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What is Learning?

Learning is an entropy reduction process!



Input-Output Maps

stimulus
]p

response

X=X, 5000, 1 = Y = {3 VsV )

y = f(x)



Input-Output Modules

What specifies the value of the parameters W2
Data: §M=(XM, yu) l=su=sm

Examples of the desired map: input-output pairs



Learning from Examples

Given an example (X, ¥)of the desired map,
the error made by a specific module W on

this example is: L R .
EW|X,y)=d(5, f;; %)



Learning Error

Given a training set of size m:

M =(x", y‘u) Ispusm
construct a cost function that measures the

average error over the training set, the
learning error:

E (W)=(1/m)z’" E(W\;‘c’“,w)

Most Iearnlng algorithms are based finding
the W' that minimize this learning error, i.e.,

back-propagation. Rumelhart, Hinton, Williams, 1986



Configuration Space

For each example " = (x", y")in the training
set, define a masking function:

OW,E" =1 if f,(x*)=y"
OW,E")=0 if f,(3")=y"
Prior ,OO(W)

Normalization:
fpo(W)dW =1




Error-Free Learning

0, (W) =

P, (W)W ,E") =

0, (W)O(W,ENOW , E?)

Masking: 4w = dePo(W)n@(W,é“)
u=1

Contraction: £,<Z, <./, =/,=



Learning from Noisy Data

Consider the error on the uth example:

EW[E") =d(y", f (X*))

If £, (X") =y, E(W[E") =0 = OW,E") =1

Iffvf/ (x*) = y", instead of setting @(W, é’“) =()
iIntroduce a survival probability:

oW, E") eexp(-ﬁE(W

£)



Hard vs Soft Masking

Hard masking: configurations
iIncompatible with the data
/] are eliminated.

/
2 gl

o e

Soft masking: configurations

are attenuated by a factor
~exponentially controlled by

the error made on the data.




Learning with Uncertainty

po(W) = po(W)eXP(_ﬁE(Wél)) -

£"))exp(-BEOW[E))
2, = [ W p, 0] [exp(~BEGW[E")
Z, = [ dW p,(W)exp(-mBE,(W))

")

po(W)eXp(—/J’E(W

with learning error: EL(W) = (l/m)E E(W
u=1




Gibbs Distribution

The ensemble of all possible modules is described
by the prior density 0,(W). The ensemble of
trained modules is described by the posterior
density p_ (W):

. . )
P (W)= ——py(W)exp(-pmE, (W)

m

Note that de pm(W) =1, and that the partition function Z
provides the normalization constant. Note also that this
distribution arises from without invoking specific algorithms
for exploring the configuration space {W}.



Natural Statistics

Training data_ £ = (x, ¥) is drawn from a
distribution P(§) = P(x.y) = P(3|X) P(x)

P()_é) describes the region of interest
Input space

P(ﬂ )_C>) describes the functional dependence



Thermodynamics of Learning
The partition function
é“))

depends on the specific set of data points D= {é“}
drawn from P(&). The associated free energy

F=-(1/B)((InZ,))

follows from averaging over all possible data sets
of size m. The average learning error follows from
the usual thermodynamic derivative:

| R,

E, = —Z$<<ln2m>>l)

Z = depo(W)eXp

—ﬁi E(W



Entropy of Learning
The entropy follows from F'=mE, —(1/8)S

For the learning process, this results In:

S — [ aW p ()1n| 22T -—D.[p |o,
[awp,( )npO(W) 0,00

The entropy of learning is minus the Kullback-
Leibler distance between the posterior P, (W)
and the prior ©0(W) and it measures the
amount of information gained. The distance
between posterior and prior increases
monotonically with the size m of the training set.




Maximum Likelihood Learning

V]
P(E\W)i distribution induced  p(&): true distribution
through hypothesis W

Likelihood of the data:

LOV) = POV = PE' & &) = [ [ PE )

BUT: what is the form of P(EW)?



Learning Coherence

Two approaches to learning:
*Minimize the error on the data:

E")

E, (W)=Y EW
u=1
Maximize the likelihood of the data:

LWy =] | PE W)

Require that these two approaches be coherent!

P(EW) = ——exp(-BECWE))

2(p)

(Appendix)



Bayesian Learning
We now compute the likelihood of the data: P(D|W) =

T peEeli 1 NI 1 vV
HP(S ‘W) = B exp(—/?’; EE& ‘W)) = B exp(—[J’mEL(W))
. P(D‘W)* P(W)
Bayesian inversion:  P(W|D) =
P(D)

Gibbs distribution:
- 1 - -
Pu(W) = — = py(W)exp(~pmE, (W)

m



Bayes <= (Gibbs

Prior: P(W) <> pO(W)
Posterior: P(W|D) < p, (W)

. | - 1 -
Likelihood:  P(DIW) =~ exp(-BmE, (W)
Evidence: P(D) > 1 7

z2(p" "

where  P(D)= [ dVT/P(D‘VT/)P(W)

The normalization constant z(f) plays a role in the evaluation
of prediction errors (has the brain acquired a good model of the
world?)



Generalization Ability

Consider a new point § not part of the training
data D={&',&%,..,&E"}. What is the likelihood of
this test point?

PED)= [dw P(E\W)P(W\D)

)
y é“))

S

with: P(E‘W) = %ﬁ)exp(

- - 1 -
and: P(W|D)=p, (W)= - p,(W)exp

m




Generalization Ability

P(E|D) = [ dW P(EW)P(W|D) =

Z([J’)Z de pO(W)exp

/SSE(W ") )

Where ™" = E : the test point appears as if
it had been added to the training set. Thus:

Zm+1

P(E|D) =
(EID) 2Pz,




Generalization Error

The generalization error is defined through
the In of the likelihood of the test point &:

_ 7 1l 7z '
P(EID) = m+l — m+l
(§|D) B ) £ ﬁ_ln 7 1nz(/3)_

For large m, the difference between (In Z ) and
(In Z_)can be approximated by a derivative with
respect to m. Then (In Z) is averaged over all
possible data sets of size m, to obtain:




Learning vs Generalization

Two thermodynamic derivatives:

| R,

E = —;%«lnzm»l)



Learning vs Generalization

cba b bs

|
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Ll

| N




Information Gain

P(W‘é) - distribution induced

P(W) = p,(W) : prior distribution by example &

The entropy difference AH =H, ;) - <<H p(W§)>>P@

can be shown to be equal to the mutual information

between the {W space and the {%’} space.
*

the brain the world



Appendix.1

Require that the minimization of the learning error:

E, (W)=Y EW|E")

guarantees the maximization of the likelihood:

Low)=] [PE W)

—

Given a training set (51,52 ..... 5’”) , these two
functions need to be related:

£(7)- {7




Appendix.2

Take a derivative on both sides with respect to
one of the points in the training set, S;:

aL(D
JE,

W) _ r(phv)—1 &P(EJ‘W) _

This leads to: _




Appendix.3

While the left-hand side of the equation depends
on the full training set (E g, E" ) the right-hand
side depends only on &’. The only way for this

equality to hold for all values of (&'.&"....£") is for
both sides to be actually independent of the data,
and thus equal to a constant:

| oP(EW)

PE|W) o,
aE(Wéj)
GE.




Appendix.4

The equation

leads to P(gj‘W) x eXP(‘ﬁE(W 5]))
The normalized prol'i)ability distribution is:
P(S‘W) = ?ﬁ)exp(—ﬁE(W 5))

with 2(8)= [ d& exp(-pE(WE))

Since the equation that determines P(é\W) is first

order, there is only one constant of integration: p.
For >0, E minima will correspond to P maxima.




