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Momentum-space Signatures of Anderson Localization
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� Anderson localisation difficult to observe in pure form
[Absorption, Decoherence, Interactions, . . . ]

� Cold atoms, optical potentials: quantum simulation toolbox
[Aspect, DeMarco, Esslinger, Hulet, Inguscio, Labeyrie, Rolston, Schneble, . . . ]

Figure 3: (A) The fraction of atoms in the localized component measured after 20 ms
of expansion into the disordered potential for varying ∆ and T = 240 ± 20 nK (•),
480 ± 20 nK (�), 1130 ± 60 nK (�), and 1470 ± 230 nK (�). Each point is determined
from fits to 5 images. The growing localized fraction with increasing ∆ is evident in the
insets, which are images (with a false color logarithmic scale) taken at T = 480 nK and
∆ = 0 (i), 80 (ii), 160 (iii), and 320 kB×nK (iv). (B) Using the data in (A), the mobility
edge Ec is determined at each ∆. Each point is a weighted average of Ec accounting for
the uncertainty in T and localized fraction. The error bars are the range of Ec for the
different temperatures that contribute to each point.
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0 −→ disorder −→ ∞
[Kondov et al., Science (2011)]
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Figure 2 | Evolution of the atomic cloud for two different amplitudes of the disorder. a, Plots of the column density in the y–z plane, as observed by
fluorescence imaging along the x axis (Fig. 1a) at various delays t− ti after application of the disorder. For a weak disorder (VR/h= 135Hz), we observe an
expansion leading to the disappearance of any observable atomic density for times larger than 1.2 s. For a strong disorder (VR/h=680Hz), the atomic
cloud is still clearly visible after 6 s, and the profile shows a steady peak around the origin, superposed on a slowly expanding component. As shown in
Fig. 2b, the expanding parts have a diffusive behaviour in both cases. b, Time evolution of the mean squared widths along y (blue circles) and z (red
diamonds) of the column density profiles, and their fits by straight lines, yielding the diffusion coefficients along y and z. The anisotropy of the disorder,
visible on Fig. 1b, is reflected on the diffusion coefficients. c, Time evolution of the column density at the centre (green circles). The black line is a fit by the
function A+B/(t− ti), where the asympotic value A is interpreted as the localized fraction floc (see text). The inset shows the same data plotted as a
function of 1/(t− ti), fitted by the black straight line whose intercept on the left axis yields floc.
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Figure 3 | Localized fraction versus disorder amplitude. The points give
the localized fraction floc determined from the decay of the central density
(Fig. 2c). The error bars reflect the uncertainty on each individual fit and
the fluctuations from shot to shot. The solid line shows the results of the
theoretical calculation, including the heuristic relative energy shift
explained in the text.

Theoretical description
We now compare the results of the phenomenological analysis of

the experimental data with the theory of quantum transport and

AL specifically applied to our situation, that is, taking into account:

(1) the spatial extension of the atomic gas at the initial time ti;
(2) its energy distribution induced by the sudden application of the

disordered potential at time ti; (3) the anisotropy of the 3D speckle

potential.Wewrite the spatial density of the atomic gas as
15,16,18

n(r,t )=
�

dri
�

dE Di(ri,E)P(r−ri,t − ti|E) (2)

where Di(r,E) represents the semi-classical joint position–energy

density just after the time ti when the speckle potential is switched

on, and P(r−ri,t−ti|E) is the (anisotropic) probability of quantum
transport, that is, the probability distribution that a particle of

energyE , placed at point ri at time ti, is found at point r at time t .
The function P(r,t |E), whose character changes from localized

to extended when the energy passes the mobility edge Ec, plays the

central role in AL. We calculate it self-consistently within the on-

shell Born approximation
27,30

, using the same method as in ref. 31,

except that here we do not include the real part of the self-energy

(see Methods). It provides the mobility edge Ec and the expressions

of the probability of quantum transport
30,31

. Within the above

approximation, we find Ec −VR � 1.6V 2

R
/ER for our experimental

parameters (for example, [Ec − VR]/h = 4.5Hz and 108Hz for

VR/h=135Hz and 680Hz respectively). In the AL regime (E <Ec),

P(r|E) is a static, anisotropic, exponentially localized function,

characterized by the localization tensor Lloc(E). In the diffusive

regime (E >Ec), P(r|E) is a time-dependent, anisotropic, Gaussian

function, characterized by the self-consistent diffusion tensor

D∗(E). In the case where the range of atomic energies extends
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0 −→ time −→ ∞
[Jendrzejewski et al., Nat. Phys. (2012)]

� Which observable most suitable? “Absence of diffusion”?

� Empirical law: To every Claim, there is a Comment
[CAM & B. Shapiro, Comment submitted on DeMarco’s ‘Three-dimensional

Anderson localization in variable scale disorder’ (PRL 2013)]

� How to prove phase coherence?

� ‘Smoking gun’ of Anderson localisation?



Our proposal: monitor momentum relaxation after quench

H0 =
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Momentum isotropisation ... or not?
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A brief history of times . . .
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τ loc τH

∝ e−t/τs
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FIG. 1. (Color online) Momentum distribution ρ(kx,ky,t) of a
matter wave packet launched with initial momentum k0 = (k0,0) in
a 2D random potential with correlation length ζ , averaged over 960
disorder realizations. The time unit is τζ = mζ 2/h̄. (a) t = 10τζ :
Elastic scattering depletes the initial wave packet, centered at k0 (peak
values not shown), and populates the disorder-broadened energy shell
along the circle |k| = |k0|, while the CBS peak emerges at −k0.
(b) t = 18τζ : The CBS peak is now the dominant feature, proving
phase-coherent multiple scattering.

a correlated potential with ζ = 1 µm, the absolute time scale
is τζ = 1.365 ms. Figure 1 shows the numerically computed,
ensemble-averaged momentum distribution ρ(kx,ky,t) at two
different times.

At short times [Fig. 1(a), t = 10τζ ], one sees a very narrow
peak at k0, a broad, ring-shaped anisotropic background,
and a rather smooth peak at −k0. The forward peak is the
remainder of the initial momentum distribution, which is
depleted because atoms are scattered out of the initial mode at
a rate given by the elastic scattering time τs [13]. The latter can
be extracted from the early-time decay ρ(k0,t) ≈ |$(k0,t)|2 ∝
exp(−t/τs). We find τs = 1.43τζ , with a corresponding mean
free path %s = v0τs such that k0%s = 5.72 for the parameters
used. Weak-disorder perturbation theory [6] predicts too low
a value (k0%s = 2.32), as known for rather strong, spatially
correlated disorder [21]. This shows how the early-time
momentum distribution can be used to measure the key
parameter τs , even in the strong-disorder regime where precise
analytical predictions are not available [23].

Atoms scattered out of the initial mode populate all
other accessible k-space modes on the energy shell and thus
appear along the circle |k| = |k0| in Fig. 1. Due to disorder
broadening, the energy shell has a finite width, of order %−1

s ,
which is larger than the initial width &k for the chosen
parameters. After a time of the order of the Boltzmann time
τB = 8.5τζ (k0%B = 34) [6], the dynamics turns from ballistic
to diffusive. As the memory about the initial direction of
propagation gets erased, the diffusive momentum distribution
then becomes isotropic on average. More precisely, for t � τB,
i.e., when diffusion is fully established, we find that the decay

FIG. 2. (Color online) CBS peak contrast C (blue circles) and
angular width &θ (red squares) as obtained from the numerics after
averaging over 960 disorder configurations and over a time window of
10τζ . Solid curves: Theoretical predictions (10) and (11), respectively.
Dashed horizontal line: Angular width &θ0 = 0.01/

√
2 of the initial

momentum distribution, asymptotically reached by the CBS width
for times much larger than the coherence time τ& = (2D&k2)−1 =
216τζ .

of the anisotropic Fourier components of the background is
well fitted by exp(−t/τ ), where τ is the transport time that
governs the diffusive dynamics. For the present parameters,
one finds τ = 5.8τζ (corresponding to a transport mean free
path k0% = 23.2). As expected, τ is smaller than τB, due to
weak-localization (WL) corrections [21] arising at early times
and caused by very short CBS loops. In Fig. 1(a), the peak at
−k0 is the incipient CBS signal.

