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Motivation

o Is the standard Gross-Pitaevskii equation sufficient for studying the
dynamics of BECs in higher-densities regime?
What is the appropriate theoretical approach in such regime?

o Dynamical instability enhances higher-order effect in 1D systems.
How does the higher-order interactions affect the generation of
localized structures in BECs?
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The mean-field Gross-Pitaevkii equation

Validity of the mean-field GPE

« Dilute systems, i.e. the mean interparticle distance is typically larger than the interaction range.
« Expansion parameter (n*a”3) and strength of confinement (a/L0) are very small

« Many-body encounters are scarce, and interactions are modeled by the shape-independent
pseudopotential

High-density regime: Progress on atom chip and quantum computers involves strong
compression, and an important increase in the densities. Then arise the problem of taking into
account the three-body interactions.

Is the mean-field GPE valid in the limit of high densities?
Strength of parameters that
determine the three-body inter- 0.10
action along the line in parame- 1 P R EEEE
NOT ENOUGH! ter space with g=0, as a func- i 2 "
tion of the Rabi frequency/
detuning ratio.

1) The mean-field GPE with three-body
interactions is an improvement. 1

0.05 -

The three-body interaction is tunable,
independently on the two-body one. 0
So can be made bigger.

M. Brunner et al. Phys.Rev. Lett. 92, 078301 (2004)
M.P. Biichler et al., Nature Phys. 3, 726 (2007)

M.P. Biichler et al., Nature Phys. 3, 726 (2007)
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The mean-field Gross-Pitaevkii equation

2) The quantum fluctuations

week ending
PRL 107, 135301 (2011) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 201

Dynamics and Thermodynamics of the Low-Temperature Strongly Interacting Bose Gas

Nir Navon,'* Swann Piatecki,”" Kenneth Giinter,' Benno Rem,' Trong Canh Nguyen,'
Frédéric Chevy,1 Werner Krauth,? and Christophe Salomon'
'Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
?Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC, Université Paris Diderot,

CNRS, 24 rue Lhomond, 75005 Paris, France
(Received 15 March 2011; revised manuscript received 21 June 2011; published 19 September 2011)

We measure the zero-temperature equation of state of a homogeneous Bose gas of ’Li atoms by
analyzing the in situ density distributions of trapped samples. For increasing repulsive interactions our
data show a clear departure from mean-field theory and provide a quantitative test of the many-body
corrections first predicted in 1957 by Lee, Huang, and Yang [Phys. Rev. 106, 1135 (1957).]. We further

Such departure is due to the contribution of quantum fluctuations.
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Beyond the mean-field Gross-Pitaevkii equation

The LHY Correction: Energy contribution of Quantum fluctuations

To understand the behavior of strongly interacting systems, LHY proposed an expansion of
the interaction ground state energy per volume (energy and scattering amplitude are depdt):

- 12
E=&(l + 8 \/na3)
[ 2 15/

Where the correction term is due to quantum fluctuations (QFs).

Indeed, at T=0, classical thermodynamics predicts the complete absence of excitations. However,
quantum observables never fully come to rest (Heisenberg uncertainty principle); they exhibit QFs.

Evidence of Quantum (vacuum) fluctuations

QFs were detected indirectly, from their macroscopic consequences at the thermodynamic scale.

I. Bloch, 1. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) C. I.
Sukenik, et al., Phys. Rev. Lett. 70, 560 (1993)

Direct microscopic observation of collective QFs in a ultracold atomic 1D cloud, dominantly on the
form of quantum phonons:

« Insight into the quasi-long-range order regime
» The nonlocal analysis used reveals a clear deviation from a classical field theory

J. Armijo, Phys. Rev. Lett. 108, 225306 (2012)
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Beyond the mean-field Gross-Pitaevkii equation

Quantum fluctuations and shape of the condensate

Although quantum fluctuations in Bose—Einstein condensates are usually small, it has been recently shown that
under dynamical instability they can be amplified, for instance in the case of spinor BECs, agreeing with
predictions of a beyond-mean-field theory.

FIG. 3 (color online). Radius R of the Bose gas as a function of
the duration 7 of the interaction sweep. The radius R is normal-
ized to the radius R* = a,,(15A2N)'/5 [where ay, = (h/mw.)!/?
and A = o,/w_]. N is the measured atom number at the end
of each sweep. The final values of a/a, are 380 (blue dots),
840 (purple squares), 2940 (red diamonds), and 4580 (green
X triangles). The solid (dashed) lines show the solution of a varia-
tional hydrodynamic approach (mean-field scaling solutions).
The crosses show the predicted equilibrium beyond-mean-field
radii.

