

2583-4

Workshop on Coherent Phenomena in Disordered Optical Systems

26 - 30 May 2014

Unconventional Quantum Phases in Kicked Rotors

Chushun TIAN Institute for Advanced Study, Tsinghua University Beijing People's Republic of China

UNCONVENTIONAL QUANTUM PHASES IN KICKED ROTORS

Chushun Tian

Institute for Advanced Study, Tsinghua University, Beijing

Workshop on Coherent Phenomena in Disordered Optical Systems, May 26-30, Trieste

◆ロ → ◆母 → ◆目 → ◆目 → ◆日 → ◆日 →

Collaborators:

Alexander Altland (Cologne), Markus Garst (Cologne), and Jiao Wang (Xiamen)

References:

[1] C. Tian and A. Altland, New. J. Phys. 12, 043043 (2010).

[2] C. Tian, A. Altland, and M. Garst, Phys. Rev. Lett. 107, 074101 (2011).

[3] J. Wang, C. Tian, and A. Altland, Phys. Rev. B 89, 195105 (2014).

[4] C. Tian and A. Altland, in preparation

Acknowledgements:

S. Fishman and I. Guarneri for discussions over years.

Table of Contents

1 The kicked rotor (KR) as a canonical chaotic model

2 Dynamical localization vs. quantum resonances in KR

3 Anderson vs. metal-supermetal transition in quasiperiodic KR

2 Dynamical localization vs. quantum resonances in KR

Anderson vs. metal-supermetal transition in quasiperiodic KR

2 Dynamical localization vs. quantum resonances in KR

3 Anderson vs. metal-supermetal transition in quasiperiodic KR

2 Dynamical localization vs. quantum resonances in KR

3 Anderson vs. metal-supermetal transition in quasiperiodic KR

2 Dynamical localization vs. quantum resonances in KR

3 Anderson vs. metal-supermetal transition in quasiperiodic KR

▲ロト ▲御ト ▲ヨト ▲ヨト 三日 - シタの

Rescaling

$$\begin{array}{rcl} t & \rightarrow & t/T \equiv t \\ \hat{J} & \rightarrow & T\hat{J}/I \equiv \hat{l} \\ k & \rightarrow & Tk/I \equiv K \\ \hbar & \rightarrow & T\hbar/I \equiv \tilde{h} \end{array}$$

$$\hat{H} \rightarrow \frac{\hat{l}^2}{2} - K \cos \hat{\theta} \sum_n \delta(t-n) \equiv \hat{H}, [\hat{\theta}, \hat{l}] = i\tilde{h}$$

A quantum kicked rotor (QKR) is controlled by two parameters:

- 1. classical stochastic parameter: ${\cal K}$
- 2. effective Plank's constant: \tilde{h}

Classical limit $(\tilde{h} \to 0)$: transition to global stochasticity

Chirikov-Taylor mapping

$$l_{n+1} = l_n + K \sin \theta_{n+1}$$

$$\theta_{n+1} = \theta_n + l_n$$

Diffusion as a manifestation of global stochasticity

Joul's heating \Leftrightarrow random walk in angular momentum space

$$l_{t+1} = l_t + \xi_t \qquad \langle \xi_t \xi_{t'} \rangle \propto K^2 \delta_{tt'}$$

 $\langle E(t) \rangle \sim D_{cl} t$

classical diffusion coefficient

$$D_{cl} = \begin{cases} (K - K_c)^3 & K_c \le K < 4.5\\ \frac{K^2}{4} \left[1 - 2J_2(K) - 2J_1^2(K) + 2J_3^2(K) \right] & K > 4.5 \end{cases}$$

