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This is a collection of problems related to some of the topics we have dis-
cussed during the lectures. You are warmly encouraged to solve them.
Those marked with (*) require some additional effort.

1. Buffon’s needle

Consider a floor consisting of equal, parallel strips of
width b and drop at random on it some needles (8
in the sketch on the right) of length a < b. Some
of these needles (6 in the situation sketched on the
right) will likely cross the line separating two adja-
cent strips. What is the probability p(a, b) for a single
needle to cross one of such lines?
This problem was first formulated in 1777 by the
French naturalist Georges-Louis Leclerc, Comte de
Buffon (7 September 1707 —16 April 1788).

φ

(a) Determine p(a, b), assuming that the probability distributions of the angle φ
and of the position x of the center of the needle are uniform.

(b) Drop N needles onto the floor. What is the probability pN(n) that n of them
will cross a line? Calculate 〈n〉 and the variance σ2 = 〈n2〉 − 〈n〉2.

(c) Explain how to use the result of point (b) in order to estimate numerically the
value of π. Determine the number N of trials required in order to reduce below
1% the relative fluctuations in the estimate of π.

2. Random sums
Assume that {Xr, r ≥ 1} is a collection of independent and identically distributed
(continuous) random variables with moment generating function MX(t) = 〈eitX〉 and
variance σ2

X . Let N ∈ N be a positive random number, independent of {Xr, r ≥ 1},
with probability generating function GN (t) = 〈tN〉 and variance σ2

N . Consider the
random sum

S =
N∑

r=1

Xr . (1)

Prove (a) that the moment generating function MS(t) of S is given by MS(t) =
GN(MX(t)) and (b) that σ2

S = 〈N〉σ2
X + σ2

N 〈Xr〉
2.

3. Decimal and binary random walks

Consider a random walker in one dimension which starts from S0 = 0 and takes
random steps according to the rule that the amplitude dr of the r-th step (r ≥ 1)
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is given by xr/10r, where xr ∈ {0, 1, 2 . . . , 9} is an integer and uniformly distributed
random variable. The distance traveled by the walker after n steps is Sn =

∑n
r=1 dr:

(a) Calculate the average and the variance of Sn for finite n and in the limit n → ∞.

(b) Determine the smallest and the largest distance that the walker can ever travel.

(c) Does the central limit theorem apply to this random walk? Why?

(d) Determine the probability distribution function for n → ∞.
[Hint: do not attempt a direct calculation.]

Assume now that the steps of the walker are given by br = yr/2r where yr ∈ {0, 1} is
a uniformly distributed random variable.

(e) Highlight the analogies with the random walk considered above.

(f) Calculate the asymptotic probability density function of the random walk which
starts from S0 = −1/2, i.e., of Sn = −1/2 +

∑n
r=1 br.

[Hint: Use the fact that
∏∞

r=1 cos(t/2
r) = (sin t)/t]

4. Poisson processes

In continuous time, consider the Markovian counting process in which the number
n ∈ N of counts increases by 1 with a time-dependent rate λ(t), with t ≥ 0.

(a) Write down the master equation for the evolution of the probability Pn(t) of
this process.

(b) Introduce the characteristic (or probability generating) function g(x, t) = 〈xn〉t,
where 〈·〉t is calculated at time t. Solve the evolution equation for g(x, t) as-
suming that n = 0 at time t = 0. Calculate Pn(t) and 〈n〉t.

(c) Determine P1|1(n, t|n′, t′) of this process (assuming t > t′) and calculate the
correlation function 〈n(t)n(t′)〉. Can this P1|1 be stationary?

5. Brownian motion and Ornstein-Uhlenbeck process

In one spatial dimension, consider a Brownian particle with velocity v. Due to the
surrounding fluid, the particle is subject to a friction which causes its velocity v to
decrease according to

v̇ = −γv (2)

where γ is the friction coefficient. For a given velocity v at time t, the velocity v(t+τ)
at time t+ τ is a random variable such that the conditional average 〈. . .〉v(t)=v of the
increment v(t+ τ)− v satisfies Eq. (2): 〈v(t+ τ)− v〉v(t)=v = −γvτ +O(τ 2).
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(a) Write down the Fokker-Planck equation for the probability P1(v, t) of the pro-
cess v(t), assuming that

α2(v) = lim
τ→0

〈[v(t+ τ)− v]2〉v(t)=v

τ
= A2 +O(v2).

