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The human brain




The human brain
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About 85 billion neurons,

of which about 15 billion
are in the cortex.




Neurons
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Neurons
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Spikes: action potentials
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From single neurons to multiple neurons
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Voltage gated ion channels
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At the resting potential, When the membraneis

voltage-gated Nat depolarized, conform-

channels are closed. ational changes open
the voltage-gated
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Morphology of ion channels
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Generation of action potential

Na” electrochemical equilibrium potential
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Hodgkin-Huxley model of action potential

time {ms)
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Integrate-and-Fire Neuron (IFN)
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labels in red: dimensionless quantities

Courtesy of Bill Kath, Northwestern U.



(V' VR)/(VT' VR)

Integrate-and-Fire Neuron (IFN): constant /,
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Integrate-and-Fire Neuron (IFN): /(1)
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Spike adaptation
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Spike adaptation
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Synapses




Presynaptic .
action potential
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Synaptic transmission

Action potential in Ca®* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle

Presynaptic
nerve
terminal

Receptor-
/channel

Post-
synaptic
cell

The presynaptic action potential causes Ca** channels to open. Calcium influx causes vesicles
to fuse with the membrane and release neurotransmitter. The neurotransmitter causes

receptor channels to open in the postsynaptic site, triggering a depolarization: an excitatory
post-synaptic potential (EPSP).



Postsynaptic conductance

a, =093ms" B =019ms™ T =1ms



Postsynaptic conductance
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Figure 515 Time-dependent open probabilities fitted to match AMPA, GABA,,
and NMDA synaptic conductances. (A) The AMPA curve is a single exponential
described by equation 5.31 with - = 520 ms. The GABAp curve 15 a difference
-DfE}l:P-DﬂEﬂI:Iﬂ]S with 71 = 5.6 ms and 15 = 0.3 ms. (B) The NMDA curve 15 the
differences of two exponentials with 1; = 152 ms and 15, = 1.5 ms. (Parameters
are from Destexhe et al, 1994 )
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Integrate-and-Fire Neuron (IFN):
subthreshold fluctuations of membrane potential

N=1 N=10 N =100
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Synaptic inputs: N excitatory and N inhibitory neurons firing at 50 Hz
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Simulation: courtesy of Brent Doiron, U. Pittsburgh

EPSP (excitatory postsynaptic potential) = J =

J,=1myv
IPSP (inhibitory postsynaptic potential) = J = —
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A small network, N=2
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Fipure 520 Two synaptically coupled integrate-and-fire neurons. (A) Excitatory
synapses (Es = 0 mV) produce an alternating, out-of-phase pattern of firing. (B) In-
hibitory synapses (E; = -80 mV) produce synchronous firing. Both model neurons
have EL. =-70 mV, Vi, =-24 mV, Vigeet = -80 mV, 1, = 20 ms, rpy3, = 0.05, Foox = 1.
Eml=25mV, and 1 = 10 ms.
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mambrane potential {mY)

Communicating through spikes




Hodgkin and Huxley

Hodgkin and Huxley felt that they could not be sure that they understood the ionic basis of
the action potential until they could reproduce its shape with these equations. Kacy Cole
told me that Alan and/or Andrew had expressed to him their reservations about whether or
not they would achieve this goal. After having chosen the form of the equations to be used,
they consolidated all of their data to find the appropriate voltage sensitive rate constants.
Then, because the Cambridge Univ. computer was "off the air for 6 months or so, while it
underwent major modifications", in the spring of 1951, Huxley began the slow work of
using a Brunsviga 20 manually cranked calculator with numbers entered by a set of
adjusting levers (projecting from the wheels that were rotated by the hand crank). The
output was a line of digits on the wheels to be read and transcribed to paper. First, he
found that the time and voltage-sensitivities of the ionic conductances could be
reproduced. Then the long process of numerical integration of the action potential began.
Tabular records of the rate and state variables were entered into the the levers and
transcribed from the dials for small increments of time. Huxley used a tedious iterative,
error-correcting, numerical integration method to estimate and correct for numerical
integration errors. The fact that the whole process for calculation of a 5mS interval,
showing the initiation of and recovery following an action potential, could be accomplished
in 8 hours is astonishing. The calculated action potentials were - with the exception of a
small "gratuitous bump" late in the falling phase - excellent reproductions of the
experimental observations under a variety of conditions.



Hodgkin and Huxley
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Figure 6. Modelling the action potential

A, clculated (upper) and measured (ower) action potentials in squid giant axons. Using their qualitative
descriptions of n, m and i based upon the infinity proportions and rate constants, Hodgkin and Hudey iteratively
calculated the cument cammied by Nat and K* flowing across the membrane. By assuming that these currents
flowed for a short period of time, they derived a new voltage. Since every iteration produced a new voltage, a
new set of n, m and h variables had to be calculated for the next time step. To produce such 3 trace required
many hundreds of iterations. Figure taken from Hodgkin & Hundey (1952). B, the Brunsviga 20 (produced in
Braunschweig by Brunsviga Maschinemeserke, Grimme, Natalis & Co), one of the most popular mechanical
calculators. It was produced up to the early 1970s and marketed with the sbogan ‘Brains of S5tedl’. This particular
one was photographed in what was Alan Hodgkin's space in the basement of the Physiological Laboratory in
Cambridge and, whilst its original owner is unknown, it has belonged to Richard Adrian, then Trevor Lamb and
now Hugh Robinson. Photograph taken by Christof Schwiening.
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Variability of neural responses

Rat neocortical slices
Regular firing neuron, layer 5

£ Suprathreshold stimulation:
% dc current pulse, 150 pA, 900 ms

< . .
2Response: spike trains, mean

' “firing rate about 14 Hz.

i, ",Il- (A X A: The first 10 spike trains are
o b shown superimposed

250 500 750 1000 B: The first 25 consecutive spike
trains are shown as raster plots

VARIABILITY!!

Mainen, Sejnowski, Science (1995)
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Estimation of firing rates
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Poisson statistics
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Correlation functions
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Orientation selectivity in V1: tuning curve

5 {orientation angle in degrees)



Orientation selectivity in V1: spiking neuron
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Comparison with data: Fano factor
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Comparison with data: interspike intervals
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Comparison with data: coefficient of variation
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