

2583-15

Workshop on Coherent Phenomena in Disordered Optical Systems

26 - 30 May 2014

Slow-light Propagation in Photonic Nano-Structures

Jin HOU College of Electronics & Information Engineering, South-Central University for Nationalities, Wuhan Hubei China

Workshop on Coherent Phenomena in Disordered Optical Systems 26 - 30 May 2014, Trieste, Italy

Slow-light Propagation in Photonic Nano-Strucutres

Jin Hou

College of Electronics & Information Engineering, South-Central University for Nationalities, Wuhan, Hubei China

OUTLINE

Motivations & Background
Slow-light in photonic nano-structures
Summary

Why slow light?

Motivations

Applications that beyond the human's curiosity:

- Compact light delay line, Optical buffer;
- Beams forming, regeneration;
- Retiming, Synchronization, (De)MUX, Correlator;
- Compact optical switch, modulator;
- > Enhancement of optical nonlinearities.

Conclusion:

Mostly in communications & optical data processing.

Methods for slow light

Material dispersion

- Electromagnetically Induced Transparency in atomic media
- Coherent Population Oscillations in semiconductors
- Nonlinear gain and loss characteristics in fibres

Structural dispersion using Photonic structures

- Ring Resonators
- Periodic Structures(Photonic crystals)
- Chirping Structures

Conclusion:

Slow light in structural dispersion would be more practical to be applied in integrated optical systems in the near future.

Slow-light in photonic nano-structures

Principles of SL in photonic structures Slow light in 2D structures Slow light in 1D structures

Principles of slow light in periodic waveguides

The group velocity of light: $V_g = d\omega/dk$

Band structure of a silicon PC Slab

Two possible mechanisms for slow light

The group velocity of light: $V_g = d\omega/dk$

Omni-directional reflection.

T. F. Krauss. J Phys D Appl Phys 40, 2666-2670 (2007).

Dispersion issue in slow light waveguides

The group velocity dispersion, which will cause the propagation of signal distortion.

 $\beta_2 = d^2 k / d\omega^2$ $=1/c (dn_g/d\omega)$ **Delay Bandwidth limit of slow light:** $n_{g} = c/v_{g}$ $= cdk/d\omega$ $= \frac{d(n\omega)}{d\omega} \quad When \quad \frac{n_g}{2} > n,$ $= n + \omega \frac{dn}{d\omega} \quad m \approx \omega \frac{dn}{\omega}$ $n_g \approx \omega dn/d\omega$ $n_g d\omega/\omega \approx dn$ $dn_{Max} < \Delta k/\omega$ =(0.5-0.25)/0.25 =1

T. Baba, et.al, J Phys D Appl Phys 40, 2659-2665 (2007).

Schematics of low dispersion slow light

(a) Dispersion-compensated slow-light device with chirped structure.

(b) Zero-dispersion slow-light device.

T. Baba, Nature Photonics 2, 465-473 (2008).

Slow light in 2D periodic structures

Schematic structure of line defect PC waveguide, black denotes silicon and white denotes air.

Photonic band of the main propagation mode for R=0.3335a, and r is taken as a parameter.

Group index n_g characteristics of PC waveguide, *R* is fixed to 0.3335a and *r* is varied corresponding to the band structure.

Group index characteristics

Optimized Group index characteristics, R is varied and r is optimized to obtain the low GVD characteristics.

The corresponding group velocity dispersion characteristics.

If $\beta_2 < 10000 \ (a/2\pi c^2)$, about 7.42 *ps*²/*mm* for 1550nm. At $n_g = 82$ with $\Delta \omega / \omega = 0.06\%$ for R = 0.365a, it means a 0.93nm bandwidth; At $n_g = 26$ with $\Delta \omega / \omega = 0.896\%$, about 13.89nm bandwidth for R = 0.315a.

FDTD simulation of the waveguide

 $L_{\rm d} = 140a$

Structure of the symmetric line defect PC waveguide simulated.

Hz Field distributed at the time step 20000 with a pulse input.

A Gaussian pulse source centered at $0.2703(2\pi c/a)$ with $\Delta \omega = 0.0004(2\pi c/a)$, corresponding to a 2.3nm bandwidth travels with a group index about 74.4. The relative pulse shape distortion is only 4.17%.

Slow light in chirped slot 2D PC coupled waveguide

Schematic diagram of the SPCWG

Band structure of the even mode in the electric-field component Ey (quasi-even in z direction and odd in y direction) is considered.

Chirping of dy

Schematic diagram of the SPCWG including chirping of dy.

Dependence of the chair-shape-band on dy.

0.50

 $d_{\nu} = 1.732a \times 0.825$

0.45

FDTD simulation of chirped slot PC coupled waveguide

Incident optical pulse: 435*a*/*c* (~ 0.674 ps) output pulse: 468*a*/*c* (~ 0.725 ps) Delay is ~2444*a*/*c* (~ 3.788 ps)

Monitor two is 439*a/c* (~ 0.681 ps) Monitor three is 472*a/c* (~ 0.732 ps) Delay is ~2410*a/c* (~ 3.736 ps)

FDTD simulation of **unchirped** slot PC coupled waveguide

The same incident optical pulse is used.

Pulse propagations with various chirp ranges of d_y

	The entire chirp length of the SPCWG is 150a			
Chirp	Bandwidth for	Avera	Group	Relative pulse shape
range of	center	ge	index	expansion at Monitor
$d_{v} \times 1.732$	wavelength	Group	bandwidth	3 compared with
a	1550nm	index	product	Monitor 2
	nm			
0.835 to	19.7	16.06	316.38	7.52 %
0.865				
0.84 to	13.1	20.3	265.93	6.02 %
0.86				
0.845 to	6.5	29.1	189.15	5.15 %
0.855				
0.8475 to	3.26	40.23	131.15	5.24 %
0.8525				
0.849 to	1.3	48.5	63.05	5.15 %
0.851				

Slow light in 1D chirped waveguides

Broad Band Slow light

Group index characteristics of 1D waveguide

Parameters are with ashort=0.3, along=0.8, bshort=0.2,blong=1.75, wWhole=6, and w=0.85.

Chirping 1D waveguide by scaling law

FDTD simulation of the chirped 1D WG

Schematic of Chirp of 150 period from 0.7a to 1.3a

Practically, chirp from **0.99a to 1.01a**

Input Position=73.98a Output Position=-74.2a

df	0.0046
centerF	0. 234000031
n _g	14.675
Bandwidth	30. 47008143nm

Slow light in a silicon grating waveguide

FDTD results

1.0

Group index is 17.54. the bandwidth is about 10.3 nm.

SUMMARY

Wide band slow light can be implemented in both 2D and 1D structures.

- **From 2D periodic structure**
 - **D** chirping structure
- **From 2D structures**
 - **1D** structures
- **From Bandgap structures**
 - Total internal reflection structures
- Perspective
 - How is the slow light loss in 1D structures?

THANKS FOR YOUR ATTENTION!

ANY QUESTIONS?