International Centre
for Theoretical Physic

Workshop on Coherent Phenomena in Disordered Optical Systems

$$
26 \text { - } 30 \text { May } 2014
$$

Momentum-space Signatures of Anderson Localization

Cord A. MUELLER
Univ. Konstanz, Dept. of Physics Konstanz
Germany

Welcome to Twin Peaks:
 Momentum-space signatures of Anderson localization

ICTP, Trieste, 27.05.2014

- Anderson localisation difficult to observe in pure form [Absorption, Decoherence, Interactions, ...]
- Cold atoms, optical potentials: quantum simulation toolbox [Aspect, DeMarco, Esslinger, Hulet, Inguscio, Labeyrie, Rolston, Schneble, ...]

- Which observable most suitable? "Absence of diffusion"?
- Empirical law: To every Claim, there is a Comment
[CAM \& B. Shapiro, Comment submitted on DeMarco's 'Three-dimensional Anderson localization in variable scale disorder' (PRL 2013)]
- How to prove phase coherence?
- 'Smoking gun' of Anderson localisation?

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Our proposal: monitor momentum relaxation after quench

$$
H_{0}=\frac{\mathbf{p}^{2}}{2 m} \quad \mapsto \quad H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r}), \quad\left[r_{\alpha}, p_{\beta}\right]=i \hbar \delta_{\alpha \beta}
$$

Momentum isotropisation

... or not?

A brief history of times...

1. Initial isotropisation [Plisson, Bourdel, CAM, EPJ ST (2012)]
2. Coherent back scattering (CBS)
[Th: Cherroret, Karpiuk, CAM, Grémaud, Miniatura, PRA (2012)]
[Exp: Jendrzejewski, Müller, Richard, Date, Plisson, Bouyer, Aspect, Josse, PRL
(2012); Labeyrie, Karpiuk, Schaff, Grémaud, Miniatura, Delande, EPL (2012)]
3. Coherent forward scattering (CFS)
[Karpiuk, Cherroret, Lee, Grémaud, CAM, Miniatura, PRL (2012)]
[Micklitz, CAM, Altland, PRL (2014)]
[Lee, Grémaud, Miniatura, arXiv:1405.2979]

1. Early times: elastic scattering

- Average momentum distribution $n_{\mathbf{k}}(t)=\overline{\left|\psi_{\mathbf{k}}(t)\right|^{2}}$:

$$
n_{\mathbf{k}}(t)=\int \frac{\mathrm{d} E}{2 \pi} n_{\mathbf{k}}(E, t)=\int \frac{\mathrm{d} E}{2 \pi} \sum_{\mathbf{k}^{\prime}} \Phi_{\mathbf{k k}^{\prime}}(E, t) n_{\mathbf{k}^{\prime}}(0)
$$

- Early times: Pauli master equation

$$
\partial_{t} n_{\mathbf{k}}(t)=\sum_{\mathbf{p}} \bar{U}_{\mathbf{k p}}\left[n_{\mathbf{p}}(t)-n_{\mathbf{k}}(t)\right]
$$

- Initially, incident mode \mathbf{k}_{0} depopulates, $\tau_{\mathrm{s}}^{-1}=\sum_{\mathbf{p}} \bar{U}_{\mathbf{k}_{0} \mathbf{p}}$

$$
n_{\mathbf{k}_{0}}(t) \approx e^{-t / \tau_{s}} n_{\mathbf{k}_{0}}(0)
$$

- Numerical simulation in 2D speckle (Thomas Plisson):

$$
\begin{array}{r}
\tau_{\mathrm{s}}=2.4 t_{\sigma} \\
\stackrel{\text { BA }}{=} 1.4 t_{\sigma}
\end{array}
$$