Dynamical localization at irrational values of $\tilde{h}/(4\pi)$

Casati, Chirikov, Ford, and Izrailev '79

Raizen et. al. '95

୍ ୬ ୯ ୯

Analogy to Anderson localization (Fishman, Grempel, and Prange '82, '84)

$$\begin{split} \bar{\phi}_{\alpha}(n) &= \frac{1}{2} (\langle n\tilde{h} | \phi_{\alpha}^{+} \rangle + \langle n\tilde{h} | \phi_{\alpha}^{-} \rangle) \\ |\phi_{\alpha}^{+} \rangle &= e^{iK\cos\hat{\theta}/\tilde{h}} | \phi_{\alpha}^{-} \rangle \\ \frac{\tan(\omega - \tilde{h}n^{2}/2) \bar{\phi}_{\alpha}(n) + \sum_{r} W_{n-r} \bar{\phi}_{\alpha}(r) = 0 \\ \hat{W} &= -\tan(K\cos\hat{\theta}/2\tilde{h}) \\ W_{n} \text{ rapidly decays away at } |n| > K/\tilde{h} \end{split}$$

pseudo-randomness at irrational $h/(4\pi)$

Exponential localization of eigenfunctions

Quantum resonance at rational values of $\tilde{h}/(4\pi)$

Izrailev and Shepelyansky '79 '80

Fig. 9. The time dependence of the rotator energy E in the case of quantum resonance; the straight line (curve I) corresponds to classical diffusion, $E = k_D^{(2)} k$, here k = 1; (a) $\tau = 4\pi/17$, k = 19, $K = (4.0; (b) \tau = 8\pi/5$, k = 0.5, K = 2.5; (c) $\tau = 4\pi/17$, k = 0.25, K = 1.0 (after [1579, 1580]).

$$E(t) \sim t^2$$
, $\tilde{h}/(4\pi) = p/q$, $(p,q) = 1$

(ロ > 4回 > 4回 > 4回 > 三回 - りゅで

A case study: $\tilde{h} = 4\pi$, p = q = 1

initial states:
$$|\psi(0)\rangle = |0\rangle$$

 $E(t) = \frac{1}{2} \sum_{n} n^2 \langle n | \hat{U}^t | 0 \rangle \langle 0 | \hat{U}^{\dagger t} | n \rangle$

matrix elements of U

$$\langle n|e^{\frac{ih}{2}\hat{n}^2}|n'\rangle = \delta_{nn'}$$

⇒ 'Disorders' (pseudo-randomness) do not play any roles! $\langle n | e^{\frac{iK}{\tilde{h}}\cos\hat{\theta}} | n' \rangle = J_{n-n'}(K/\tilde{h})$ $\langle n | \hat{U} | n' \rangle = J_{n-n'}(K/\tilde{h}), \ \langle n | \hat{U}^t | n' \rangle = J_{n-n'}(Kt/\tilde{h})$

$$E(t) = \frac{1}{2} \sum_{n} n^2 J_n^2(Kt/\tilde{h}) = \left(\frac{K}{2\tilde{h}}\right)^2 t^2$$

Challenge: analytic studies beyond low-q values

a universal law for the diffusive-ballistic crossover for $\ell \sim K/\tilde{h} \ll q \ll \xi$

$$E(t)/(D_q q) = F(t/q),$$

$$F(x) = \begin{cases} x + x^3/3, & x < 1\\ x^2 + 1/3, & x > 1 \end{cases}$$

• This result coincides with a conjecture (by Wójcik and Dorfman '04) on the mean-square displacement of one-dimensional periodic quantum maps.

• Relation to transport in periodic disordered systems (Taniguchi and Altshuler '93)

Origin of quantum resonance: translational symmetry in angular momentum space

$$E(t) \sim \int d\theta d\theta' e^{i(\epsilon_j(\theta) - \epsilon_j(\theta'))t - in(\theta - \theta')} n^2 \sim \int d\theta_+ (\partial_{\theta_+} \epsilon_j)^2 t^2 \propto t^2$$