At longer times [Fig. 1(b), t = 18τζ ], the initial state is
totally depleted, the diffusive background is fully isotropic, and
the CBS peak is the dominant feature. Both its contrast C, de-
fined as the height above the diffusive background, and its an-
gular width &θ slowly decrease with time, as shown in Fig. 2.

For a quantitative understanding of these observations, we
now turn to the analytical description of matter wave dynamics
in dimension d = 2,3. The ensemble-averaged momentum
distribution ρ(k′,t) at time t is given by [6]

ρ(k′,t) =
∫

dk
(2π )d

∫
dE

2π
)kk′E(0,t)ρ0(k), (2)

where the intensity propagation kernel )kk′E projects the
initial momentum k on the energy shell E, describes the
ensuing unitary dynamics generated by the Hamiltonian
H , and projects back onto the final momentum k′. For
long enough times t & τB, but well before the onset of
Anderson localization, the atomic dynamics is diffusive with
an energy-dependent diffusion constant D(E) = 2Eτ/(md)
that incorporates the short-range WL corrections. The intensity
propagation kernel then takes the form

)
(L)
kk′E

(q,t) = A(k,E)A(k′,E)
2πν(E)

exp[−D(E)q2t]. (3)

The spectral function A(k,E) = 2π 〈k| δ(E − H ) |k〉 is the
average probability density that a plane-wave state |k〉 has
energy E. It also determines the average density of states
ν(E) =

∫
A(k,E)dk/(2π )d+1. Using (3) at momentum trans-

fer q = 0 in Eq. (2) results in a time-independent isotropic

011604-2

nm(t)∝ e−t/τm
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of the anisotropic Fourier components of the background is
well fitted by exp(−t/τ ), where τ is the transport time that
governs the diffusive dynamics. For the present parameters,
one finds τ = 5.8τζ (corresponding to a transport mean free
path k0% = 23.2). As expected, τ is smaller than τB, due to
weak-localization (WL) corrections [21] arising at early times
and caused by very short CBS loops. In Fig. 1(a), the peak at
−k0 is the incipient CBS signal.

At longer times [Fig. 1(b), t = 18τζ ], the initial state is
totally depleted, the diffusive background is fully isotropic, and
the CBS peak is the dominant feature. Both its contrast C, de-
fined as the height above the diffusive background, and its an-
gular width &θ slowly decrease with time, as shown in Fig. 2.

For a quantitative understanding of these observations, we
now turn to the analytical description of matter wave dynamics
in dimension d = 2,3. The ensemble-averaged momentum
distribution ρ(k′,t) at time t is given by [6]

ρ(k′,t) =
∫

dk
(2π )d

∫
dE

2π
)kk′E(0,t)ρ0(k), (2)

where the intensity propagation kernel )kk′E projects the
initial momentum k on the energy shell E, describes the
ensuing unitary dynamics generated by the Hamiltonian
H , and projects back onto the final momentum k′. For
long enough times t & τB, but well before the onset of
Anderson localization, the atomic dynamics is diffusive with
an energy-dependent diffusion constant D(E) = 2Eτ/(md)
that incorporates the short-range WL corrections. The intensity
propagation kernel then takes the form

)
(L)
kk′E

(q,t) = A(k,E)A(k′,E)
2πν(E)

exp[−D(E)q2t]. (3)

The spectral function A(k,E) = 2π 〈k| δ(E − H ) |k〉 is the
average probability density that a plane-wave state |k〉 has
energy E. It also determines the average density of states
ν(E) =

∫
A(k,E)dk/(2π )d+1. Using (3) at momentum trans-

fer q = 0 in Eq. (2) results in a time-independent isotropic
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1. Initial isotropisation [Plisson, Bourdel, CAM, EPJ ST (2012)]

2. Coherent back scattering (CBS)
[Th: Cherroret, Karpiuk, CAM, Grémaud, Miniatura, PRA (2012)]

[Exp: Jendrzejewski, Müller, Richard, Date, Plisson, Bouyer, Aspect, Josse, PRL

(2012); Labeyrie, Karpiuk, Schaff, Grémaud, Miniatura, Delande, EPL (2012)]

3. Coherent forward scattering (CFS)
[Karpiuk, Cherroret, Lee, Grémaud, CAM, Miniatura, PRL (2012)]

[Micklitz, CAM, Altland, PRL (2014)]

[Lee, Grémaud, Miniatura, arXiv:1405.2979]



1. Early times: elastic scattering

� Average momentum distribution nk(t) = |ψk(t)|2:

nk(t) =

�
dE

2π
nk(E , t) =

�
dE

2π

�

k�

Φkk�(E , t)nk�(0)

� Early times: Pauli master equation

∂tnk(t) =
�

p

Ūkp [np(t)− nk(t)]

� Initially, incident mode k0 depopulates, τ−1
s =

�
p Ūk0p

nk0(t) ≈ e
−t/τsnk0(0)

� Numerical simulation in 2D speckle (Thomas Plisson):

k0σ = 1.8

τs = 2.4tσ
BA
= 1.4tσ



� On the elastic scattering circle k = k0(cos θ, sin θ):
θ

k0

k

∂tn(θ, t) = τ−1
s

� 2π

0
dφu(φ− θ) [n(φ, t)− n(θ, t)]

with phase function u(β) = Ū(β)/
�
dφŪ(φ)

� Solution via Fourier analysis n(θ, t) =
�

m∈ cm(t)e imθ

cm(t) = e
−t/τmcm(0)

� Characteristic times: τm = τs/[1− �cosmθ�u]
� Measure τs/τm to reconstruct u(β):
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2. Diffusive momentum relaxation

nk(t) =
�

k�

Φkk�(t)nk�(0)

Φ(D)
kk�

+ Φ(C)
kk�

=

k�

k

+

k�

k

√
Dt

Diffuson Cooperon
[Gorkov, Larkin, Khmelnitskii (1979), Vollhardt & Wölfle (1980)]

Observation as Coherent Backscattering (CBS) of light
[van Albada & Lagendijk, Wolf & Maret (1985)]

Sensitive measure of dephasing
[G. Bergmann:“Weak localization in thin films — a time-of-flight experiment with

conduction electrons”, Phys. Rep. (1984)]
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Coherent backscattering of ultracold matter waves: Momentum space signatures
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1Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

3Wydział Fizyki, Uniwersytet w Białymstoku, ulica Lipowa 41, PL-15-424 Białystok, Poland
4Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

5Laboratoire Kastler Brossel, UPMC, ENS, CNRS; 4 Place Jussieu, F-75005 Paris, France
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Using analytical and numerical methods, it is shown that the momentum distribution of a matter wave packet
launched in a random potential exhibits a pronounced coherent backscattering (CBS) peak. By analyzing the
momentum distribution, key transport times can be directly measured. The CBS peak can be used to prove
that transport occurs in the phase-coherent regime, and measuring its time dependence permits monitoring the
transition from classical diffusion to Anderson localization.

DOI: 10.1103/PhysRevA.85.011604 PACS number(s): 03.75.−b, 05.60.Gg, 42.25.Dd, 72.15.Rn

Disorder has dramatic effects on the quantum transport
of matter. Spatial randomness and phase coherence together
can completely suppress diffusion, as demonstrated by the
paradigmatic phenomenon of Anderson localization [1]. Dur-
ing the past decade, there has been a growing body of evidence
for three-dimensional (3D) localization in random media with
different types of noninteracting waves: light [2], microwaves
[3], and ultrasound [4]. This ubiquitous and yet elusive
phenomenon has sparked considerable interest in the field of
ultracold atoms [5–7]. Key experimental achievements include
one-dimensional (1D) Anderson localization in speckle [8]
and quasiperiodic [9] potentials, as well as 3D localization in
momentum space with the kicked rotor [10]. Recently, 3D
Anderson localization of noninteracting ultracold fermions
[11] and bosons [12] in a laser speckle field was reported.