- On the elastic scattering circle $\mathbf{k}=k_{0}(\cos \theta, \sin \theta)$:

$$
\partial_{t} n(\theta, t)=\tau_{\mathrm{s}}^{-1} \int_{0}^{2 \pi} \mathrm{~d} \phi u(\phi-\theta)[n(\phi, t)-n(\theta, t)]
$$

with phase function $u(\beta)=\bar{U}(\beta) / \int \mathrm{d} \phi \bar{U}(\phi)$

- Solution via Fourier analysis $n(\theta, t)=\sum_{m \in \mathbb{Z}} c_{m}(t) e^{i m \theta}$

$$
c_{m}(t)=e^{-t / \tau_{m}} c_{m}(0)
$$

- Characteristic times: $\tau_{m}=\tau_{s} /\left[1-\langle\cos m \theta\rangle_{u}\right]$
- Measure $\tau_{\mathrm{s}} / \tau_{m}$ to reconstruct $u(\beta)$:
(a) $k_{0} \sigma=1.8$

(c) $k_{0} \sigma=1.8$

2. Diffusive momentum relaxation

[Gorkov, Larkin, Khmelnitskii (1979), Vollhardt \& Wölfle (1980)]
Observation as Coherent Backscattering (CBS) of light
[van Albada \& Lagendijk, Wolf \& Maret (1985)]
Sensitive measure of dephasing
[G. Bergmann: "Weak localization in thin films - a time-of-flight experiment with conduction electrons", Phys. Rep. (1984)]

Coherent backscattering of ultracold matter waves: Momentum space signatures

Nicolas Cherroret, ${ }^{1}$ Tomasz Karpiuk, ${ }^{2,3}$ Cord A. Müller, ${ }^{2}$ Benoît Grémaud,, , $, 4,5$ and Christian Miniatura ${ }^{2,4,6}$
${ }^{1}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
${ }^{2}$ Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
|빌 Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS $\begin{gathered}\text { week ending } \\ 2\end{gathered}$
\wp°

Coherent Backscattering of Ultracold Atoms

F. Jendrzejewski, ${ }^{1}$ K. Müller, ${ }^{1}$ J. Richard, ${ }^{1}$ A. Date, ${ }^{1}$ T. Plisson, ${ }^{1}$ P. Bouyer, ${ }^{2}$ A. Aspect, ${ }^{1}$ and V. Josse ${ }^{1, *}$
${ }^{1}$ Laboratoire Charles Fabry UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France

- ${ }^{87} \mathrm{Rb}$ BEC, 10^{5} atoms $\downarrow\left|F=2, m_{F}=-2\right\rangle$ paramagnetic - $\Delta v_{0} \approx 0.1 \mathrm{~mm} / \mathrm{s}$ • $v_{0}=\hbar k_{0} / m \approx 3.3 \mathrm{~mm} / \mathrm{s}$
- CBS kernel $\left(\mathbf{q}=\mathbf{k}+\mathbf{k}^{\prime}\right)$:

$$
\int \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} \frac{1}{-i \omega+D \mathbf{q}^{2}}=\Theta(t) e^{-D \mathbf{q}^{2} t}: \quad \Delta q^{2}(t)=[2 D t]^{-1}
$$

- Convolution with initial distribution: $\Delta q^{2} \mapsto \Delta q^{2}+\Delta k^{2}$

$$
\Delta \theta(t)=\Delta \theta_{0}[1+\Delta t / t]^{1 / 2}
$$

Source coherence time: $\Delta t=\left[2 D \Delta k^{2}\right]^{-1}$

- Contrast $C(t)=(1+t / \Delta t)^{-d / 2}$

3. Strong localization $t>\tau_{\text {loc }}$

- Amplitudes feel strong localization at $\tau_{\text {loc }}=\xi_{\text {loc }}^{2} / D_{0}$
- Scaling $D(\omega) \sim-\mathrm{i} \omega \xi_{\text {loc }}^{2}$

$$
\frac{1}{-\mathrm{i} \omega+D(\omega) q^{2}} \rightarrow \frac{1}{-\mathrm{i} \omega+0} \times \frac{1}{1+\xi_{\text {loc }}^{2} q^{2}}
$$

- CBS signal should freeze:

$$
\int \frac{\mathrm{d} \omega}{2 \pi} e^{-\mathrm{i} \omega t} \frac{1}{-\mathrm{i} \omega+0}=\Theta(t)
$$

- Peak still visible if $\Delta t \gg \tau_{\text {loc }}$, i.e. $\Delta k^{-1} \gg \xi_{\text {loc }}$

To our surprise: CFS!