.:
N
T

:0 | ) 3 ,  The radius of the Bose gas depends
w,T/2n on the scattering length.

N. Navon, et al., Phys. Rev. Lett. 107, 135301, (2011)
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Beyond the mean-field Gross-Pitaevkii equation

The mean-field Gross-Pitaevskii equation
Modifying the GPE
The 1d GP equation

Quantum fluctuations and shape of the condensate

Although quantum fluctuations in Bose—Einstein condensates are usually small, it has been recently shown that
under dynamical instability they can be amplified, for instance in the case of spinor BECs, agreeing with

predictions of a beyond-mean-field theory.

gf/h=quadratic Zeeman shift at the end of the
magnetic field ramp.
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FIG. 3 (color online).

Radius R of the Bose gas as a function of
the duration 7 of the interaction sweep. The radius R is normal-
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FIG. 2. Characteristic domain size after 87 ms of amplification

at variable g,. Data (circles) are averages over five experimental
repetitions; error bars are statistical. Horizontal error bar reflects
systematic uncertainty in gy. Predictions based on numerical simu-

N. Navon, et al., Phys. Rev. Lett. 107, 135301, (2011)

lations for |Aa|=1.45a5 [7] (squares) and 1.07ay [24] (triangles) are
shown, with error bar reflecting systematic uncertainty in the atomic
density.

S.R. Leslie, et al., Phys. Rev. A 79 (2009) 043631
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Beyond the mean-field Gross-Pitaevkii equation

Quantum fluctuations and shape of the condensate

Although quantum fluctuations in Bose—Einstein condensates are usually small, it has been recently shown that
under dynamical instability they can be amplified, for instance in the case of spinor BECs, agreeing with

predictions of a beyond-mean-field theory. S.R. Leslie, et al., Phys. Rev. A 79 (2009) 043631

Quantum fluctuations and dimensionality

In low dimensions, QFs are dramatically enhanced. In particular for 1D systems, QFs may destroy
long-range order and prevent Bose-Einstein condensation even at T=0.

I. Bloch, 1. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) D. Petrov, D.
Gangardt, and G. Shlyapnikov, J. Phys. IV 116, 5 (2004)

Some effects of Quantum fluctuations

In matter fields, QFs: - govern the correlations properties at low temperature
- cause quantum depletion in Bose-Einstein condensates,
bringing corrections to their equation of state.

N. Navon, et al., Phys. Rev. Lett. 107, 135301 (2011)
T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev.106, 1135 (1957)

Hence, including corrections to the GPE to take into account QFs becomes important, in particular,
for 1D Bose systems.
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Beyond the mean-field Gross-Pitaevkii equation

2) Shape-dependent confinement

The shape-independent approximation becomes less valid under strong confinement.
H. Fu, Y. Wang, and B. Gao, PRA 67, 053612 (2003)

Contributions from higher partial waves may be included through the addition of higher-derivative
terms, as described for Fermi systems in [R. Roth and H. Feldmeier, PRA.64.043603].
A. Collin, et al., PRA 75, 013615 (2007)

We may incorporate the shape dependence on the interaction potential via the effective range.
The shape-dependent confinement correction and LHY correction are clearly from different origin.

3) A comparison MGPE Vs. GPE 0.25
a
Disagreement at high confinement strength. a —u—N=1000 .
LI.I(D 0.20 —e— N=500 Jo
g —A— N=200 s
The previous observations suggests an interest "(55 [ |y N=100 ./ 7
in the study the dynamical instability of 1D wi™ °%f I
Bose systems through a modified GPE §
=
1

comprising the terms of QFs, shape-

L |—»—N=10 ey
0.10 | /://
dependent confinement, and three-body : // //
interactions. 0.05 /&*
From this, we may get the parameter - %/’

domains where localized structures may 000k e——————#"" .. ..,
. . . 1E-3 0.01 0.1
appear in trapped Bose—Einstein condensates a/L

at high density in the presence of QFs. H. Fu, Y. Wang, and B. Gao, PRA 67, 053612 (2003)
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The GP Eq. with higher-order nonlinearity