Casati, Guarneri, and Shepelyansky '89 $K \to K(t) =$ $Kf(\cos(\theta_1 + \omega_1 t), \cdots, \cos(\theta_{d-1} + \omega_{d-1} t))$

$$\hat{H} = \frac{\hat{l}^2}{2} - \frac{K(t)}{K(t)} \cos \hat{\theta} \sum_n \delta(t-n)$$
$$[\hat{\theta}, \hat{l}] = i\tilde{h}$$

Basic phenomena of *d*-frequency driven quasiperiodic KR: irrational values of $\tilde{h}/4\pi$

Garreau, Delande et. al.; '08, '09; Tian, Altland, and Garst '11

 $d\text{-}\mathrm{frequency}$ driven quasiperiodic KR \Leftrightarrow $d\text{-}\mathrm{dimensional}$ disordered

quantum systems

- $d \leq 2:$ Anderson insulator
- d > 2: Anderson transition
 - $K/\tilde{h} \gg 1$: $E(t) \sim t \Rightarrow$ metallic;
 - $K/\tilde{h} = \mathcal{O}(1)$: Diffusion constant D_{ω} is strongly renormalized $D_{\omega} \xrightarrow{\omega \to 0} i\omega \to E(t) \to const. \Rightarrow$ insulating;
 - At critical point:

$$D_{\omega} \sim (-i\omega)^{(d-2)/d} \Rightarrow E(t) \sim t^{2/d}$$

Basic phenomena of *d*-frequency driven quasiperiodic KR: rational values of $\tilde{h}/4\pi$

Tian, Altland, and Garst '11; Wang, Tian, and Altland '14

metal-supermetal transition

- d = 2, 3: $E(t) \sim t^2$ supermetallic;
- d ≥ 4: if K/˜h is larger than some critical value, then a metallic phase is formed ⇒ E(t) ~ t;
- $d \ge 4$: if K/\tilde{h} is smaller than some critical value, then a supermetallic phase is formed $\Rightarrow E(t) \sim t^2$;
- $d \ge 4$: at the critical point $K/\tilde{h} = \mathcal{O}(1)$ a metal-supermetal transition occurs.

Numerical evidence of supermetal at p = 1, q = 3, d = 2(Wang, Tian, and Altland '14)

From bottom to top: K = 4, 8, 64, and 512.

(ロト (眉) (目) (目) (目) (「」

Numerical evidence of metal-supermetal transition p = 1, q = 3, d = 4 (Wang, Tian, and Altland '14)

From bottom to top at the left side, K = 4, 8, 20, 30, and 80.

 $t_{\xi} \sim (K_c - K)^{-\alpha}, \quad K_c = 11.8 \pm 0.1, \quad \alpha = 4.5 \pm 0.3$

TABLE I: Summary of main results.

parameter	q = 1, 2		q = 3, 5, 6			q = 4		
	$\langle \hat{n}^2(t) \rangle$	phase	$\langle \hat{n}^2(t) \rangle$	phase	crossover time	$\langle \hat{n}^2(t) \rangle$	phase	crossover time
d = 2	quasiperiodic oscillation	insulator (non-Anderson)	$\sim t^2$	supermetal	$t_{\xi} \sim K^2$	$\sim t^2$	supermetal	$t_\xi \sim K$
d = 3					$\ln t_{\xi} \sim K^2$			
d = 4			$\sim t^2 (K < K_c)$	supermetal	$t_{\xi} \sim (K_c - K)^{-\alpha}$			
			$\sim t \ (K \ge K_c)$	metal	∞			

Quasiperiodic KR: probing high-dimensional physics in one dimension

Gauge transformation

$$\begin{split} \hat{\Phi}(t) &\equiv \exp\left(-it\sum_{i}\omega_{i}\hat{n}_{i}\right) \\ \hat{H}(t) \rightarrow \hat{\Phi}(t)\hat{H}(t)\hat{\Phi}^{-1}(t) \equiv \hat{H}(t) \\ \hat{H}(t) &\equiv \frac{\tilde{h}^{2}\hat{n}^{2}}{2} + \sum_{i=1}^{d-1}\omega_{i}\hat{n}_{i} + \\ K\cos\hat{\theta}f(\cos\hat{\theta}_{1},\cdots,\cos\hat{\theta}_{d-1})\sum_{m}\delta(t-m) \\ [\hat{\theta}_{i},\hat{n}_{j}] &= i\delta_{ij} \\ \bullet \text{ The kicking term is time-periodic.} \end{split}$$

 \bullet The quasiperiodic KR is mapped onto a d-dimensional system.