To claim Anderson localization, one needs to discrimi-
nate interference-induced absence of diffusion from classi-
cal trapping or slow diffusion. This requires evidence for
phase-coherent transport. Here, the coherent backscattering
(CBS) phenomenon is of key importance because it arises
by interference of waves in random media and measures
mesoscopic phase coherence [13]. With classical waves,
CBS appears as an enhancement of the diffuse intensity
reflected off a disordered medium around the backscattering
direction, and has been observed in numerous experiments
involving light [14,15], but also acoustic [16] and seismic
waves [17]. The interference causing CBS is also responsible
for weak localization, by reducing the diffusion coefficient
compared to its phase-incoherent, or classical, value [6,13].
In electronic systems, weak localization is invaluable for
a careful characterization of phase coherence [18]. With
cold-atomic clouds expanding in random potentials, however,
the diffusion constant extracted from real-space data hardly
shows clear evidence of localization corrections, because the
cloud contains many different momenta that combine to a
rather involved spatial profile [19,20].

With this Rapid Communication, we propose to study
the dynamics of a matter wave that is launched with an
initial momentum larger than its momentum spread in the
bulk of a two-dimensional (2D) or 3D random potential.
Combining a numerical and theoretical analysis, we show that

the CBS signal can be directly observed in the momentum
distribution and studied as a function of time. Ultracold atoms
are an invaluable asset as they offer the unique opportunity
to visualize the CBS effect on the momentum distribution
directly, measured inside the disordered medium. With this
setup, one avoids the boundary conditions that severely
complicate both theory and experiments of wave scattering
by random media [13,21]. Moreover, the momentum-space
analysis gives immediate access to key mesoscopic parameters
such as scattering and transport times. Lastly, we demonstrate
that the CBS measurement provides precious information on
the phase coherence of the matter wave, and finally permits to
monitor the transition from diffusion to localization.

Let a cloud of atoms with mass m be prepared at time
t = 0 in the state !(k,0) describing a wave packet with
mean momentum h̄k0 = mv0 and small spread "k " |k0|.
This can be achieved by releasing the atoms from a shallow
trap, and either launching them with mean velocity v0 or
moving the disorder potential with −v0 relative to the cloud.
We assume negligible interaction effects. This is the case in
practice for a very dilute cloud [8] or spin-polarized fermions
[11]. For concreteness, as realized by harmonic trapping of
noninteracting particles, we then take the initial distribution
ρ0(k) = |!(k,0)|2 to be an isotropic Gaussian,

ρ0(k) = (2π"k−2)d/2 exp[−(k − k0)2/2"k2], (1)

normalized to Tr ρ0 =
∫

ρ0(k)dk/(2π )d = 1. From time t =
0 onward, the matter wave then evolves according to the
Schrödinger equation with a single-particle Hamiltonian
H = p2/2m + V (r). A well-controlled random potential is
provided by laser speckle [22]. Without loss of generality,
V (r) = 0, where the overbar denotes the ensemble average
over disorder realizations. The random potential is then char-
acterized by its variance V (r)2 = V 2 and spatial correlation
length ζ . This length defines a correlation time τζ = mζ 2/h̄

and a correlation energy Eζ = h̄2/(mζ 2) [6].
First, we study the dynamics of the matter wave expanding

in a repulsive 2D speckle potential by solving numerically
the Schrödinger equation for a potential strength V = Eζ , and
initial condition k0ζ = 2, "k = 0.01k0/

√
2. For 87Rb atoms in
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We report on the direct observation of coherent backscattering (CBS) of ultracold atoms in a quasi-two-

dimensional configuration. Launching atoms with a well-defined momentum in a laser speckle disordered

potential, we follow the progressive build up of the momentum scattering pattern, consisting of a ring

associated with multiple elastic scattering, and the CBS peak in the backward direction. Monitoring the

depletion of the initial momentum component and the formation of the angular ring profile allows us to

determine microscopic transport quantities. We also study the time evolution of the CBS peak and find it in

fair agreement with predictions, at long times as well as at short times. The observation of CBS can be

considered a direct signature of coherence in quantum transport of particles in disordered media. It is

responsible for the so calledweak localization phenomenon,which is the precursor ofAnderson localization.
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Quantum transport differs from classical transport by the
crucial role of coherence effects. In the case of transport in
a disordered medium, it can lead to the complete cancelling
of transport when the disorder is strong enough: this is the
celebrated Anderson localization (AL) [1]. For weak dis-
order, a first order manifestation of coherence is the phe-
nomenon of coherent backscattering (CBS), i.e., the
enhancement of the scattering probability in the backward
direction, due to a quantum interference of amplitudes
associated with two opposite multiple scattering paths
[2–4] (see inset of Fig. 1). Direct observation of such a
peak is a smoking gun of the role of quantum coherence in
quantum transport in disordered media.

CBS has been observed with classical waves in optics
[5–8], acoustics [9,10], and even seismology [11]. In
condensed matter physics, CBS is the basis of the weak
localization phenomenon (see, e.g., Ref. [12]), which is
responsible for the anomalous resistance of thin metallic
films and its variation with an applied magnetic field
[13,14]. In recent years, it has been possible to directly
observe Anderson localization with ultracold atoms in one
dimension [15,16] and three dimensions [17,18].
Convincing as they are, none of these experiments includes
a direct evidence of the role of coherence.

In this Letter, we report on the direct observation of CBS
with ultracold atoms, in a quasi-two-dimensional (2D)
configuration [19]. Our scheme is based on the proposal
of Ref. [21] that suggested observing CBS in the momen-
tum space. A cloud of noninteracting ultracold atoms is
launched with a narrow velocity distribution in a laser
speckle disordered potential (Fig. 1). Time of flight imag-
ing, after propagation time t in the disorder, directly yields
the momentum distribution, as shown in Fig. 2. As ex-
pected for elastic scattering of particles, we observe a ring
that corresponds to a redistribution of the momentum

directions over 2! while the momentum magnitude re-
mains almost constant. The evolution of the initial momen-
tum peak and of the angular ring profile yields the elastic
scattering time and the transport time. But the most re-
markable feature is the large visibility peak, which builds
up in the backward direction. The height and width of that

FIG. 1 (color online). Experimental setup. A cloud of non-
interacting ultracold atoms, released from an optical trap (beams
along y and z axis, red) and suspended against gravity by
magnetic levitation (horizontal coils, yellow), is launched with
a well-defined momentum pi along the z axis. It is submitted to
an anisotropic laser speckle disordered potential (blue beam),
propagating along the x axis and elongated along that direction,
leading to a quasi-2D diffusive motion in the y-z plane (see text).
The atomic momentum distribution in this plane is monitored by
fluorescence imaging after a time of flight of 150 ms. Inset:
physical origin of CBS. The coherent enhancement of scattering
in the backward direction originates from the interference be-
tween each multiple scattering path (solid line) and its reversed
counterpart (dashed line).
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and width of that peak, and their evolution with time,

are an indisputable signature of CBS, intimately linked

to the role of coherence.

To understand the origin of that CBS peak, let us con-

sider an input plane matter-wave with initial momentum

pi that experiences multiple scattering towards a final

momentum pf (inset of figure 1). For each multiple scat-

tering path, we can consider the reversed path with the

same input pi and output pf . Since the initial and final

atomic states are the same, we must add the two cor-

responding complex quantum amplitudes, whose phase

difference is δφ = (pi + pf) ·R/� (R is the spatial sepa-

ration between the initial and final scattering events and

� = h/2π the reduced Planck constant). For the ex-
act backward momentum pf = −pi, the interference is

always perfectly constructive, whatever the considered

multiple scattering path. This coherent effect survives

the ensemble averaging over the disorder, so that the to-

tal scattering probability is twice as large as it would

be in the incoherent case. For an increasing difference
between pf and −pi, the interferences are progressively

washed out as we sum over all interference patterns asso-

ciated with all multiple scattering paths. It results in a

CBS peak of width inversely proportional to the spread

∆R in the separations [21]. For diffusive scattering

paths, the distribution of R is a Gaussian and the CBS

widths decrease in time according to ∆pCBS,α = �/
√
2Dt

for each direction of space (α = y, z), D being the dif-

fusion constant along that direction. This time resolved

dynamics of the CBS peak has been observed in acous-

tics [9, 10] and optics [22, 23].