» We start with the energy functional

In the ultracold regime (T<<Tc), a system may obey the T=0 formalism. The
higher-order effects in the two-body scattering dynamics can be captured by

E[up]:fdrrh—zwqf] .|u1/|
v

External trapping potential Two-body interaction \

Higher-order correction to the two-body Three-body interaction
interaction due to quantum fluctuations

Kinetic energy

Higher-order correction to the two-body interaction
Due to shape-dependent confinement
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The GP Eq. with higher-order nonlinearity

» We start with the energy functional

In the ultracold regime (T<<Tc), a system may obey the T=0 formalism. The
higher-order effects in the two-body scattering dynamics can be captured by

h° 2 2, 1 4
Efw]= [ dr| o—[V¥|" + Vext (O|¥|” + 5 go|¥|

2 1 1
+ gqovms + 5po|¢|zvz(|m2) + me'mﬁ}

The coefficients of nonlinear terms are:

go = 4nh%a/m, qo = 32g0a>/2/(3/7)

1 1
Po = go X (3a* — 3are)

For a hard-sphere potential, Re=2a/3 and PO is zero. The energy functional can be
developed to obtain a generalization of the GP equation for the BEC wave function:
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The 1D Gross-Pitaevskii equation
» Consider the full 3D GPE for BECs trapped in a purely parabolic potential

Very close to 0 K, the following mean-field Gross-Pitaevskii describes the dynamics of dilute 3D
BECs:

. hz 2 2 3
1htpt:—%v U+ V@OV + gl +qol|¥|"P

+ po V(|2 + xol¥|*W

The external potential reads:

V(r) = ;m(w? p? + wZx?) with p=/x2 +?

How to get to the quasi-1D GPE in this context?

Experimental support: Make the radial trapping frequency very big
compared to the axial one, to prepare a cigar-shaped condensate.
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The quasi-1D Gross-Pitaevskii equation
» Reducing the full 3D Gross-Pitaevskii equation

Mathematical method:
1. Separate the condensate wf into radial and axial parts:

Y(r,t) = do(p)p(x,t) where ¢o = ,/ Z ><exp(—2azl ),
with p = /%2 +y? and a; = /h/mw

And obtain the equations that describe the radial and axial condensate wavefunctions:
hz

m
o= Vido+ 201 p"0 =hoLdo

hz

ifiy, =——wxx+v<x>w+go|w|2w +qol Py + po(1V1%) ¥ + xolv|*y

Wlth V(x) = ymwix?
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The quasi-1D Gross-Pitaevskii equation

» Reducing the full 3D Gross-Pitaevskii equation

2. Apply appropriate change of variables to the previous 1D GPE
(rescaling the wavefunction to a dimensionless form)

1 —1 —3 ./, Normalized i -
f— 2a)_l_t’ X<_a_l_ X, 1/[<_ a_]_ w ormalized macroscopic wave

We get the dimensionless quasi-1D GPE

iV = —Yxx + VXU + ol ¥ [*¥ + qolv P
po(1¥1°) ¥ + xol¥ [*y

where V (X) = ax? and
2 2a3 2a9/2

2a°
* _ﬁ’ 80— g, 800 40— 40, A0 g X0 PO figy - Po-

In the rest of this talk, the above MGPE will be used for investigating the
generation of localized excitations in the BECs.
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Stability analysis and analytical results  tstabiity gain and diagram
Linear stability analysis and instability criteria

First, we introduce a modified lens-type transformation to get:

igr = —dxx + [&(DP° +a(D)p*+ p(T)(161%)  + Xold|*]¢

The ansatz is taken to be: g(T) = go(1 + 4aT2)_1%
T q(T) = go(1 + 4aT*)"3
— _i p(T) = po(1 + 4aT?)?
¢ (¢0 + 8¢) EXp|: l/ Q(U) dU:| T(t) = tan(Zﬁt)/(ZJc_v)
0

_ 2 3 4
Let the perturbation be the plane wave: £2(T) = g(T)¢g +q(T)pg + Xody

3¢ — Im[Uzei(KX—f_oT a)(v)dv)] i iRe[U1ei(Kx_f0T a)(v)dv)]

The dynamical instability is excited under the condition:

1 1 2 1 2 2
(_zgogz(l+4aT2)2¢5+2gO(1+4a72) 2<%) +3g0g1(1 +4aT?) 4¢0(%) +4XO¢3(%> 9

This condition may be used to obtain the instability diagram.