- Small correction of order $1 / k_{0} \ell \ll 1$ in the WL regime. But in the AL regime:

$$
C(\mathbf{q}, t)=F_{d}\left(q \xi_{\text {loc }}\right) \frac{t}{\tau_{\mathrm{H}}}
$$

$\tau_{\mathrm{H}}=\frac{h}{\Delta}=h \nu \xi_{\text {loc }}^{d}$: Heisenberg time of the localization volume.
[Hikami, "Anderson localization in a nonlinear- σ-model representation", PRB (1981)]

(a)

(b)

(d)

FIG. 5. Second-order diagrams for diffusion propagator

(a)

(c)

FIG. 6. Four-point vertex.

FIG. 7. Six-point vertex.
ings. These higher-order terms are derived by the correct calculation of the Green's function. ${ }^{26}$ There are many diagrams. Examples of these diagrams are

Cooperon series $C+C C+C C C+\ldots$ impossible to sum

$$
2
$$

- Refined proposal: [with Tobias Micklitz \& Alexander Altland] quasi 1D geometry $+U(1)$ gauge field (breaks T):

- Localization still effective, while GUE calculations simpler [Efetov, Supersymmetry in Disorder and Chaos, 1999]
- Non-perturbative analysis with SUSY NL σ M:

$$
\begin{aligned}
C(q, \omega) & =\left\langle\operatorname{tr}\left(\mathcal{P}_{-+} Q(q) \mathcal{P}_{+-} Q(-q)\right)\right\rangle_{S_{0}} \\
S_{0}[Q] & =\pi \nu S \int d x \operatorname{str}\left(i \omega Q \Lambda+\frac{D}{4}\left(\partial_{x} Q\right)^{2}\right)
\end{aligned}
$$

- Differential "transfer matrix" equations [Efetov \& Larkin (1983)]
- Analytical solution by mapping to Coulomb problem [Skvortsov \& Ostrovsky, JETP Lett. (2007)]

$$
\frac{C(0, t)}{C_{0}}=I_{0}\left(\frac{2 \tau_{H}}{t}\right) e^{-2 \tau_{H} / t}
$$

- Non-perturbative analysis with SUSY NL σ M:

$$
\begin{aligned}
C(q, \omega) & =\left\langle\operatorname{tr}\left(\mathcal{P}_{-+} Q(q) \mathcal{P}_{+-} Q(-q)\right)\right\rangle_{S_{0}} \\
S_{0}[Q] & =\pi \nu S \int d x \operatorname{str}\left(i \omega Q \wedge+\frac{D}{4}\left(\partial_{x} Q\right)^{2}\right)
\end{aligned}
$$

- Differential "transfer matrix" equations [Efetov \& Larkin (1983)]
- Analytical solution by mapping to Coulomb problem [Skvortsov \& Ostrovsky, JETP Lett. (2007)]

- Localization $=$ no net transport:

$$
\langle\mathbf{k}\rangle=\sum_{\mathbf{k}} \mathbf{k} n_{\mathbf{k}}=0 \quad \text { if } \quad n_{\mathbf{k}}=n_{-\mathbf{k}}
$$

- Localized eigenstates: $H|\alpha\rangle=\hbar \omega_{\alpha}|\alpha\rangle$

$$
\psi_{\mathbf{k}}(t)=\sum_{\alpha}\langle\mathbf{k} \mid \alpha\rangle e^{-i \omega_{\alpha} t}\left\langle\alpha \mid \mathbf{k}_{0}\right\rangle
$$