The crux of the experiment is a sample of non-

interacting paramagnetic atoms, suspended against grav-

ity by a magnetic gradient (as in [17]), and launched

along the z-axis with a very well defined initial mo-

mentum pi (see Fig. 1). This is realized in four steps.

First, evaporative cooling of an atomic cloud of
87
Rb

atoms in a quasi-isotropic optical dipole trap (trapping

frequency � 5 Hz) yields a Bose Einstein condensate

of 9 × 10
4

atoms in the F = 2, mF = −2 ground

sublevel. Second, we suppress the inter-atomic interac-

tions by releasing the atomic cloud and letting it ex-

pand during 50 ms. At this stage, the atomic cloud

has a size (standard half-width along each direction)

of ∆rα = 30 µm, and the residual interaction energy

(Eint/h ∼ 1 Hz) is negligible compared to all relevant

energies of the problem. Since the atomic cloud is ex-

panding radially with velocities proportional to the dis-

tance from the origin, we can use the ”delta-kick cooling”

technique [25], by switching on a harmonic potential for

a well chosen amount of time. This almost freezes the

motion of the atoms, and the resulting velocity spread

∆vα = 0.12 ± 0.03 mm/s is just one magnitude above

the Heisenberg limit (∆rα ·m∆vα ∼ 5�). Last, we give

the atoms a finite momentum pi along the z-direction,
without changing the momentum spread, by applying an

FIG. 2. Observed momentum distributions after different
propagation times t in the disorder. The images correspond to

an averaging over 20 experimental runs. Note that the scale

is different in the three first images (t =0, 0.5, and 1 ms),

whereas it is the same in the three last images (t =1.5, 2, and

2.5 ms).

additional magnetic gradient during 12 ms. The first

image of Fig. 2 shows the resulting 2-d momentum dis-

tribution. The average velocity is vi = 3.3 ± 0.2 mm/s

(ki = pi/� � 4.5 µm−1
), corresponding to a kinetic en-

ergy EK = p2i /2m (EK/h � 1190 Hz). This momentum

distribution is obtained with a standard time of flight

technique that converts the velocity distribution into a

position distribution. Because of the magnetic levita-

tion, we can let the atomic cloud expand ballistically for

as long as 150 ms before performing fluorescence imag-

ing along the x axis. The overall velocity resolution

∆vres = [∆vα
2
+ (∆rα/ttof)2]1/2 = 0.23 mm/s, is nev-

ertheless mainly limited by the size ∆rα of the atomic

cloud.

To study CBS, we suddenly switch on an optical dis-

ordered potential in less than 0.1 ms, let the atoms scat-

ter for a time t, then switch off the disorder and mon-

itor the momentum distribution at time t. The disor-

dered potential is the dipole potential associated with

a laser speckle field [26, 27], obtained by passing a laser

beam through a rough plate, and focusing it on the atoms

(Fig. 1). It has an average value VR (the disorder ”am-

plitude”) equal to its standard deviation. Its autocor-

relation function is anisotropic, with a transverse shape

well represented by a Gaussian of standard half-widths

σy = σz = σ⊥ � 0.2 µm, and a longitudinal Lorentzian

profile of half-width σx � 1 µm (HWHM) [28]. The

laser (wavelength 532 nm) is detuned far off-resonance
(wavelength 780 nm), yielding a purely conservative and

repulsive potential. The disorder amplitude VR is ho-

mogenous to better than 1% over the atom cloud (profile

of half-widths 1.2 mm along y,z, 1 mm along x).

The anisotropy of the speckle autocorrelation function

(elongated along x) allows us to operate in a quasi-two

dimensional configuration by launching the atoms per-

pendicularly to the x-axis (along the z-axis). In the y-z
plane, the atoms are scattered by a potential with a corre-

� 87Rb BEC, 105 atoms � |F = 2,mF = −2� paramagnetic
� ∆v0 ≈ 0.1mm/s � v0 = �k0/m ≈ 3.3mm/s



� CBS kernel (q = k+ k�) :
�

dω

2π
e
−iωt 1

−iω + Dq2
= Θ(t)e−Dq2t : ∆q

2(t) = [2Dt]−1

� Convolution with initial distribution: ∆q
2 �→ ∆q

2 +∆k
2

∆θ(t) = ∆θ0[1 +∆t/t]1/2

Source coherence time: ∆t = [2D∆k
2]−1

� Contrast C (t) = (1 + t/∆t)−d/2

tion in the x-y plane, we estimate a typical time of 4 ms for
this out-of-plane dynamics to become significant, and ren-
der the 2D approach wanting.

Deviations at short times were to be expected. Indeed,
CBS demands multiple scattering, or at least double scat-
tering, to happen (see inset of Fig. 1), whereas single
scattering events do not participate to the CBS peak. At
short times (t! !s), the contribution of single scattering to
backscattering is not negligible compared to multiple scat-
tering. This entails a reduction of the contrast (see, e.g.,
Ref. [3]), and a modification of the shape (no longer
Gaussian), whose width decreases at this stage as 1=t
(ballistic motion between the first two scatterers). In the
case of light, a calculation for isotropic scattering [36]
predicts a short time evolution of the contrast C ¼
ð2t="!sÞ=ð1þ 2t="!sÞ and width !#CBS ! 3=kilsð!s=tÞ.
This prediction is plotted in Fig. 4 and is found in fair
agreement with the observations in this time domain.
Finally, note that the width around t! !s is linked to the
disorder strength quantified by kils. Here we find a maxi-
mum value of !#max ! 0:3 rad, that is !#max ! 1:5=kils
(kils ! 5, see above).

Similar measurements and analysis have been repeated
for weaker disorder (VR=h ¼ 525, 750 Hz) and smaller
initial momentum pi (EK=h ¼ 160, 220, 620 Hz), and we
have found a similar agreement between data and theory. In
contrast to the observed moderate changes in the maximum

peak contrast (Cmax ! 0:5–0:7), the maximum peak width
!#max increases significantly with the amplitude of the
disorder and the inverse of pi. The highest observed width
of 1.2 rad (from which we infer kils ! 1:25) suggests that
we are very close to the strong disorder regime, where AL
is expected to be experimentally observable in 2D systems.
Such an observation, however, would demand a longer 2D
evolution in the disorder, which is limited in the present
experiment because of the cross over to the 3D regime.
Increasing this time, as for instance in Ref. [37], will then
constitute the next step towards AL, with the possibility to
observe the coherent forward scattering peak predicted in
Ref. [38].
In conclusion, we have demonstrated experimentally

that the time resolved study of the momentum distribution
of ultracold atoms in a random potential is a powerful tool
to study quantum transport properties in disordered media.
We have been able to extract the elastic scattering time, the
transport time, and to observe and study the evolution of
the CBS peak. Let us emphasize that the theoretical analy-
sis as well as numerical simulations render an account of
the observations not only in the multiple scattering regime
but also at short time, during the onset of multiple scatter-
ing. Such agreement gives a strong evidence of the funda-
mental role of coherence in that phenomenon. Further
evidences of the role of coherence could be sought in the
predicted suppression of the CBS peak [39] when scram-
bling the disorder, or when dephasing the counter-
propagating multiple scattering paths using artificial gauge
fields [40], in the spirit of pioneering works in condensed
matter physics [14] or optics [41]. Finally, this work also
opens promising prospects to study the effect of interac-
tions on CBS (see, e.g., Refs. [42,43]).
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FIG. 4 (color online). Time resolved dynamics of the CBS
peak: evolution of the contrast C (a) and the width !#
(b) versus the scattering time t. The blue points are experimental
data and the error bars correspond to the 95% confidence
intervals for the fitted values (& 2 standard deviations). The
theoretical predictions for the multiple scattering regime are
represented by the solid black lines at long times (t * 4!?; !? ¼
0:4 ms), and by dotted black lines at short times. The dashed-
dotted red lines correspond to the calculation of [36] at short
times (i.e., for t! !s; !s ¼ 0:33 ms), where single scattering
events cannot be neglected.
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3. Strong localization t > τ loc

� Amplitudes feel strong localization at τ loc = ξ2loc/D0

� Scaling D(ω) ∼ −iωξ2loc

1

−iω + D(ω)q2
→ 1

−iω + 0
× 1

1 + ξ2locq
2

� CBS signal should freeze:
�

dω

2π
e
−iωt 1

−iω + 0
= Θ(t)