Linear stability analysis and instability criteria

Stability analysis and analytical results  instabiiity gain and diagram
Instability diagram

The SD confinement shrinks the bandwidth of
unstable modes, for attractive interaction

QFs changes the nature of interparticle
interactions

5




Linear stability analysis and instability criteria

St@bﬁﬂﬁ&y @M@Hygﬁg @ﬂd @ﬂ@ﬂﬂﬁ@@ﬂ ﬂ'@gﬂﬂﬂtg Instability gain and diagram
Instability gain

Expression of the instability growth rate:
, b0\ b0\’ b0\ 2
Ime = K*| —1+2p(T)¢5 — 2g(T)(—) —3¢oq(T)| = ) —4xod5( —
K K K
The following Ref. deals with the effect of strength confinement on

dynamical instability:
X.-Y. Qi et al, Phys Rev E 86 (2012) 017601

In the rest of the talk, we will mostly investigate the effects of quantum fluctuations and
three-body interaction.
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St@bﬁﬂﬁty @M@Hy§E§ @Md @ﬂ@ﬂﬂﬁ@@ﬂ ﬂ'@gﬂﬂﬂtg Instability gain and diagram
Instability gain

Expression of the instability growth rate:

%0\’ b0\’ Nt
lmw:l(z[—l-|—2p(T)¢5—2g(T)(?) —3¢0q(T)< 0) —4X0¢3( 0) ]

K K
Effect of quantum fluctuations: Effect of three-body interaction:
: : : 1 -
3 — =~ 0.2
0.8} == "%= 00
- 0.2
2l 0.6
£ k=
S 5 0.4f
1l
0.2}
0 0 _—

K VA PN
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Dynamical instability
Generation of nonlinear localized excitations
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Excitation of Dynamical instability

Effect of quantum fluctuations

a) Two-body interaction is attractive

25 . '
- - g1=—1.0
g1=—0.1
20}
---g1=0-1 8' :l :_
9.= 0.0 i)
L : ! [ 7t :' ‘u'
= 15} | —9=-12 Py
Ra ] & 6 ll v
> " :
P = 5}
s 10} . % H
£ Z 4 H
5 I
© f
£ 3l ;
St ¥
2 ’
LT 4
1 --—u‘--""-,’
0 1
20 40 60 A .
“0 1 2 3 4 5 6
time

QFs may cause a BEC to exhibit dynamical instability in cases of both attraction and repulsion.
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Excitation of Dynamical instability

Effect of quantum fluctuations

a) Two-body interaction is attractive  b) Two-body interaction is repulsive

25 - 15 .
- =g,=-10 -=9g=-10

2ol g1=—0.1 g1=-0.1.
-==9=0.1 e = 0.0
_g1=0.0

15} —g=-1.2

max_ly(x,t) 2

max I\p(x,t)l2

QFs may cause a BEC to exhibit dynamical instability in cases of both attraction and
repulsion.
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Excitation of Dynamical instability

Effect of three-body interaction
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Increasing the three-body interaction stabilizes the system.
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Generation of nonlinear localized excitations

Effect of quantum fluctuations
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It emerges that reducing the three-body interaction may allow to
generate localized excitations.
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Generation of nonlinear localized excitations

Effect of three-body interactions
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. o
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It emerges that reducing the three-body interaction may allow to
generate localized excitations.
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Summary of our results

The standard mean-field GPE is not sufficient for investigating the dynamics of BECs in a
regime with high particle density and quantum fluctuations. The quartic, residual and
quintic nonlinearities may be included to account for quantum fluctuations, shape-
dependent confinement and three-body interactions among particles.

We obtained a criterion that defines the parameter domains where dynamical instability
can be excited in such regime. In this domain, localized excitations have been generated in
the condensate; their propagation has been portrayed.

