

2583-14

Workshop on Coherent Phenomena in Disordered Optical Systems

26 - 30 May 2014

Random Laser - Physics & Application

Hui CAO Depts. of Applied Physics and Physics Yale University New Haven U.S.A

Random Laser -Physics & Application

Hui Cao

Depts. of Applied Physics & Physics, Yale University

Group members

Northwestern Univ.

Jonathan Andreasen Bo Liu Heeso Noh Brandon Redding Xiaohua Wu Junying Xu Alexey Yamilov Jin-Kyu Yang Yong Ling Robert P. H. Chang Eric Seelig Xiang Liu

Yale Univ.

Michael Choma Doug Stone Michael Rooks

Laser

Essential components for a laser

- <u>Gain medium</u> Light amplification
- <u>Cavity</u> Coherent feedback

Laser with Scattering Reflector

ScatteringRubymediumcrystals

Nicolay Basov

Non-Resonant Feedback

Lasing Threshold
$$R_1 R_2 e^{2gL_g} = 1$$

Ambartsumyan, Basov, Kryukov, and Letokhov, *IEEE J. Quantum Electron. 2 442* (1966)

Vladilen Letokhov

Photonic Bomb

Instability for Amplification of Spontaneous Emission (ASE)

Average path length of photon exceeds amplification length

Photon multiplication

Letokhov, Sov. Phys. JETP 26, 1109 (1968)

Laser Paint

Lawandy, Balachandran, Gomes & Sauvain, Nature 368, 436 (1994)

Light Diffusion, Absorption, Emission, and Amplification

Pump light and probe light in 4-level atomic media

$$\begin{aligned} \frac{\partial W_G(\vec{r},t)}{\partial t} &= D\nabla^2 W_G(\vec{r},t) - \sigma_{abs} v[N_t - N_1(\vec{r},t)] W_G(\vec{r},t) + \frac{1}{l_G} I_G(\vec{r},t), \\ \frac{\partial W_R(\vec{r},t)}{\partial t} &= D\nabla^2 W_R(\vec{r},t) + \sigma_{em} v N_1(\vec{r},t) W_R(\vec{r},t) + \frac{1}{l_R} I_R(\vec{r},t), \\ \frac{\partial W_A(\vec{r},t)}{\partial t} &= D\nabla^2 W_A(\vec{r},t) + \sigma_{em} v N_1(\vec{r},t) W_A(\vec{r},t) + \frac{1}{\tau_e} N_1(\vec{r},t), \\ \frac{\partial N_1(\vec{r},t)}{\partial t} &= \sigma_{abs} v[N_t - N_1(\vec{r},t)] W_G(\vec{r},t) - \sigma_{em} v N_1(\vec{r},t) [W_R(\vec{r},t) + W_A(\vec{r},t)] - \frac{1}{\tau_e} N_1(\vec{r},t). \end{aligned}$$

Wiersma & Lagendijk, Phys. Rev. E 54, 4256 (1997)

Discrete Lasing Peaks

HC et al, Phys. Rev. Lett. 82, 2278 (1999)

Frolov et al, Phys. Rev. B 59, 5284 (1999)

Electromagnetic Mode

Maxwell's equations

$$\frac{\partial \vec{H}(\vec{r},t)}{\partial t} = -\frac{1}{\mu_0} \nabla \times \vec{E}(\vec{r},t)$$
$$\frac{\partial \vec{E}(\vec{r},t)}{\partial t} = \frac{1}{n^2(\vec{r})} \nabla \times \vec{H}(\vec{r},t)$$

Complex refractive index $n = n_r + in_i$

Boundary condition: only outgoing waves

HC et al, Phys. Rev. E, **61**, 1985 (2000) Jiang & Soukoulis, Phys. Rev. Lett. **85**, 70 (2000)

Localized Modes

Vanneste & Sebbah, Phys. Rev. Lett. 87,183903 (2001)

ZnO Powder

HC et al, Phys. Rev. E 66, R25601 (2002)

Porous GaP

van der Molen et al, Phys. Rev. Lett. 98, 143901 (2007)

Weak Scattering System

Mujumdar et al, Phys. Rev. Lett. 93, 053903 (2004)

Overlapping Resonances

Resonances are strongly overlapped <u>spatially</u> and <u>spectrally</u>.

Excitation spectrum of a passive system

Coherent Lasing Mode

Vanneste, Sebbah & HC, Phys. Rev. Lett. 98,143902 (2007).

Non-Uniform Gain and Absorption

Absorption outside gain region effectively reduces the size of random structure by suppressing feedback from the unpumped region, and creates localized lasing modes.

