

2583-6

Workshop on Coherent Phenomena in Disordered Optical Systems

26 - 30 May 2014

Coherence Length of a Weakly Interacting One-dimensional Polariton Condensate

> Maxime RICHARD Institut Neel – CNRS Grenoble France

Coherence Length of a Weakly Interacting One-dimensional Polariton Condensate

E. Durupt¹, S. Klembt¹, A. trichet^{1,*}, F. Médard^{1,**}, A. Minguzzi², S. Datta², Le Si Dang¹, <u>M. Richard¹</u>

¹Institut Néel - CNRS, Grenoble, France *Now at Oxford University, Material science dpt, UK ** Now at Université Blaise Pascal, Clermont-Ferrand, France

²Laboratoire de Physique et Modélisation des Milieux Condensés - CNRS, Grenoble, France

Microcavities in the strong coupling regime

Microcavity in the strong coupling regime with a **2-dimensional** degree of freedom (k_x,k_y)

+ weak in-plane disorder

Microcavities in the strong coupling regime

Microcavity in the strong coupling regime with a 1-dimensional degree of freedom (k_z)

+ weak in-line disorder

MOCVD

SEM Micrograph of a ZnO microwire

ZnO

- Bulk excitonic transition @ 3.31eV
- Excionic binding energy of 60meV
- Large E. dipole moment

ZnO

- Bulk excitonic transition @ 3.31eV
- Excionic binding energy of 60meV
- Large E. dipole moment

Microwire

0.5-1.5 μm

Multimode optical fibers

Multimode optical fibers

Microwire

n, m+1

n, m

n, m+1

n, m (WGM transverse numbers)

n, m+1

n, m

Counts: 0 500 1000 1500 2000 0 1000 2000 3000 4000

Quick summary [2]

- Rabi splitting = **290meV**
- Stable at room temperature
- Dimensionality = 1D
- Q = 800

- \rightarrow Exciton-like polaritons :
- >15x heavier than « light polaritons »
- Still 1000x lighter than exciton

- Classical Monte-Carlo simulation to model 2-particles scattering within the reservoir \rightarrow Free exciton scattering is excluded (P^{(1),} P⁽²⁾)

 \rightarrow LO relaxation is excluded (LO)

<200µeV blueshift up to 10P_{th}

Large excitonic binding energy Large excitonic medium volume → Weak interactions

Measurement of $g^{(1)}(x,-x,\omega)$ \rightarrow Imaging Michelson interferometer

 ${\sim}10\%$ correlation build-up over $10\mu m$ range

- Not limited by excitation spot

- Not limited by excitation spot

Another realization of disorder

What is the physics governing the measured correlation function $g^{(1)}(x,-x,\omega)$?

Cf. Talk by Michiel Wouters this afternoon

(1) Gain+loss noise in 1D in the low interaction limit [3,4] + disorder

(2) Time-integrated motion in disorder+ decay

Model for time-integrated 1D condensate motion in disorder: mean-field approach

[5] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99 140402 (2007)

Model for time-integrated 1D condensate motion in disorder: mean-field approach

Conclusion

• Generation of a transient quasi-excitonic 1D condensate

• **10µm correlation length** at threshold in spite of much heavier polaritons.

- Spatial phase correlation properties mostly determined by time-integrated propagation in disorder.
- Vanishing interactions at threshold.

Perspective :

Look for signature of gain/loss induced noise in the correlation decay

- Enter the steady-state 1D interacting regime

Acknowledgments

F. Médard

A. Trichet

S. Datta

Gain mechanism

- Classical Monte-Carlo simulation to model scattering within the reservoir
- Free exciton scattering is excluded (P^{(1),} P⁽²⁾)
- LO relaxation is excluded (LO)

Quantum degeneracy of Bose gases

Criterion at thermodynamic equilibrium

Interparticle distance $\langle d \rangle \approx \frac{h}{\sqrt{2\pi m kT}} = \Lambda_{dB}$

Quantum degeneracy of Bose gases

Criterion at thermodynamic equilibrium

Interparticle distance $\langle d \rangle \approx \frac{h}{\sqrt{2\pi m kT}} = \Lambda_{dB}$

Quantum degeneracy achieved for

- Low mass
- low temperature
- Large density

Quantum degeneracy of Bose gases

• Driven-dissipative condensate (laser) in k=0

→ Quick summary
At or out-of-equilibrium,
mass always matters

Quantum degeneracy achieved for

- Low mass
- long lifetime
- Large density

\rightarrow La position 🚖 est la source du condensat :

Preuve : en positionnant un petit spot dessus on genere toute la partie propagative À contrario si on place le spot sur la partie propagative on n'excite rien \rightarrow La direction de propagation n'est donc pas ambigue

\rightarrow La propagation du condensat se fait à vitesse finie

Preuve : le comportement de l'inclinaision des franges sur l'image de phase: le délai entre les points z et -z vaux tau=(z-z0)/vg(z)-(-z-z0)/vg(-z) où z0 est le point d'autocorrelation. on observe des franges *spectrales* de periode infini en z0 (gradient de phase purement selon z), et de periode de plus en plus courte quand (z-z0) augmente (i.e. gradient de phase selon lambda augmente avec z-z0). On peut en déduire le DeltaVg entre paires de points (z-z0) et (-z-z0) du condensat

\rightarrow L'impulsion k_z du condensat est non-nulle mais pas nécessairement constante *Preuve* : 1- observation direct dans l'espace des kz.

2– observation directe par l'interferogramme. Par contre dans ce cas là on n'accède qu'à la difference de phase entre les points z-z0 et -z-z0, on peut donc rajouter n'importe quelle fonction (approximativement) paire F à la phase du condensat : i.e. $phi(z)=k_z(z-z0)+F(z-z0)$. Les résultats sont donc compatible avec l'hypothèse de la remontée d'un potentiel (i.e. k_z pas constant mais diminuant au cours de la propagation).