� Peak still visible if ∆t � τ loc, i.e. ∆k
−1 � ξloc



To our surprise: CFS!
k0 → −k0 → k0
k0

k0

k0
k0

� Small correction of order 1/k0� � 1 in the WL regime.
But in the AL regime:

C (q, t) = Fd(qξloc)
t

τH
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τH = h
∆ = hνξdloc: Heisenberg time of the localization volume.
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[Hikami, ”Anderson localization in a nonlinear-σ-model representation”, PRB (1981)]

grams which have crossed lines of impurity scatter-
ings. These higher-order terms are derived by the
correct calculation of the Green's function. There
are many diagrams. Examples of these diagrams are
represented in Fig. 10. As noted Khmelnitskii, '

Cooperon series C + CC + CCC + . . . impossible to sum



� Refined proposal: [with Tobias Micklitz & Alexander Altland]

quasi 1D geometry + U(1) gauge field (breaks T):

k0
k0

k0
k0

k0
k0

k0

k0

cooperons diffusons

� Localization still effective, while GUE calculations simpler
[Efetov, Supersymmetry in Disorder and Chaos, 1999]
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� Non-perturbative analysis with SUSY NLσM:

C (q,ω) = �tr (P−+Q(q)P+−Q(−q))�S0

S0[Q] = πνS

�
dx str

�
iωQΛ+

D

4
(∂xQ)2

�

� Differential “transfer matrix” equations [Efetov & Larkin (1983)]

� Analytical solution by mapping to Coulomb problem
[Skvortsov & Ostrovsky, JETP Lett. (2007)]
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� Localization = no net transport:
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knk = 0 if nk = n−k

� Localized eigenstates: H|α� = �ωα|α�

ψk(t) =
�

α

�k|α�e−iωαt�α|k0�

� Long-time limit t � |ωα − ωα+1|−1 ∼ τH:

nk =
�

α

|�k|α�|2|�α|k0�|2

� Coherence peaks due to [x2 ≥ x2]:

nk0 =
�

α

|�k0|α�|4 ≥
�

α

|�k0|α�|2 × |�k|α�|2 = nk �=k0

� and with time-reversal invariance |�−k|α�| = |�k|α�|.
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FIG. 1. (Color online) Diffuse momentum distribution nD(k, t), normalized by its stationary incoherent background value
nI(k0), at four different times. It is obtained by numerically solving the time-dependent Schrödinger equation associated
with Hamiltonian H using a disorder strength W = 2Eζ and an initial wave number k0ζ = 3.2. The numerically-computed
mesoscopic parameters are τs ≈ 0.3τζ , #s ≈ ζ, k0#s ≈ 3, τB ≈ 55τζ , #B ≈ 165ζ and ξ ≈ 55ζ. The diffuse momentum distribution
consists of a broad background with a FWHM∆kD ∼ 2/#s (∆kζ ≈ 2 here), reflecting the spectral broadening of the distribution
due to disorder, and of a double peak structure emerging in the course of time. The progressive symmetrization of the broad
background occurs over a time scale roughly set by the Boltzmann transport mean free time τB. The CBS peak grows at
−k0 and can be clearly observed after a few τs, i.e. well before τB. The CFS peak at k0 is however only seen roughly after
the Heisenberg time τH (τH ≈ 40τζ here), when the system enters the localization regime. Its height becomes comparable to
the background only after a much longer time. In the stationary limit, both peaks become mirror images of each other, with
a height twice the background and a very sharp width set by the localization length ∆k ∼ 1/ξ. The dashed lines mark the
positions k = ±k0.

In the following, we will also consider Gaussian ran-
dom δ-correlated potentials for which C2(x) = U2δ(x),
δ(x) being the Dirac delta distribution. From a numer-
ical point of view, we investigated this case by solving
the 1D Anderson model on a lattice [6, 40] for energies
close to the band edges. Starting from our correlated po-
tential defined by Eq. (1), the δ-correlated limit is also
obtained for particle energies E ! Eζ , or equivalently
for kEζ ! 1, where kE =

√
2mE/! is the wave number

of the particle at energy E. In this case, U2 =
√
2π ζW 2.

For later purposes, we define the dimensionless disorder
parameter

α =
U
√
kE

E
= (4π)1/4

W

E3/4E1/4
ζ

, (2)

which appears as a small parameter in weak-disorder per-
turbative expansions [41, 42].
Note that throughout the paper, we will use the con-

vention 〈x|k〉 = exp (ikx). The resolution of identity then

reads

=

∫

dx |x〉〈x| =
∫

dk

2π
|k〉〈k|, (3)

with the orthonormality conditions 〈x|x′〉 = δ(x−x′) and
〈k|k′〉 = 2π δ(k − k′).

B. Time evolution of the disorder-averaged
momentum distribution

To extract the disorder-averaged momentum distri-
bution as a function of time, we numerically compute
the time-evolved wave function |Ψ(t)〉 = |Φ(t)〉Θ(t)
where |Φ(t)〉 = e−iHt/!|Φ0〉 and Θ(t) is the Heav-
iside step function. The average density oper-
ator ρ(t) = |Φ(t)〉〈Φ(t)| can be split into two
components, the ballistic one ρb(t) = |Φ(t)〉 〈Φ(t)|
and the diffuse one ρD(t) = |δΦ(t)〉〈δΦ(t)| where
|δΦ(t)〉 = |Φ(t)〉 − |Φ(t)〉. The ballistic component
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FIG. 16. (Color online) The DOS auto-correlation K̂E(L,ω)
function for spatially-correlated random potential at differ-
ent energies E and disorder strengths W (in units of the
correlation energy Eζ). The figure is a compilation of re-
sults obtained for system sizes ranging from L = 70ξ to
L = 1400ξ. The number of disorder configurations used
ranges from Nd = 106 to Nd = 107. The horizontal axis is
displayed in log (resp. linear) scale in the top (resp. bottom)
panel. The black solid line gives the function f(x) = 2β ln(µx)
with β = 2 and µ = 2.55. One can see that the numerical data
depart more from the analytical prediction at strong disorder
W > E.

is consistent with the scaling f(x) ∝ lnx provided ω is
small enough (long-time limit). Fig. 15 shows the com-
parison between f(x) computed using Eq. (37) or using
the theoretical prediction Eqs. (40) with (43). as one can
see, the agreement between the two methods is generally
good, especially at small ω. For sake of completeness,
we also show in Fig. 16 that Eq. (43) is still a fair pre-
diction for spatially-correlated potentials. We now use
Eq. (43) to compute ∆n(k0, t) and introduce the cutoffs
±1/τH for the integration over ω in Eq. (36). Writing
∆n(k0, t) =

∫

dE
2π ∆nE(k0, t), and assuming E " ∆, we

find

∆n(k0, t) =

∫

dE

2π
∆nE(k0, t), (44a)

∆nE(k0, t) ≈ −
4!

πt
A2(k0, E) ξ(E) Si(t/τ), (44b)

≈ −
2!

t
A2(k0, E) ξ(E), (44c)

where τ = 2.55τH. The last approximation is obtained
in the long-time limit since the sine integral function
Si(x) =

∫ x
0
dy sin(y)/y → π

2
as x → ∞. Writing now

Eq. (12) as nI(k0) =
∫

dE
2π nI(E, k0), the CFS peak con-

trast at energy E, relative to its background value at
same energy, then reads

CE(k0, t) = 1−
∆nE(k0, t)

nI(E, k0)
≈ 1−

2τH(E)

t
. (45)

We thus find that the long-time dynamics t " τH of the
CFS contrast is algebraic. From Eqs (36) and (40), and
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FIG. 17. Time-dependent CFS peak height, nD(k0, t) for
δ-correlated potentials with disorder strength α = 0.1435,
Eq. (2). The system size is L = 109ξ(E0) and the scatter-
ing time is τs(E0) = τH(E0)/4, where E0 = !