Yamilov et al., Opt. Lett. **30**, 2430 (2005) Andreasen & HC, Opt. Lett. **30** 2430 (2009)

Directional Laser Emission

Local pumping of weakly scattering samples

Cone shaped pump volume Angular distribution of output intensity

Wu & HC, Phys. Rev. A **74**,053812 (2006)

Mode Interaction

Mode competition for gain

Gain saturation, spatial hole burning

Localized modes, spatially non-overlapping, → weak interaction

Composite Lasing Modes

HE Türeci, L. Ge, S. Rotter, AD Stone, Science 643, 320 (2008)

Nonlinear Dynamics

Conti et al, Phys. Rev. Lett. 96, 065702 (2006); Leonetti, Conti & Lopez, Nat. Photon. 5, 615 (2011)

Question

What is the statistical properties of random lasing modes?

Single-Shot Emission Spectra

Peak Spacing Statistics

Wu & HC, Opt. Lett. 32, 3089 (2007)

Peak Height Statistics

Wu & HC, Phys. Rev. A 77,013832 (2008)

Question

How coherent is random laser emission?

Temporal Coherence

Temporal coherence length is determined by spectral bandwidth of laser emission

$$\delta z = \frac{2\ln 2\lambda^2}{\pi \cdot \Delta \lambda} = ct_c$$

Noginov et al, Opt. Mater. **12**, 127 (1999); Papadakis et al, J. Opt. Soc. Am. B **24**, 31 (2010)

Spatial Coherence

Young's double slit experiment

Tailoring Spatial Coherence by Varying Pump Region

Wavelength (nm)

Tailoring Spatial Coherence by Changing Scattering Strength

Stronger scattering

B. Redding, M. Choma, & HC, Opt. Lett. 36, 3404 (2011).

Second-Order Coherence

Emission intensity or photon number fluctuations

$$G_{2} = \frac{\left\langle \left(\Delta I\right)^{2} \right\rangle - \left\langle I \right\rangle}{\left\langle I \right\rangle^{2}}$$

Single-mode coherent light: $G_2 = 1$

Single-mode chaotic light: $G_2 = 2$

Emission Intensity Statistics of Nonresonant Feedback Laser

Fluctuation of total emission intensity is suppressed by gain saturation.

Intensity fluctuation of individual mode remains large due to mode interaction.

$$G_2 = 2$$

Ambartsumyan et al. Sov. Phys. JETP 26, 1109 (1968)

Photon Statistics of Random Laser with Resonant Feedback

HC et al, Phys. Rev. Lett. 86, 4524 (2001)

Nonlinear Effect in Random Laser

Strong third-order nonlinearity $n = n_0 + n_2 I$

Liu et al, Phys. Rev. Lett. 91, 063903 (2003); Appl. Phys. Lett. 83, 1092 (2003).

Partially-Ordered Random Laser

Yamilov & HC, Phys. Rev. A, 69, 031803 (2004)

Short-Range Order

GaAs membrane

Spatial Fourier spectra

Localized mode

Coupled mode

Noh et al., Phys. Rev. Lett. 106, 183901 (2011)

Deterministic Aperiodic Structure

The Rudin-Shapiro structure creates localized modes with well-defined frequencies and positions

Yang et al., Appl. Phys. Lett. 97, 223101 (2010)

Light Transport in Amplifying Random Media

In a diffusive system *below* lasing threshold

Effect of coherent amplification on transport:

- Enhances long-range correlation
- Increases fluctuation of transmission & reflection
- Pushes a diffusive system towards localization

Yamilov, HC *et al, Phys. Rev. E* **70**, 037603 (2004); *Phys. Rev. B* **71**, 092201 (2005); *Phys. Rev. E* **74**, 056609 (2006); *Physica B* **405**, 3012 (2010).

Amplification Enhances Interference Effect

 $|E_1| \sim |E_2|$ Stronger interference

Light Localization Induced by Random Imaginary Permittivity

Basiri, Bromberg, Yamilov, Cao, Kottos, arXiv 1403.2120

Physics

Random lasers are complex, open, nonlinear chaotic systems.

Mesoscopic transport, laser physics, nonlinear optics, quantum optics, statistical physics, quantum chaos, nonlinear dynamics, atomic physics ...

Application

Microlaser

X-ray laser, γ -ray laser

Galaxy maser, stellar laser

Optics & Photonics News, **16**, 24 (2005)

Speckle-free Laser Imaging

Redding, Choma & HC, Nature Photonics 6, 355 (2012)

Spatial cross talk

Coherent illumination

$$I = |E|^{2} = |E_{1} + E_{2}|^{2}$$
$$= |E_{1}|^{2} + |E_{2}|^{2} + 2E_{1}E_{2}\cos(\theta)$$

Incoherent illumination

$$I = I_1 + I_2$$

On-chip Electrically-Pumped Semiconductor Random laser

Development of a New Light Source for Massive Parallel Confocal Microscopy and Optical Coherence Tomography

Time-resolved microscopy with random lasers

Alexandre Mermillod-Blondin,* Heiko Mentzel, and Arkadi Rosenfeld

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße, D-12489 Berlin, Germany

Ideal Illumination Source

Spatial Coherence