- Long-time limit $t \gg \overline{\left|\omega_{\alpha}-\omega_{\alpha+1}\right|^{-1}} \sim \tau_{\mathrm{H}}$:

$$
n_{\mathbf{k}}=\sum_{\alpha} \overline{|\langle\mathbf{k} \mid \alpha\rangle|^{2}\left|\left\langle\alpha \mid \mathbf{k}_{0}\right\rangle\right|^{2}}
$$

- Coherence peaks due to $\left[\overline{x^{2}} \geq \bar{x}^{2}\right]$:

$$
n_{\mathbf{k}_{0}}=\sum_{\alpha} \overline{\left|\left\langle\mathbf{k}_{0} \mid \alpha\right\rangle\right|^{4}} \geq \sum_{\alpha} \overline{\left|\left\langle\mathbf{k}_{0} \mid \alpha\right\rangle\right|^{2}} \times \overline{|\langle\mathbf{k} \mid \alpha\rangle|^{2}}=n_{\mathbf{k} \neq \mathbf{k}_{0}}
$$

- and with time-reversal invariance $|\langle-\mathbf{k} \mid \alpha\rangle|=|\langle\mathbf{k} \mid \alpha\rangle|$.

1. arXiv:1405.2979 [pdf, ps, other]

Dynamics of localized waves in 1D random potentials: statistical theory of the coherent forward scattering peak
Kean Loon Lee, Benoît Grémaud, Christian Miniatura

Conclusions, Outlook:

- "Welcome to Twin Peaks":
[Karpiuk et al., PRL 109, 190601 (2012)]
AL's "smoking gun"

- Coherence peaks signal "Absence of Ergodicity"
- Fully analytical, time-resolved dynamics of strong localization [Micklitz, CAM, Altland, PRL 112, 110602 (2014)]
- Other natural candidate: Optical fibres

[Schwartz, Bartal, Fishman, Segev, Nature (2007)]
- Polariton condensates:

[Amo, ... Giacobino, Bramati, Nature Physics (2009)]

Controlled dephasing? Coherence Echoes!

- "Echo spectroscopy of Anderson localisation loops" with T. Micklitz (Rio de Janeiro), A. Altland (Cologne), and V. Josse, A. Aspect (Institut d'Optique, Palaiseau)
- One-loop Cooperon:

Controlled dephasing? Coherence Echoes!

- "Echo spectroscopy of Anderson localisation loops" with T. Micklitz (Rio de Janeiro), A. Altland (Cologne), and V. Josse, A. Aspect (Institut d'Optique, Palaiseau)
- One-loop Cooperon:

Controlled dephasing? Coherence Echoes!

- "Echo spectroscopy of Anderson localisation loops" with T. Micklitz (Rio de Janeiro), A. Altland (Cologne), and V. Josse, A. Aspect (Institut d'Optique, Palaiseau)
- One-loop Cooperon:

Controlled dephasing? Coherence Echoes!

- "Echo spectroscopy of Anderson localisation loops" with T. Micklitz (Rio de Janeiro), A. Altland (Cologne), and V. Josse, A. Aspect (Institut d'Optique, Palaiseau)
- One-loop Cooperon:

Controlled dephasing? Coherence Echoes!

- "Echo spectroscopy of Anderson localisation loops" with T. Micklitz (Rio de Janeiro), A. Altland (Cologne), and V. Josse, A. Aspect (Institut d'Optique, Palaiseau)
- One-loop Cooperon:

- Higher orders: use more pulses!
- N. Cherroret, D. Delande (LKB)
- T. Karpiuk (Białystok, CQT)
- C. Miniatura, B. Grémaud (CQT)
- B. Shapiro (Haifa)
- T. Micklitz (Rio de Janeiro), A. Altland (Köln)
- T. Bourdel, V. Josse, A. Aspect (Palaiseau)