2k2
0/(2m). The

black circles with error bars give the numerical data obtained
by solving Schrödinger equation and an average overNd = 104

disorder configurations. The red dashed line gives the predic-
tion Eq. (46) computed with Eq. (47). The blue solid line
gives the theoretical prediction obtained by plugging the con-
jecture Eq. (48) into Eq.(49).
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FIG. 18. Time-dependent CFS peak, nD(k0, t) for Gaus-
sian correlated potentials with disorder strength W = 2Eζ .
The initial momentum is k0ζ = 3.2. The black circles
with error bars give the numerical data obtained by solving
Schrödinger equation and an average over Nd = 104 disor-
der configurations. The system size is L = 90ξ(E0), where
E0 = !

2k2
0/(2m) = 0.5(k0ζ)

2Eζ = 5.12Eζ . The red dashed
line gives the prediction Eq. (46) computed with Eq. (47).
The blue solid line gives the theoretical prediction obtained
by plugging the conjecture Eq. (48) into Eq.(49).

in the large time limit, we have

∆n(k0, t) =

∫

dE

2π

A2(k0, E)

2π
!LKE(L, t), (46)

where KE(L, t) is the Fourier transform of K̂E(L,ω).
Comparison with Eq. (44) show that

!ν(E)LKE(L, t) ≈ −
4τH
πt

Si(t/τ). (47)



Conclusions, Outlook:

� “Welcome to Twin Peaks”:
[Karpiuk et al., PRL 109, 190601 (2012)]

AL’s “smoking gun”

� Coherence peaks signal “Absence of Ergodicity”

� Fully analytical, time-resolved dynamics of strong localization
[Micklitz, CAM, Altland, PRL 112, 110602 (2014)]



� Other natural candidate: Optical fibres

interference pattern into a refractive-index change in a dielectric
material (see Supplementary Information). Disorder is introduced
by adding a speckled beam—created by passing a laser beam through
a diffuser—to the interference pattern of the plane waves inducing
the lattice. The disorder level is set by controlling the intensity of the
speckled beam, and ranges continuously from a perfectly periodic
lattice (without the speckled beam) to a strongly disordered lattice.
We quantify the disorder strength by the ratio between the power of
the speckled beam inducing the disorder, and the total power of the
lattice-forming beams. As explained in Supplementary Information,
we make the fluctuations in the lattice z-independent (propagation-
invariant) by creating ‘non-diffracting speckles’ (a random super-
position of diffraction-free Bessel beams).

After forming the disordered lattice, we launch a probe beam into
it, and image the intensity distribution at the lattice output onto a
CCD camera. Two representative output intensity patterns are dis-
played in Fig. 1. When the lattice is perfectly periodic (Fig. 1b), the
probe beam undergoes ‘ballistic transport’, manifested by the sym-
metric hexagonal intensity pattern24. In the presence of 15% disorder
(Fig. 1c), light tunnels randomly among lattice sites, producing a
random intensity distribution at the lattice output after a distance
L, I x,y,Lð Þ. As we are dealing with a statistical problem in a finite
system, it ismost important tomeasure ensemble averages overmany
realizations of disorder—that is, to repeat the experiment many
(,100) times under the same conditions (strength and statistics of
disorder), each timewith a different realization of the disorder. To do
this, we vary the diffuser position, generating a new speckle pattern,
which induces a new disordered lattice, with the same statistical
properties as before (see Supplementary Information). The probe
beam is launched into the new lattice (at the same location), and
its output intensity is recorded. We test the propagation of the probe
beam for 12 levels of disorder, and the statistical data for each dis-
order level is taken over 100 individual experiments.

Figure 2 presents the results of these statistical measurements. For
each realization of disorder, the confinement of the beam at the
output plane is quantified by the inverse participation ratio

P:
ð
I x,y,Lð Þ2dxdy

" #, ð
I x,y,Lð Þdxdy

" #2
, which has units of

inverse area, and an average effective width veff~ Ph i{1=2, where
# # #h i stands for averaging over multiple realizations of disorder (of
the same level). Figure 2a shows the average (over 100 realizations)
effective width at the lattice output as a function of disorder level,
revealing that the effective width of the output probe beam decreases
monotonically as the level of disorder is increased. That is, transport

in the lattice is reduced by the presence of random fluctuations, even
though these fluctuations are very weak ( Dnj j=n0 < 2|10{4).
Figure 2b shows the corresponding average value of the inverse par-
ticipation ratio, Ph i, as a function of the disorder level, along with its
statistical standard deviation (marked by error bars). Figure 2b
reveals that, when Anderson localization occurs, the relative fluctua-
tions of the inverse participation ratio,DP= Ph i, are very large—of the
order of unity. This result agrees with the prediction25,26 that the
relative fluctuations inP are inversely proportional to the dimension-
less diffusion coefficient (‘conductance’). In our experiments, this
coefficient is close to unity, so these large fluctuations are expected.

According to the scaling theory of localization, in two-dimensional
systems Anderson localization always occurs, for any amount of
disorder25 (unlike three-dimensional systems, where localization
occurs above some critical level of disorder). However, the local-
ization length is exponentially large, posing a great challenge for
the observation of two-dimensional localization. In the transverse
localization scheme13, a narrow beam propagating through the med-
ium first undergoes diffusive broadening, until its width becomes
comparable to the localization length. Then, localization takes place,
and the beam stays localized, acquiring exponentially decaying ‘tails’.
As the disorder level is increased, the initial distance of diffusive
propagation decreases, and the beam evolves faster into the localized

50 µm

z

y

x

 
ba c

Figure 1 | Transverse localization scheme. a, A probe beam entering a
disordered lattice, which is periodic in the two transverse dimensions (x and
y) but invariant in the propagation direction (z). In the experiment described
here, we use a triangular (hexagonal) photonic lattice with a periodicity of
11.2mmanda refractive-index contrast of,5.33 1024. The lattice is induced
optically, by transforming the interference pattern among three plane waves
into a local change in the refractive index, inside a photorefractive SBN:60
(Sr0.6Ba0.4Nb2O6) crystal. The input probe beam is of 514nmwavelength and
10.5mm full-width at half-maximum (FWHM), and it is always launched at
the same location, while the disorder is varied in each realization of the
multiple experiments. b, Experimentally observed diffraction pattern after
L510mm propagation in the fully periodic hexagonal lattice. c, Typical
experimentally observed intensity distribution after L510mm propagation
in one particular realization of the 15% disorder in the lattice.
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Figure 2 | Experimental results for propagation in disordered lattices.
a, Ensemble-averaged effective width measured experimentally at the lattice
output, as a function of disorder level. The ensemble average is taken over
100 realizations of disorder. b, Average inverse participation ratio as
function of disorder level. The ensemble average is taken over 100
realizations of disorder. The error bars are the statistical standard deviations
of P. c–e, Experimentally measured intensity distributions at the lattice
output, without disorder (c) and with 15% (d) and 45% (e) disorder. d and
e are averaged over 100 realization of disorder. The white curves show the
logarithm of the averaged intensity profile, taken along the horizontal line
passing through the beam’s peak. In d, fitting the curve to a gaussian profile
of the form I / exp(22r2/s2) yields the value s5 92 mm. In e, the fitted
curve corresponds to an intensity profile of the form I!exp {2 rj j=jð Þ,
where rj j is the distance from the centre of the beam, and j5 64 mm is the
localization length as determined by the exponential fit. In terms of FWHM,
the width of the fitted profile of e is 44mm, compared to 108mm FWHM for
the gaussian fit in the diffusive case of d, and it is also three times narrower
than the diffraction pattern observed in the absence of disorder: 120mm
(c). The transition from the gaussian curve of d to the exponentially decaying
curve of e displays the crossover from diffusive transport (d) to Anderson
localization (e).
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� Polariton condensates:
LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1364

0

0.5

(d)

a

d

f

x

y

Near-field
CCDFar-field

CCD

θ
k

kz

k 
Microcavity

sampleExcitation
laser

AB

Superfluid

Cerenkov
En

er
gy

 (
eV

)

1.481

1.482

1.483

¬20 ¬10 0 10 20

Emission angle (°)

¬2 ¬1 0 1 2
ky (µm¬1)

ky (µm¬1)

E¬
E p

 (
m

eV
)

0

0.5

E¬
E p

 (
m

eV
)

E¬
E p

 (
m

eV
)