Rational $\tilde{h}/(4\pi)$: analogy to Aharonov-Bohm physics

- \bullet $q\mbox{-}periodicity$ in the real angular momentum space
- \Rightarrow Bloch momentum ϕ as AB flux, $\hat{\theta} \rightarrow \hat{\theta} + \phi_{\pm}$;
- non-periodic in the (d-1)-dimensional virtual angular momentum space;
- \bullet the dynamics reduced to the one in infinite d-dimensional unit cell.

Origin of supermetal (d = 2 as an example)

$t < t_{\xi}$: diffusion motion in virtual space

diffusion picture

 $\langle \Delta n_1^2 \rangle \sim Dt$

spectrum picture

 $\# \sim \Delta n_1 \sim \sqrt{Dt}$ unperturbed angular momentum states are excited;

 $\# \sim \Delta n_1$ quasi eigenenergies uniformly distributed over the unit circle;

mean spacing $\Delta(t) \sim 2\pi/\#$; energy resolution $1/t \gg \Delta(t)$, eigenenergies are not distinguishable \rightarrow diffusion

Origin of supermetal (d = 2 as an example)

 $t \gtrsim t_{\xi}$: localization in virtual space

individual levels resolved (localization!) when $\Delta(t)\gtrsim 1/t \rightarrow t_{\xi}\sim D\sim K^2$

- < E ▶ - < E ▶ -

Origin of supermetal – numerical evidence (Wang, Tian, and Altland '14)

• The saturation of $\langle \hat{n}_1^2(t) \rangle$ and the supermetallic growth of $\langle \hat{n}^2(t) \rangle$ simultaneously occur.

•
$$t_{\xi} \sim D \sim K^2$$

Supermetal in high dimensions

$d \ge 4$

And erson transition in (d-1)-dimensional virtual space \Rightarrow metal-supermetal transition in d dimension

Energy growth for $\tilde{h}/(4\pi) = p/q$

unperturbed basis

real space
$$\otimes$$
 virtual space \Rightarrow $|N\rangle \equiv |n, n_1, \cdots, n_{d-1}\rangle$

One-step evolution operator of QQKR

$$\hat{U} = e^{i\hat{T}/\tilde{h}}e^{i\hat{V}/\tilde{h}}$$
$$\hat{T} = \frac{1}{2}\hat{h}^{2}\hat{n}^{2} + \sum_{i}\omega_{i}\hat{n}_{i}, \quad \hat{V} = K\cos\hat{\theta}f(\cos\hat{\theta}_{1},\cdots,\cos\hat{\theta}_{d-1})$$
$$[\hat{n}_{i},\hat{\theta}_{j}] = i\delta_{ij}$$

Main characteristic of transport

 $E(t) = \frac{1}{2} \sum_N |\langle N | \hat{U}^t | 0 \rangle|^2 n^2$

Density correlation function

$$E(t) = \frac{1}{2} \int \frac{d\omega}{2\pi} e^{-i\omega t} \int dN \int_0^{\frac{2\pi}{q}} d\phi \,\partial_{\phi_+} \partial_{\phi_-} \Big|_{\phi_{\pm} = \phi} \frac{K_{\omega}(N,0)}{K_{\omega}(N,0)}$$

