

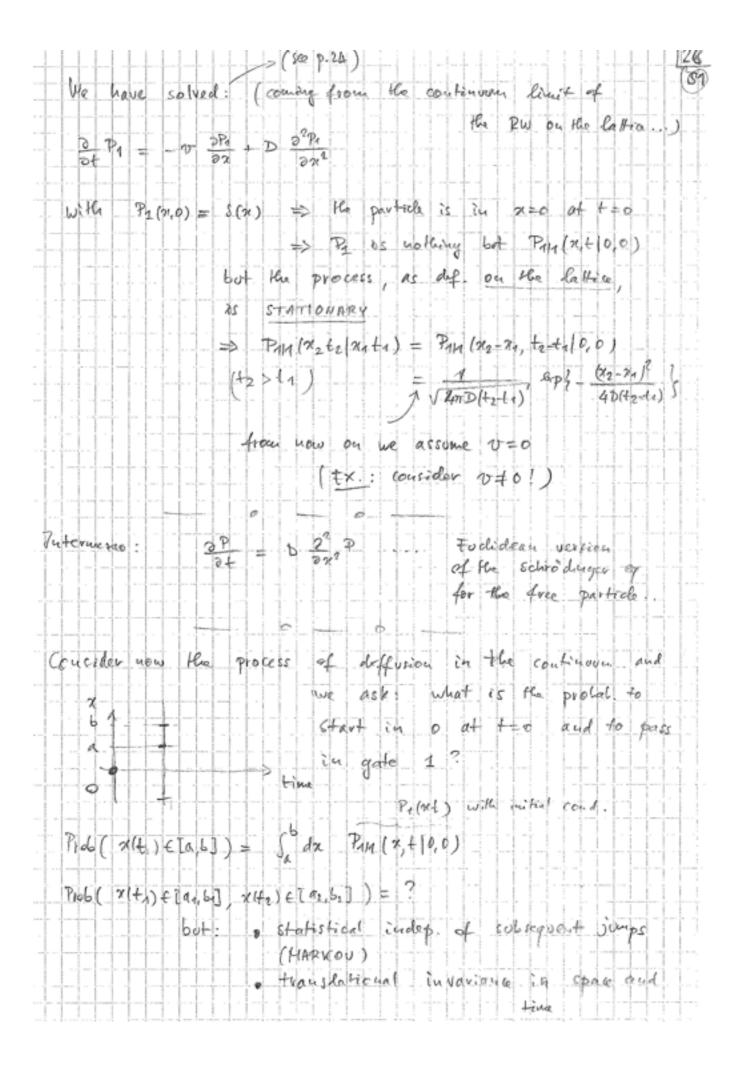
2584-9

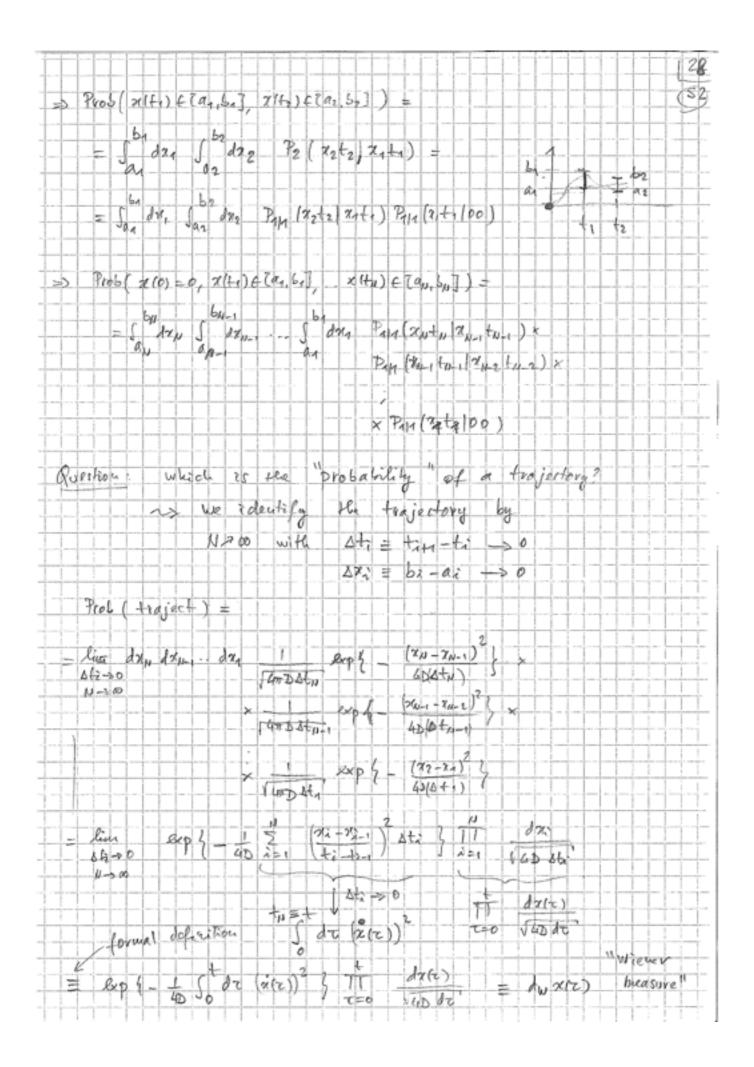
Spring College on the Physics of Complex Systems

