrable systems 
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 Two mechanisms of a statistical behavior (relaxation to 
a steady state distribution) in classical mechanics: 

 
      Thermodynamical limit                   ; 
      Exponential instability plus boundary in phase 

space  (            ) – “dynamical (deterministic) chaos” 
 
What is common for both mechanisms? –  Infinite 

number of statistically independent frequencies in 
      the time evolution of observables.  

∞→N

0>λ

 B.V.Chirikov, “Linear and nonlinear dynamical chaos”, 
  Open. Sys. & Informaion Dyn. 4 (1997) 241-280 . 

Foundation of statistical mechanics 
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 in quantum mechanics – only second mechanism 
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 Then, the relative time for                                     is  

   

        Infinite number of independent frequencies results in  
                                          randomness !    
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 only if all integer numbers   

“Linear chaos” in thermodynamical limit 

 Let us consider the function  

 where the numbers            are linearly independent:      nω
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Summary 

 
(a) Quantum chaos in terms of eigenstates 

(b)  Many-body chaos --- energy shell, form of strength function 
 
(c) Origin of thermalization  ---  chaotic eigenstates 
 
(d) Chaos in integrable systems  



Thank you for your attention! 

E.Lansing, May 7, 2014 




