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“Quantum chaos” in deterministic systems
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Random Matrix Theory

E.Wigner (1955) : local statistical properties of spectra of
complex quantum systems such as of heavy nuclei, are
universal, and can be described by the RMT

The commonly used quantity is the level spacing
distribution

Wigner surmise: p(s) = As” eXp(— Bs’ )

E.Wigner (1957) : “The problem of the spacing of levels is
neither a terribly important one nor have | solved it.”
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Universality of chaos

Sinai billiard

Excited molecule
NO,

Microwave billiard
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Quantum chaos:

Classical chaos | €= |Deterministic quantum systems

with strong chaos in the
classical ligit

Wave chaos

Properties:
(a) spectrum

(b) eigenstates
(c) dynamics

Deterministic quantum
systems without classical
limit

Disordered quantum systems
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Chaotic eigenstates

Volume 108A, number 2 PHYSICS LETTERS 18 March 1985

AN EXAMPLE OF CHAOTIC EIGENSTATES IN A COMPLEX ATOM

Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, USSR

Received 7 January 1985
Statistically processing a group of excited states with the total angular momentum and panty /' =1 in the cenum atom

reveals that their eigenfunctions are random superpositions of some few basic states. A possible dynamical mechanism
responsible for the formation of those chaotic states is briefly discussed.

M.Shapiro and G.Goelman, “Onset of Chaos in an

Isolated Energy Eigenstate”, Phys. Rev. Lett. 53
(1984) 1714.
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Chaotic eigenstates as the condition
for thermalization

L.D.Landau and E.M.Lifshitz:

T It may again be mentioned that, according to the fundamental principles of statistical
physics, the result of the averaging is independent of whether it is done mechanically over
the exact wave function of the stationary state of the system or statistically by means of
the Gibbs distribution. The only difference is that in the former case the result is expressed
in terms oj the energy of the body, and in the latter case as a function of its temperature.

Statistical Physics, Vol.5 (Pergamon, Oxford, 1969)

J.M.Deutsch, “Quantum statistical mechanics in a
closed system, Phys. Rev. A 43 (1991) 2046.

M.Srednicki, “Chaos and quantum thermalization”,
Phys. Rev. E 50 (1994) 888.
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Many-body chaos

Fig. 35. Picture illustrating the compound nucleus idea, as presented by N. Bohr in
1936. In a neutron-nucleus collision the constituent nucleons are viewed as billiard balls
and the nuclear binding as a shallow basin (taken from [112]).
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Chaos and thermalization in nuclei and atoms

M.Horoi, V.Zelevinsky, B.A.Brown, Phys. Rev. Lett.

74 (1995) 5194; V.Zelevinsky, M.Horoi, B.A.Brown,
Phys. Lett. B 350 (1995) 141; V.Zelevinsky,
B.A.Brown, M.Horoi, N.Frazier, Phys. Rep. 276
(1996) 85.

V.V.Flambaum, A.A.Gribakina, G.F.Gribakin,

M.G.Kozlov, “Structure of compound states in the
chaotic spectrum of the Ce atom: Localization
properties, matrix elements, and enhancement of
weak perturbations, Phys. Rev. A 50 (1994) 267.

in particular, the reduced density matrix operator was analyzed
numerically for individual eigenstates, and compared with analytical
average over number of chaotic states
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Chaotic eigenstates in a gold atom
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FIG. 3. Components of the 500th J™ = 127 ejgenstate from a two-configuration calculation
)

(top), and a fit of ?[-(E ) by the Breit-Wigner formula (6) (bottom).

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.

E.Lansing, May 7, 2014 (problem of electron recombination )




Basic relations
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Thermalization in an isolated gold atom
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G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Two-Body Interaction Model

< 1
+ + _+
H=»c¢aa +_->V, aaa.a,
2
qpr
M
H0=28ka;ak

two-body matrix elements (random or dynamical)

k),|q),| p),|r) single-particle states
V

kqpr
m  number of single-particle states

n  number of particles (“quaisi-particles”)
€, energy of single-particle states

H is considered in the many-particle basis of H,

determines the basis in which the dynamics occurs
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V.V.Flambaum and F.M.I., “Statistical theory of finite Fermi

systems based on the structure of chaotic eigenstates”, Phys.
Rev. E 56 (1997) 5144; V.V.Flambaum, F.M.Il., G.Casati, Phys. Rev.
E 54 (1996) 2136.