Supersymmetric field theory for $\tilde{h}/(4\pi) = p/q$

$$K_{\omega}(N,N') = \langle \langle N | \hat{G}_{\phi_{\pm}}^{+}(\omega_{\pm}) | N' \rangle \langle N' | \hat{G}_{\phi_{\pm}}^{-}(\omega_{\pm}) | N \rangle \rangle_{\omega_{0}}$$
$$\hat{G}_{\phi_{\pm}}^{\pm}(\omega_{\pm}) = \frac{1}{1 - (e^{i\omega_{\pm}} \hat{U}_{\phi_{\pm}})^{\pm 1}}, \ \omega_{\pm} = \omega_{0} \pm \omega/2$$

Functional integral formalism

$$K_{\omega}(N,0) = -\int D[Q] e^{-S[Q]}(Q(N))_{+b1,-b1}(Q(0))_{-b1,+b1}$$

Supermatrix σ -model action

$$S[Q] = -\frac{1}{16} \int dN \operatorname{str} \left[\sum_{i=1}^{d-1} D_i (\partial_{n_i} Q)^2 + D_0 ((\partial_n + i[\hat{\phi},])Q)^2 + 2i\omega Q \sigma_3^{AR} \right]$$

Mathematical structure of supermatrix $Q = \{Q_{\lambda\alpha t}\}$

• q-periodicity in the real space: Q(n) = Q(n+q)

٢

• $\lambda = +/-(analyticity of advanced/retarded Green function),$ $\alpha = b/f(commuting/anti-commuting variables \Rightarrow$ 'supersymmetry'), t = 1, 2(time-reversal symmetry)

$$Q = \begin{pmatrix} 1 & Z \\ \tilde{Z} & 1 \end{pmatrix} \sigma_3^{AR} \begin{pmatrix} 1 & Z \\ \tilde{Z} & 1 \end{pmatrix}^{-1}$$

• Z satisfies: $\tilde{Z}_{b,b} = Z_{b,b}^{\dagger}, \, \tilde{Z}_{f,f} = -Z_{f,f}^{\dagger} \text{ and } |Z_{b,b}Z_{b,b}^{\dagger}| < 1$

Application: linear-quadratic energy growth crossover

$l < q < \xi$: dominated by zero-mode field configuration

$$\begin{split} S[Q] &= \frac{\pi}{8\Delta} str(D_q[\hat{\phi},Q]^2 - 2i\omega Q\sigma_{AR}^3) \\ \text{polar coordinate representation } Q &= \mathcal{R}Q_0\mathcal{R}^{-1}, \ [\mathcal{R},\sigma_3^{\mathrm{AR}}] \\ Q_0 &= \left(\begin{array}{cc} \cos\hat{\Theta} & i\sin\hat{\Theta} \\ -\sin\hat{\Theta} & -\cos\hat{\Theta} \end{array}\right)^{\mathrm{AR}}, \ \hat{\Theta} &= \left(\begin{array}{cc} \hat{\theta}_{11} & 0 \\ 0 & \hat{\theta}_{22} \end{array}\right)^{\mathrm{BF}}, \\ \hat{\theta}_{11} &= \theta \mathbf{1}^{\mathrm{T}}, \ \hat{\theta}_{22} &= i\theta_1 \mathbf{1}^{\mathrm{T}} + i\theta_2 \sigma_1^{\mathrm{T}} \ Q \text{ replaced by } Q_0 \\ 0 &< \theta < \pi \text{ and } \theta_{1,2} > 0 \\ \lambda &\equiv \cos\theta \text{ and } \lambda_{1,2} \equiv \cosh\theta_{1,2} \end{split}$$

Effective action

$$S = \frac{\pi}{\Delta} \left(D_q [(\Delta \phi)^2 (\lambda_1^2 - \lambda^2) + (\phi_+ + \phi_-)^2 (\lambda_2^2 - 1)] + 2i\omega(\lambda - \lambda_1 \lambda_2) \right)$$