Accordingly, at small velocities v, α2(v) is well approximated by the constant
A2.

(b) Determine the stationary solution P (s)
1 (v) of the Fokker-Planck equation derived

at point (a). [Hint: Use the fact that limv→∞ vP (s)
1 (v) = 0]

(c) Write down the canonical Maxwell distribution PM(v) of the velocity v of a
free particle of mass m and kinetic energy K(v) = mv2/2 in equilibrium at
temperature T .

(d) By requiring that the stationary solution P (s)
1 (v) of the Fokker-Planck equation

determined at point (b) equals the Maxwell distribution PM(v) determined at
point (c), show that the coefficient A2 can be expressed in terms of the tem-
perature T , Boltzmann’s constant kB, the friction coefficient γ and the mass
m.

(e) Assuming that the process v(t) is Markovian, write down and solve the Fokker-
Planck equation for the time dependence of P1|1(v, t|v0, t0) (for simplicity, as-
sume γ, A2 = 1) and show that this solution coincides with the transition
probability of the Ornstein-Uhlenbeck process mentioned in the lectures.

6. Branching and decay process with lethal competition

Consider a population consisting of individuals A, each of which might undergo the
following processes, with the specified rates:

(i) A
σ

−→ A+ A branching,

(ii) A
µ

−→ 0 annihilation,

(iii) A+ A
λ

−→ A lethal competition.

In (ii), 0 indicates that the individual A dies, whereas the lethal competition intro-
duced in (iii) occurs among all possible pairs of individuals of the population.

(a) Describe qualitatively the expected behavior of a population which is ruled
by the elementary processes (i), (ii) and (iii), depending on the values of the
corresponding transition rates σ, µ, and λ.

(b) Write down the transition rates W (n → n + 1) and W (n → n − 1) for the
number n of individuals in the population, which are associated to each of the
processes listed above. Is there any absorbing state for the dynamics?

(c) Write down the master equation for the probability Pn(t) of having a population
with n individuals at time t.
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(d) On the basis of this master equation, determine the evolution equation of the
average population 〈n〉t ≡

∑∞
n=0 nPn(t) at time t.

[Hint: Calculate d〈n〉t/dt and express it as a function of 〈n〉t, 〈n2〉t, etc.]

(e) Focus here on the case λ = 0. Solve the evolution equation for 〈n〉t and discuss
the qualitative features of the result as a function of σ/µ. Which is the asymp-
totic behavior of 〈n〉t for large times t in the absorbing and in the active phase?
[For the definition of these phases, see the lectures.] What happens to 〈n〉t exactly
at the transition point σ = µ?

(f) Consider now the master equation for λ = 1 and introduce the mean-field
approximation 〈n2〉t ) 〈n〉2t . Within this approximation calculate 〈n〉 in the
stationary state, as a function of the transition rates σ, µ. Show that, depending
on these parameters, there is a phase transition between the stationary states
with 〈n〉t=∞ = 0 and the one with 〈n〉t=∞ > 0. What is the value of σ at this
critical point? Compare it with the result of point (e).

(g) Within the assumptions of point (f), solve explicitly the evolution equation
for 〈n〉t and discuss its qualitative behavior (increasing/decreasing, asymptotic
behavior etc.) as a function of time for different values of the initial number of
particles. Determine 〈n〉t exactly at the critical point.

7. Path integral for the Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process for a variable v. On the basis of the corre-
sponding P1|1(v2, t2|v1, t1):

(a) construct the analogous of the Wiener measure for this process and derive the
representation of P1|1 as a path integral.

(b) Identify the quantum mechanical system which would have the same (euclidean)
action.