The following problems have been considered:

(a) the distribution of occupation numbers and its relevance to the
canonical and Fermi-Dirac distribution;

(b) criteria of equilibrium and thermalization;

(c) the meaning of temperature, entropy and heat capacity;

(d) the increase of temperature due to the interaction....”
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Transition to “chaos”: chaotic eigenstates
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Fermi-Dirac distribution

0.8 1 l Circles: analytical description

versus numerical data,

Diamonds: Fermi-Dirac with
thermodynamical temperature

Su=Inp(E)+ const,

1 _dS,h_dlnp
Ts. dE dE

FIG. 1. Analytical description of the occupation numbers. Data
are given for the two-body random interaction model (1) of n=4
Fermi particles distributed over m =11 orbitals with V=0.20 and
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One-Dimensional Bose System O

A 9 P
H = E 8kn+EEa; ,a,a0(k+q—p-r)
k==M
_ N

where L --lengthofaring; n=— _. density of bosons
N -- number of bosons

. _ | 47k’

n.=a,a, and ‘k>-- single-particle levels with &€, = Iz

G.P.Berman, F.Borgonovi, FM.I., A.Smerzi — PRL 92 (2004) 030404

It is known that n/ g — © corresponds to the mean-field
regime and n/ g —( is the Tonks-Girardeau regime
- integrable system !

Transition occursat n/g=~1
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Transition from regular to irregular dynamics

At ¢ =0 all bosons occupy the level with k =0
( ground state for g=0 )

What is going on after "Numerical '

switching on the 6 5 ———data —~_
interaction g = ()

between bosons,

for t>0 ?

— n/g=64 =
— n/g=1.28
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Experimental setup is
proposed to observe
this transition
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Chaos and relaxation dynamics in 1/2-spin models

model 1 integrable
model 2 non-integrable

Hl — Ho-{-ﬂvl.
L—1 H>» = Hy + A V3,

Ho= ) J(S7S5+ S S0). = L
I—1 =1

Vi= JS§; S

= A =~0.5

- for transition from Poisson
to Wigner-Dyson

L.F.Santos, F.Borgonovi, FM.I., Phys. Rev. Lett. 108
(2012) 094102; Phys. Rev. E 85 (2012) 036209.
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Emergence of chaotic states

] I ) i
2=0.2 -

FIG. 2 (color online). Typical localized (top) and extended
(bottom) eigenstates for model 1 (left) and model 2 (right).

‘0{> - basis of H ‘n> - basis of H
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Delocalization in energy shell
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FIG. 4 (color online). Structure of eigenstates in the energy

shells for model 1 (left) and model 2 (right) obtained by

averaging over 5 states in the middle of the energy band. Solid

curves correspond to the Gaussian form of the energy shell.
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Strength function: from Breit-Wigner to Gauss

F,(E)=|ce[ p(E)

BW is characterized by half-width: I} = 2;;‘[{ o

Gauss is characterized by its variance: O, = z ‘H -

Transition to chaos occurs when
I'=0c Il
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Strength functions (LDOS)

o 8883
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FIG. 3 (color online). Strength functions for model 1 (left) and
model 2 (right) obtained by averaging over 5 close states in the
middle of the spectrum. Middle panels: circles give a Breit-
Wigner fit. Lower panels: circles stand for a Gaussian fit. In all
panels, solid curves correspond to the Gaussian form of the

energy shells.
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Chaos in integrable systems

B.V.Chirikov, “Transient Chaos in Quantum and Classical
Mechanics”, Foundation of Physics, Vol.16, No.1 (1986).

Abstract: “Bogolubov’s classical example of statistical relaxation
in a many-dimensional linear oscillator is discussed. The
relation of the discovered relaxation mechanism to quantum
dynamics as well as to some new problems in classical
mechanics is considered.”

N.N.Bogoliubov, “On Some Statistical Methods in Mathematical

Physics”, Academy of Sciences USSR Publishers, Kiev, 1945, p.
115 (Russian); in: “Selected Papers” (Naukova Dumka, Kiev,
1970, Vol.2, p.77 (Russian).

B.V.Chirikov, “Linear and nonlinear dynamical chaos”,

Open. Sys. & Information Dyn. 4 (1997) 241-280 .
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Foundation of statistical mechanics

Two mechanisms of a statistical behavior (relaxation to
a steady state distribution) in classical mechanics:

® Thermodynamical limit N —> ®
@ Exponential instability plus boundary in phase
space (A > 0 ) - “dynamical (deterministic) chaos”

What is common for both mechanisms? — Infinite
number of statistically independent frequencies in
the time evolution of observables.

in quantum mechanics — only second mechanism

B.V.Chirikov, “Linear and nonlinear dynamical chaos”,
Open. Sys. & Informaion Dyn. 4 (1997) 241-280 .
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“Linear chaos” in thermodynamical limit

Let us consider the function f(#) = 1/ E cos(w, t)

where the numbers @,  are linearly independent:

kw +k,w,+k,w,+-=0 only if all integer numbers
k =k =k, ==0

Loyt
1 Y
Then, the relative time for f, < f(¢) < f, is e *dy
N 27T ~£

Infinite number of independent frequencies results in
randomness !
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Summary

(a) Quantum chaos in terms of eigenstates
(b) Many-body chaos --- energy shell, form of strength function
(c) Origin of thermalization --- chaotic eigenstates

(d) Chaos in integrable systems
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Thank you for your attention!
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