Useful references :

E. Wamba et al, Phys Rev E xx (2014) xxxxxx (In Press)
E. Wamba et al, Phys Lett A 377 (2013) 262
X.-Y. Qi et al, Phys Rev E 86 (2012) 017601

E. Wamba et al, Phys Rev E 77 (2008) 046216
H. Hu, Phys Rev A 67 (2003) 053612

Our findings may be useful to understand the dynamics of systems like
 Nonlinear optical media with spatially nonlocal non-linear response
W. Krélikowski, O. Bang, Phys. Rev. E 63 (2000) 016610

» Nematic liquid crystals with long-range molecular reorientational interactions
A. Griesmaier, et al., Phys. Rev. Lett. 94 (2005) 160401
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Outlook

In nonlinear optics, the propagation of light beams in self-defocussing
nonlocal media with inhomogeneous nonlocality can be described by:

Ve + CYxx — gANY =0, ¥ (X, t)is the light field

d(t) Ay — An+ [¢|> =0 I(x,t) =¥ (x,t)|* is the beam intensity
An(x,t) =s [ R(x' — x)[(x', t) dx’
is the change in the refractive index

Combining the equation and considering the case of singular response
Rx) =68®x  An(x,t) = s|y(x,t)[?

We obtain
9 2| |2
id +c—‘”—g|w| v —sgdty Y g
ot 0x2 0x2

Hence our model may be used to understand the dynamics of nonlinear
optical media with spatially nonlocal non-linear response.






Obervation of Dynamical Instability

PHYSICAL REVIEW A 72, 013603 (2005)

Unstable regimes for a Bose-Einstein condensate in an optical lattice

L. De Sarlo,* L. Fallani, J. E. Lye, M. Modugno,’ R. Saers,’ C. Fort, and M. Inguscio
LENS, Dipartimento di Fisica, and INFM, Universita di Firenze via Nello Carrara 1, 1-50019 Sesto Fiorentino (FI), Italy
(Received 10 December 2004; published 5 July 2005)

We report on the experimental characterization of energetic and dynamical instability, two mechanisms
responsible for the breakdown of Bloch waves in a Bose-Einstein condensate interacting with a one-
dimensional (1D) optical lattice. A clear separation of these two regimes is obtained by performing measure-
ments at different temperatures of the atomic sample. The time scales of the two processes have been deter-
mined by measuring the losses induced in the condensate. A simple phenomenological model is introduced for
energetic instability while a full comparison is made between the experiment and the 3D Gross-Pitaevskii
theory that accounts for dynamical instability.

(@)
0.40q,

1000 1200 1500 ms

0.55q,
FIG. 9. (Color online) (a) Absorption images of the expanded
condensate after different interaction times with a lattice with s

2 S5 mMS 115 for two different values of quasimomentum. Note the sudden
change of time scale crossing the threshold of dynamical instability

(b) at g=0.525¢y and the appearance of structures in the density pro-
files for the unstable case (¢=0.55¢g). (b) Reabsorption of excita-

1.300, tions following 5 ms of interaction with the lattice and different
times of evolution in the pure harmonic potential after switching off

50 500 1000 2000 ms the lattice. In all these pictures the lattice moves from top to bottom.




Obervation of localized structures
Formation of a Matter-Wave Bright Soliton

L. Khaykovich!, F. Schreck!, G. Ferrari'?, T. Bourdel'
J. Cubizolles!, L. D. Carr!, Y. Castin', and C. Salomon!

! Laboratoire Kastler Brossel, Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris CEDEX 05, France
2LENS-INFM, Largo E. Fermi 2, Firenze 50125, Italy

A 6.5ms -3“ Abstract
6 ms & 1 6 ms 4ms A L - -
c A We report the production of matter-wave solitons in an ultra-cold ‘Li gas. The effective
5ms % interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach reso-
4 -~ W nance from repulsive to attractive before release in a one-dimensional optical waveguide.
ms 8‘ . Propagation of the soliton without dispersion over a macroscopic distance of 1.1 mm is
2ms 1o o " observed. A simple theoretical model explains the stability region of the soliton. These
: s matter-wave solitons open fascinating possibilities for future applications in coherent atom
optics, atom interferometry and atom transport.
B 8ms 1 [[8ms
7 ms - 7ms
6ms § G
S5ms 18]
4 ms e vahf "
3ms I
2ms
WMWWMM. oAy o~
+ » '1.0
1 mm axial posmon [mm]

Figure 3: Absorption images at variable delays after switching off the vertical trapping beam.
Propagation of an ideal BEC gas (A) and of a soliton (B) in the horizontal 1D waveguide in
presence of an expulsive potential. Propagation without dispersion over 1.1 mm is a clear
signature of a soliton. Corresponding axial profiles integrated over the vertical direction.