8. Zeroes, maximum, and escape rate of the Wiener process

Consider the Wiener process starting at time t = 0 from x = 0.

(a) Calculate the probability P (t, s) (with t > s > 0) that the process crosses zero
at least once within the time interval [s, t]. This provides information on the
distributions of the zeros of the random walk. Plot the resulting expression and
discuss its qualitative features.

(b) Determine the distribution of the values of the minimum xm of the Wiener
process within the time interval [0, T ].

(c) Determine the probability Pa(t) that the Wiener process has never left the strip
Sa = [−a/2, a/2] (with a > 0) up to time t. Determine the probability density
function of the time T of first exit from Sa. Calculate the average value of this
exit time. Is it finite?
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(*)(d) Generalize the analysis of point (c) to the case of a strip Sba = [b, a] (with
b < 0 < a). Calculate the average value of the first exit time as a function of a,
b. What happens to this average for b → −∞? Why?

9. Maximum of the Brownian bridge

Consider the ensemble of trajectories of the Wiener process such that x(0) = 0 and
x(T ) = b, with fixed T > 0. For b = 0 these trajectories form closed loops, known as
Brownian bridges.

(a) Consider, first, a standard Wiener process with x(0) = 0 (and arbitrary x(T ) =
xT ) and indicate with x̄ ≡ max{x(t)|0 ≤ t ≤ T} its maximum value. On the
basis of the reflection principle show that, for a > 0,

Prob(x̄ > a, xT ∈ [b, b+∆b]) = Prob(x̄ > a, xT ∈ [2a− b−∆b, 2a− b]). (3)

(b) From Eq. (3) infer the distribution of the maximum of a Brownian bridge, given
by Prob(x̄ > a|x(T ) = b). Determine the probability density function of x̄ in
the case b = 0 and discuss its qualitative features in comparison with the result
of point (b) of Problem 8.

(c) Within theWiener path-integral formalism, write down the expression for Prob(x̄ <
a|x(T ) = b) and re-derive the result of point (b).

10. Backward Fokker-Planck equation and first passage time

Consider a Markovian process with continuous sample paths.

(a) Following the approach we used in the lectures to derive the Kramers-Moyal
expansion, write down the differential equation for the evolution equation of
P1|1(x, t|x0, t0) as a function of the initial time t0 and expand it in increasing
moments of the ”small” jumps from the initial point x0. Which is the rela-
tion between the coefficients of this expansion and those of the Kramers-Moyal
expansion discussed in the lectures?

Focus below on the case in which only the first two terms of the previous expansion
do not vanish. The corresponding equation is known as backward Fokker-Planck
equation:

∂t0P1|1(x, t|x0, t0) = −α1(x0)∂x0
P1|1(x, t|x0, t0)−

1

2
α2(x0)∂

2
x0
P1|1(x, t|x0, t0). (4)

This equation is useful for discussing the exit time from the strip Sab = [a, b] (see
Problem 8). Indeed, assume that the random walker is removed whenever it reaches
the boundaries of Sba, i.e., the boundaries are absorbing.

(b) In terms of P (s)
1|1 (x, t|x0, 0) in the presence of these absorbing boundaries, express

the probability π(x0, t) that the particle is still alive at time t, assuming that it
started at time t = 0 from the point x0.
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(c) Under the assumption that the transition probability of the process is station-

ary, i.e., P (s)
1|1 (x, t|x0, 0) = P (s)

1|1 (x, 0|x0,−t), use the backward Fokker-Planck

equation satisfied by P (s)
1|1 (x, t|x0, 0) in order to prove that

∂tπ(x0, t) = α1(x0)∂x0
π(x0, t) +

1

2
α2(x0)∂

2
x0
π(x0, t). (5)

[Note that P1|1 in the presence (superscript (s)) or in the absence of the bound-
aries satisfy the same Fokker-Planck equation, the only difference being in the
boundary conditions.]

(*)(d) Which are the proper boundary conditions for π? Solve Eq. (5) for the Wiener
process without drift and with constant diffusion. Show that one recovers the
results of Problem 8.
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