Dominant contributions come from $\lambda_2 = 1$!
$$S = \frac{\pi D_q (\Delta \phi)^2}{2\Delta} (\lambda_1^2 - \lambda^2) + i \frac{\pi \omega}{\Delta} (\lambda - \lambda_1)$$
$$K_\omega (\Delta \phi) = \frac{q}{4} \int_1^\infty d\lambda_1 \int_{-1}^1 d\lambda \frac{\lambda_1 + \lambda}{\lambda_1 - \lambda} e^{-S}$$

$$D(\omega) = D_q \left[1 - \frac{2}{q^2 \omega^2} (1 - e^{iq\omega}) \right]$$
 (Taniguchi and Altshuler '93)

 $\tilde{h} = p/q$, redline for p = 1 and q = 100 while blueline for p = 2 and 201

$$E(t) = -\frac{1}{2} \int \frac{d\omega}{2\pi} \frac{e^{-i\omega t}}{\omega^2} D(\omega)$$

 $\tilde{h} = p/q$, redline for p = 1 and q = 100 while blueline for p = 2 and 201

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

Application: supermetallic energy growth at d = 2

$$S[Q] = \frac{\pi\nu}{8} \int dn_1 \operatorname{str}(-D_0(\partial_{n_1}Q)^2 + \frac{D_0[\hat{\phi}, Q]^2 - 2i\omega Q\sigma_{\operatorname{AR}}^3}{2}), \ \nu = q/2\pi$$

Transfer matrix method (Efetov and Larkin '83)

$$\begin{split} K_{\omega}(\Delta\phi) &= \frac{qD_0}{4} \int_1^{\infty} \int_{-1}^1 \frac{d\lambda_1 d\lambda}{(\lambda_1 - \lambda)^2} [(\lambda_1^2 - 1)f_{1\varphi_1 \to 0} + (1 - \lambda^2)f_{\varphi_1 \to 0}]\Psi \\ \hat{\mathcal{H}}_0 \Psi &= 0, \quad \Psi(\lambda_1 = \lambda = 1) = 1 \\ 2\pi\nu D_0 \hat{\mathcal{H}}_0 f_{1\varphi_1 \to 0} - 2\lambda_1 \frac{\partial}{\partial\lambda_1} f_{1\varphi_1 \to 0} + \frac{2(1 - \lambda^2)}{(\lambda_1 - \lambda)^2} (f_{1\varphi_1 \to 0} - f_{\varphi_1 \to 0}) = \Psi \\ 2\pi\nu D_0 \hat{\mathcal{H}}_0 f_{\varphi_1 \to 0} + 2\lambda \frac{\partial}{\partial\lambda} f_{\varphi_1 \to 0} + \frac{2(\lambda_1^2 - 1)}{(\lambda_1 - \lambda)^2} (f_{\varphi_1 \to 0} - f_{1\varphi_1 \to 0}) = \Psi \end{split}$$

$$\hat{\mathcal{H}}_{0} = \hat{\mathcal{H}}_{EL} + \frac{\pi\nu D_{0}(\Delta\phi)^{2}}{2} (\lambda_{1}^{2} - \lambda^{2}) \\ \hat{\mathcal{H}}_{EL} = -\frac{1}{2\pi\nu D_{0}} (\lambda_{1} - \lambda)^{2} [\frac{\partial}{\partial\lambda} \frac{1 - \lambda^{2}}{(\lambda_{1} - \lambda)^{2}} \frac{\partial}{\partial\lambda} + \frac{\partial}{\partial\lambda_{1}} \frac{\lambda_{1}^{2} - 1}{(\lambda_{1} - \lambda)^{2}} \frac{\partial}{\partial\lambda_{1}}] - i\pi\nu\omega(\lambda_{1} - \lambda)$$

$$E(t) \sim \left(\frac{t}{q}\right)^2$$
, for $t \gtrsim q^2 D_0$

- Quantum kicked rotors exhibit rich phase structures which are extremely sensitive the values of effective Planck's constant.
- A systematic first-principles (field-theoretic) approach has developed to study these quantum phases and their transition.