E¬
E p

 (
m

eV
)

¬1 0 1
ky (µm¬1)

¬1 0 1

ky (µm¬1)
¬1 0 1

ky (µm¬1)
¬1 0 1

0

0.5

0

0.5 ˘

b

c

e

Figure 1 | Experimental set-up and polariton dispersion. a, Overview of the experimental excitation and detection conditions. b, Lower-polariton-branch

dispersion in the linear regime as observed after non-resonant excitation. Points A and B denote the excitation energy and momentum corresponding to

the results shown in Figs 2 and 3, respectively. c, Analytically calculated spectrum of excitations under low-power resonant pumping at the point indicated

by the yellow dot for low pump momentum (point A in b). Injected polaritons can elastically scatter to the same energy states as those indicated by

the green arrow. Ep refers to the energy of the pump beam. d, Spectrum of excitations under strong resonant pumping under the conditions of

superfluidity—Fig. 2c-III, c-VI and d-III, d-VI—where the Landau criterion is fulfilled and injected polaritons cannot scatter owing to the absence of available

final states at the energy of the pump. The red section demonstrates the strongly modified linear shape due to polariton–polariton interaction.

e,f, Analytically calculated spectra for larger pump momentum (point B in b) at low and high density, respectively. At high density, corresponding to that of

Fig. 3b-II, b-V and c-II, c-V, the linear spectrum of excitations results in cs < vp and the Čerenkov regime is attained.

transmission configuration are simultaneously recorded on two
different high-resolution CCD (charge-coupled device) cameras.
With the use of a spectrometer and at low-power, off-resonance
excitation, the characteristic parabolic lower-polariton dispersion
can be observed, as shown in Fig. 1b.

To study the propagation properties of the injected polariton
fluid, the centre of the excitation spot is placed on top of a natural
point-like defect present in the sample. Defects of different sizes
and shapes appear naturally in the growth process of microcavity
samples (see Supplementary Information). At low excitation power
and quasiresonant excitation of the lower polariton branch,
polariton–polariton interactions are negligible: in the near-field
(real-space) images, the coherent polariton gas created by the laser
is scattered by the defect and generates a series of parabolic-like
wavefronts around the defect, propagating away from it, mostly in
the upstream direction (Figs 2c-I and 3b-I). They result from the
interference of an incident polariton plane wave with a cylindrical
wave produced by the scattering on the defect. Inmomentum space,
polariton scattering gives rise to the well-knownRayleigh ring23 that
is observed in the far-field images (Figs 2c-IV,3b-IV).

As the laser intensity is augmented, polariton–polariton in-
teractions increase, resulting in the single-polariton dispersion
curves being shifted towards higher energies (blue-shift due to the
repulsive interactions) and also becoming strongly distorted as a
consequence of collective many-body effects12,13. In a simplified
picture, for a specific density |ψc|2, from parabolic (Fig. 1c) the
dispersion is predicted to become linear in some k-vector rangewith
a discontinuity of its slope in the vicinity of the pump wavevector
kp (see Fig. 1d and refs. 12, 13). Under these conditions, a sound
velocity can be attributed to the polariton fluid, being given by

cs =
�
h̄g |ψc|2/m (1)

where g is the polariton–polariton coupling strength and m is the
effective mass of the lower polariton branch. If the flow velocity
vp of the polariton fluid (given by vp = h̄kp/m) is chosen such that
the sound speed cs > vp, then the Landau criterion for superfluidity
is satisfied, as shown in ref. 13. In such a case, as no states are
any longer available for scattering at the frequency of the driving
polariton field (see Fig. 1d), the polariton scattering from the defect
is inhibited and the fluid is able to flow unperturbed.

This situation is observed in Fig. 2, where the real- (c-III)
and momentum- (c-VI) space images of the polariton fluid in
the presence of a ∼4-µm-diameter defect are shown for a pump
angle of incidence of 2.6◦, corresponding to a low in-plane
momentum of k� = −0.337 µm−1 (vp = 6.4× 105 m s−1, point A
in Fig. 1b). The superfluid regime is first attained only in the
centre of the Gaussian excitation spot for the excitation density
corresponding to Fig. 2c-II. As the intensity of the excitation laser
is increased, the superfluid condition extends to the rest of the spot
(Fig. 2c-III), whereas the density in its central part hardly changes.
Simulations based on the solution of polariton non-equilibrium
Gross–Pitaevskii equations (see ref. 13 and the Methods section)
are shown in Fig. 2d. The calculations have been carried out by
fitting the size and depth of the defect and by adjusting the
values of g and |ψ |2 around the experimentally estimated values
(|ψ |2 is obtained from the experimental emitted intensity and g is
estimated from the aperture of the Čerenkov fringes as discussed
later on). Whereas at low excitation density (Fig. 2c-I,IV,d-I,IV)
the fluid presents parabolic density wavefronts in real space and
a scattering ring in momentum space as mentioned above, at
higher excitation density the scattering ring collapses (Fig. 2c-
V,VI,d-V,VI), showing that any scattering of the polariton fluid
by the defect is inhibited and that unperturbed flow is eventually
attained. In real space (Fig. 2c-III,d-III), a complete suppression

806 NATURE PHYSICS | VOL 5 | NOVEMBER 2009 | www.nature.com/naturephysics

NATURE PHYSICS DOI: 10.1038/NPHYS1364 LETTERS

Experiment
Theory

0

10

20

30

40

Excitation density (a.u.)

Th
eo

ry

II III

I

II

III

I

30 µm 30 µm 30 µm

I II III

Ex
pe

rim
en

t

Fl
ow

0

1

30 µm 30 µm 30 µm

Experiment
Theory

0.2

0.4

0.6

0.8

1.0

1.2
a

c

d

b

VI

M
ea

n 
po

la
rit

on
 d

en
si

ty
 (

µm
¬2

)
(f

ro
m

 e
xp

er
im

en
t)

0 0.5 1.0 1.5 2.0 2.5 3.0
Excitation density (a.u.)

0 0.5 1.0 1.5 2.0 2.5 3.0Sc
at

te
re

d 
lig

ht
 /

 tr
an

sm
itt

ed
 

lig
ht

  (
no

rm
al

iz
ed

)

IV V VI

¬1.0 ¬0.5 0 0.5

kx (µm¬1)

¬1.0 ¬0.5 0 0.5

kx (µm¬1)

¬1.0 ¬0.5 0 0.5

kx (µm¬1)

¬1.0 ¬0.5 0 0.5

kx (µm¬1)

¬1.0 ¬0.5 0 0.5 1.0

kx (µm¬1)

¬1.0 ¬0.5 0 0.5 1.0

kx (µm¬1)

k
y  (µm

¬1)

VIV

0

0.5

¬0.5

k
y  (µm

¬1)

0

0.5

¬0.5
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(a)

(b)

FIG. 1. (Color online) Momentum distribution ρ(kx,ky,t) of a
matter wave packet launched with initial momentum k0 = (k0,0) in
a 2D random potential with correlation length ζ , averaged over 960
disorder realizations. The time unit is τζ = mζ 2/h̄. (a) t = 10τζ :
Elastic scattering depletes the initial wave packet, centered at k0 (peak
values not shown), and populates the disorder-broadened energy shell
along the circle |k| = |k0|, while the CBS peak emerges at −k0.
(b) t = 18τζ : The CBS peak is now the dominant feature, proving
phase-coherent multiple scattering.

a correlated potential with ζ = 1 µm, the absolute time scale
is τζ = 1.365 ms. Figure 1 shows the numerically computed,
ensemble-averaged momentum distribution ρ(kx,ky,t) at two
different times.

At short times [Fig. 1(a), t = 10τζ ], one sees a very narrow
peak at k0, a broad, ring-shaped anisotropic background,
and a rather smooth peak at −k0. The forward peak is the
remainder of the initial momentum distribution, which is
depleted because atoms are scattered out of the initial mode at
a rate given by the elastic scattering time τs [13]. The latter can
be extracted from the early-time decay ρ(k0,t) ≈ |$(k0,t)|2 ∝
exp(−t/τs). We find τs = 1.43τζ , with a corresponding mean
free path %s = v0τs such that k0%s = 5.72 for the parameters
used. Weak-disorder perturbation theory [6] predicts too low
a value (k0%s = 2.32), as known for rather strong, spatially
correlated disorder [21]. This shows how the early-time
momentum distribution can be used to measure the key
parameter τs , even in the strong-disorder regime where precise
analytical predictions are not available [23].