26 May - 20 June, 2014

Stochastic processes and applications Lectures 4 and 5

Andrea Gambassi SISSA and INFN Italy





From the probabilistic interpretation follows that

S = 0 S =

the the probability of ending somewhen starting from 2001=0 is 1.

(the measure over this set of femilian is collect unconditional or full or absolute missioner when in

Brownian Hotion & Wiener Internal

time evalution, H=Ho+V

real

U(7) = exp{-i #+ }

Fizymman - kac formula qH=q' $c^{2}\frac{S}{h}$: $q^{1}|UH|(p)=K|t,q',q')=\int \Phi q e^{2\frac{S}{h}}$

group UWidary

Solg = "sum over paths"

he houristic souse

imagana vy

$$t = -i\tau$$
 $U(\tau) = \exp\left\{-\frac{H}{H}\tau\right\}$

with positive spectrum

Semigroup

$$| = \langle q^{1}(\lambda t \tau)|q \rangle \qquad q(\tau) = q^{1} \qquad - S \epsilon / \hbar$$

$$| = k(\tau, q^{1}, q) = \int \partial q \qquad e^{-S \epsilon / \hbar}$$

$$| q \rangle = q$$

SE = 50 de [1 mg2 + V/q)]

L Fulledien action (mano nothing from 017

Where the metric through to the first throught

Sold = sum over paths.,

imathematically founded.

Probabilistic interpretation,

Brownian motion.

The conditional W.m. is defined on the set of portes with fixed Endparents:

$$\int dw x(\tau) = \int dx_{t} \int dw x(\tau)$$

$$x(0) = 0$$

$$x(1) = x_{t}$$

: Moteover, the devicus property:

$$\int_{X(0)=X_0}^{X(0)=X_0} dx^1 = \int_{x_0}^{x_0} dx^1$$

Theorem (Wiener): The set of dissoutiveous as well as the set of differentiable functions has zero Wiener housene

Heorytic:
$$\langle x^2 \rangle = \int_{-\infty}^{\infty} dx \ x^2 \ ((x,t)) = \frac{1}{\sqrt{\omega + Dt}} \int_{-\infty}^{\infty} dx \ x^2 \ e^{-\frac{x^2}{4Dt}} (4Dt)$$

$$= 4Dt \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dy \ y^2 e^{-\frac{x^2}{4Dt}}$$

=) the shift during a period of time that typically:

=> the speed of the Economican particle: v= = + = 100 for + >0.

On the other hand: \(\overline{\pi}(4) \rightarrow \) for + >0 \(\overline{\pi} \) typical paths are continuous.

As a consequence: in du has to be properly understood vin

(Soviething about frank! divergen! - Droffe!

So for: Wiener path integral <> Euclidean parts integral for the 8

? External potential?

Consider a Evolution motion in a medium where the particle ean be annihilated with a time and space dependent rate V(x,t)>0 space visit time.

⇒ in the same of a fixed particle with dison-dependent probability at them t solvefiles:

$$P_{S}(t+\Delta t) = P_{S}(t) - \Delta t V(t) P_{S}(t)$$

$$= \sum_{c \in S} \frac{d P_{S}(t)}{c!t} = -V(t) P_{S}(t) \implies P_{S}(t) = P_{S}(t_{0}) e^{-\int_{t_{0}}^{t} ds \ V(s)}$$

Now "follow" the Brewnson particle along its trojectory $x(\tau)$ \Rightarrow the probability that at time t it is still alove is given by: $\mathbb{P}[x(\tau)] = \exp\{-\int_0^t d\tau \ V(x(\tau), \tau)\}$

so that, taking into account the probability of the goven path

$$W(x_{t},t|x_{0},0) = \int_{x(0)=x_{0}}^{x(t)} du x(t) \exp\left\{-\int_{0}^{t} d\tau \ V(x(t),\tau)\right\}$$

from the probability

3

Taking who account the definition of In it is easy so recycle the and ticked probability as the Fullidean propagator in an external potential.