Atoms scattered out of the initial mode populate all
other accessible k-space modes on the energy shell and thus
appear along the circle |k| = |k0| in Fig. 1. Due to disorder
broadening, the energy shell has a finite width, of order %−1

s ,
which is larger than the initial width &k for the chosen
parameters. After a time of the order of the Boltzmann time
τB = 8.5τζ (k0%B = 34) [6], the dynamics turns from ballistic
to diffusive. As the memory about the initial direction of
propagation gets erased, the diffusive momentum distribution
then becomes isotropic on average. More precisely, for t � τB,
i.e., when diffusion is fully established, we find that the decay

FIG. 2. (Color online) CBS peak contrast C (blue circles) and
angular width &θ (red squares) as obtained from the numerics after
averaging over 960 disorder configurations and over a time window of
10τζ . Solid curves: Theoretical predictions (10) and (11), respectively.
Dashed horizontal line: Angular width &θ0 = 0.01/

√
2 of the initial

momentum distribution, asymptotically reached by the CBS width
for times much larger than the coherence time τ& = (2D&k2)−1 =
216τζ .

of the anisotropic Fourier components of the background is
well fitted by exp(−t/τ ), where τ is the transport time that
governs the diffusive dynamics. For the present parameters,
one finds τ = 5.8τζ (corresponding to a transport mean free
path k0% = 23.2). As expected, τ is smaller than τB, due to
weak-localization (WL) corrections [21] arising at early times
and caused by very short CBS loops. In Fig. 1(a), the peak at
−k0 is the incipient CBS signal.

At longer times [Fig. 1(b), t = 18τζ ], the initial state is
totally depleted, the diffusive background is fully isotropic, and
the CBS peak is the dominant feature. Both its contrast C, de-
fined as the height above the diffusive background, and its an-
gular width &θ slowly decrease with time, as shown in Fig. 2.

For a quantitative understanding of these observations, we
now turn to the analytical description of matter wave dynamics
in dimension d = 2,3. The ensemble-averaged momentum
distribution ρ(k′,t) at time t is given by [6]

ρ(k′,t) =
∫

dk
(2π )d

∫
dE

2π
)kk′E(0,t)ρ0(k), (2)

where the intensity propagation kernel )kk′E projects the
initial momentum k on the energy shell E, describes the
ensuing unitary dynamics generated by the Hamiltonian
H , and projects back onto the final momentum k′. For
long enough times t & τB, but well before the onset of
Anderson localization, the atomic dynamics is diffusive with
an energy-dependent diffusion constant D(E) = 2Eτ/(md)
that incorporates the short-range WL corrections. The intensity
propagation kernel then takes the form

)
(L)
kk′E

(q,t) = A(k,E)A(k′,E)
2πν(E)

exp[−D(E)q2t]. (3)

The spectral function A(k,E) = 2π 〈k| δ(E − H ) |k〉 is the
average probability density that a plane-wave state |k〉 has
energy E. It also determines the average density of states
ν(E) =

∫
A(k,E)dk/(2π )d+1. Using (3) at momentum trans-

fer q = 0 in Eq. (2) results in a time-independent isotropic
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FIG. 1. (Color online) Momentum distribution ρ(kx,ky,t) of a
matter wave packet launched with initial momentum k0 = (k0,0) in
a 2D random potential with correlation length ζ , averaged over 960
disorder realizations. The time unit is τζ = mζ 2/h̄. (a) t = 10τζ :
Elastic scattering depletes the initial wave packet, centered at k0 (peak
values not shown), and populates the disorder-broadened energy shell
along the circle |k| = |k0|, while the CBS peak emerges at −k0.
(b) t = 18τζ : The CBS peak is now the dominant feature, proving
phase-coherent multiple scattering.

a correlated potential with ζ = 1 µm, the absolute time scale
is τζ = 1.365 ms. Figure 1 shows the numerically computed,
ensemble-averaged momentum distribution ρ(kx,ky,t) at two
different times.

At short times [Fig. 1(a), t = 10τζ ], one sees a very narrow
peak at k0, a broad, ring-shaped anisotropic background,
and a rather smooth peak at −k0. The forward peak is the
remainder of the initial momentum distribution, which is
depleted because atoms are scattered out of the initial mode at
a rate given by the elastic scattering time τs [13]. The latter can
be extracted from the early-time decay ρ(k0,t) ≈ |$(k0,t)|2 ∝
exp(−t/τs). We find τs = 1.43τζ , with a corresponding mean
free path %s = v0τs such that k0%s = 5.72 for the parameters
used. Weak-disorder perturbation theory [6] predicts too low
a value (k0%s = 2.32), as known for rather strong, spatially
correlated disorder [21]. This shows how the early-time
momentum distribution can be used to measure the key
parameter τs , even in the strong-disorder regime where precise
analytical predictions are not available [23].

Atoms scattered out of the initial mode populate all
other accessible k-space modes on the energy shell and thus
appear along the circle |k| = |k0| in Fig. 1. Due to disorder
broadening, the energy shell has a finite width, of order %−1

s ,
which is larger than the initial width &k for the chosen
parameters. After a time of the order of the Boltzmann time
τB = 8.5τζ (k0%B = 34) [6], the dynamics turns from ballistic
to diffusive. As the memory about the initial direction of
propagation gets erased, the diffusive momentum distribution
then becomes isotropic on average. More precisely, for t � τB,
i.e., when diffusion is fully established, we find that the decay

FIG. 2. (Color online) CBS peak contrast C (blue circles) and
angular width &θ (red squares) as obtained from the numerics after
averaging over 960 disorder configurations and over a time window of
10τζ . Solid curves: Theoretical predictions (10) and (11), respectively.
Dashed horizontal line: Angular width &θ0 = 0.01/

√
2 of the initial

momentum distribution, asymptotically reached by the CBS width
for times much larger than the coherence time τ& = (2D&k2)−1 =
216τζ .

of the anisotropic Fourier components of the background is
well fitted by exp(−t/τ ), where τ is the transport time that
governs the diffusive dynamics. For the present parameters,
one finds τ = 5.8τζ (corresponding to a transport mean free
path k0% = 23.2). As expected, τ is smaller than τB, due to
weak-localization (WL) corrections [21] arising at early times
and caused by very short CBS loops. In Fig. 1(a), the peak at
−k0 is the incipient CBS signal.

At longer times [Fig. 1(b), t = 18τζ ], the initial state is
totally depleted, the diffusive background is fully isotropic, and
the CBS peak is the dominant feature. Both its contrast C, de-
fined as the height above the diffusive background, and its an-
gular width &θ slowly decrease with time, as shown in Fig. 2.

For a quantitative understanding of these observations, we
now turn to the analytical description of matter wave dynamics
in dimension d = 2,3. The ensemble-averaged momentum
distribution ρ(k′,t) at time t is given by [6]

ρ(k′,t) =
∫

dk
(2π )d

∫
dE

2π
)kk′E(0,t)ρ0(k), (2)

where the intensity propagation kernel )kk′E projects the
initial momentum k on the energy shell E, describes the
ensuing unitary dynamics generated by the Hamiltonian
H , and projects back onto the final momentum k′. For
long enough times t & τB, but well before the onset of
Anderson localization, the atomic dynamics is diffusive with
an energy-dependent diffusion constant D(E) = 2Eτ/(md)
that incorporates the short-range WL corrections. The intensity
propagation kernel then takes the form

)
(L)
kk′E

(q,t) = A(k,E)A(k′,E)
2πν(E)

exp[−D(E)q2t]. (3)

The spectral function A(k,E) = 2π 〈k| δ(E − H ) |k〉 is the
average probability density that a plane-wave state |k〉 has
energy E. It also determines the average density of states
ν(E) =

∫
A(k,E)dk/(2π )d+1. Using (3) at momentum trans-

fer q = 0 in Eq. (2) results in a time-independent isotropic
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