Obs: if Vis bounded from below (say, >0) => W exists in unthoughted scare.

$$M(\lambda^{+}, + | x^{o}, 0) = \begin{cases} \lambda(a) = x^{o} \\ \lambda(s) = x^{+} \end{cases} = \begin{cases} \lambda(a) = x^{o} \\ - \lambda(a) = x^{-} \end{cases}$$

$$(3434)$$

Sortisfies the 10-tolled Block equation (diffuence equations with pokution)

note that this does not have the form of a knowners-troyer

 $\frac{3f}{3M} = \sqrt{\frac{3x_1^f}{3x^m}} - \Lambda(\lambda^f)M$

(4+1) (the rhs is not the disrogence of a corner open is not conserved

 $\alpha wl \qquad W(x_1, t \to 0 \mid x_0, a) = f(x_1 - x_0)$

Twis suid to be the foundament schotian or foreen's function as the eq.]

Idea: We know the eq. satisfied by W(V=0)

(diffusion!) => express W(V=0) in terms of W(V=0).

Obs:

(1)
$$\int_{-\infty}^{\infty} d^{3}x_{5} \quad W(\gamma_{+}, t | x_{5}, s) \ W(\gamma_{5}, s | x_{0}, o) = W(x_{t}, t | x_{e}, o)$$

(Ex) prove it; this is obvious for V=0

(ii) for t-0 (***) reduces to the conditional Winner monetone (***). So that the condition (4*). Sollows immediately.

(221) (Frice) =
$$1 - \int_0^t d\tau \ V(x(\tau)) = \int_0^{\tau} ds \ V(x(s))$$

Jusciting this equation in the (**):

$$W(x_{t},t|x_{0},0) = W_{0}(x_{t},t|x_{0},0) - \int d_{W}x(\tau) \int_{0}^{t} d\tau \ V(x(\tau)) \in V(x(\tau)) = V(x(\tau)) + V(x(\tau)) = V(x(\tau)) + V$$

$$\int_{|\nabla t| = |\nabla t|}^{|\nabla t| = |\nabla t|} dw \, \gamma(z) \left(\int_{0}^{t} dz' \right) V(\chi(z')) \, e^{-\int_{0}^{t} ds} \, V(\chi(z)) \right) = \\
= \int_{0}^{t} dz' \left[\int_{|\nabla t| = |\nabla t|}^{|\nabla t| = |\nabla t|} \int_{|\nabla t| = |\nabla t|}^{|\nabla t| = |\nabla t|} \int_{|\nabla t| = |\nabla t|}^{|\nabla t|} \int_{|\nabla t| = |\nabla t|}^{|\nabla t| = |\nabla t|} \int_{|\nabla t| = |\nabla t|}^{|\nabla t|} \int_{|\nabla t| = |\nabla t|}^$$

Thus:

$$W(x_{t},t \mid x_{0},0) = W_{0}(x_{t},t \mid x_{0},0) - \int_{0}^{t} d\tau' \int_{0}^{t} dx_{t} W_{0}(x_{t},t \mid x_{0},t') V(x_{t}',t' \mid x_{0},0)$$

$$+ \log_{2} \operatorname{Satisfy} b_{y} \operatorname{sucficetion} the abflusion$$

$$(D_{0}^{x_{0}})^{x_{0}} = \sum_{k=1}^{\infty} \operatorname{sup}_{k} (x_{k},t \mid x_{0},0) = \frac{1}{\sqrt{4\pi D t}} \operatorname{exp}_{k} \left\{ -\frac{1}{4D} \left(\frac{x_{k}-x_{0}}{t} \right)^{2} \right\}$$

$$\partial_{t} W_{0} = D \partial_{x_{k}}^{x_{0}} W_{0}$$

Somming UP:

$$W(x_{i},+|x_{0},0) = \int_{x_{0}i-x_{0}}^{x_{i}(i)=x_{i}} dw \ x(x) = \int_{x_{0}i-x_{0}}^{x_{0}i-x_{0}} dw \ x(x) = \frac{1}{2} \int_{x_{0}i-x_{0}}^{x_{0}i-x_{0}} dx = \frac{1}{2} \int_{x_{0}i-x_{0}}^{x_{0}i-x_{0}} dx$$

where:
$$S_W = \int_0^t ds \left[\frac{1}{4D} \dot{x}(s) + V(x(s)) \right]$$

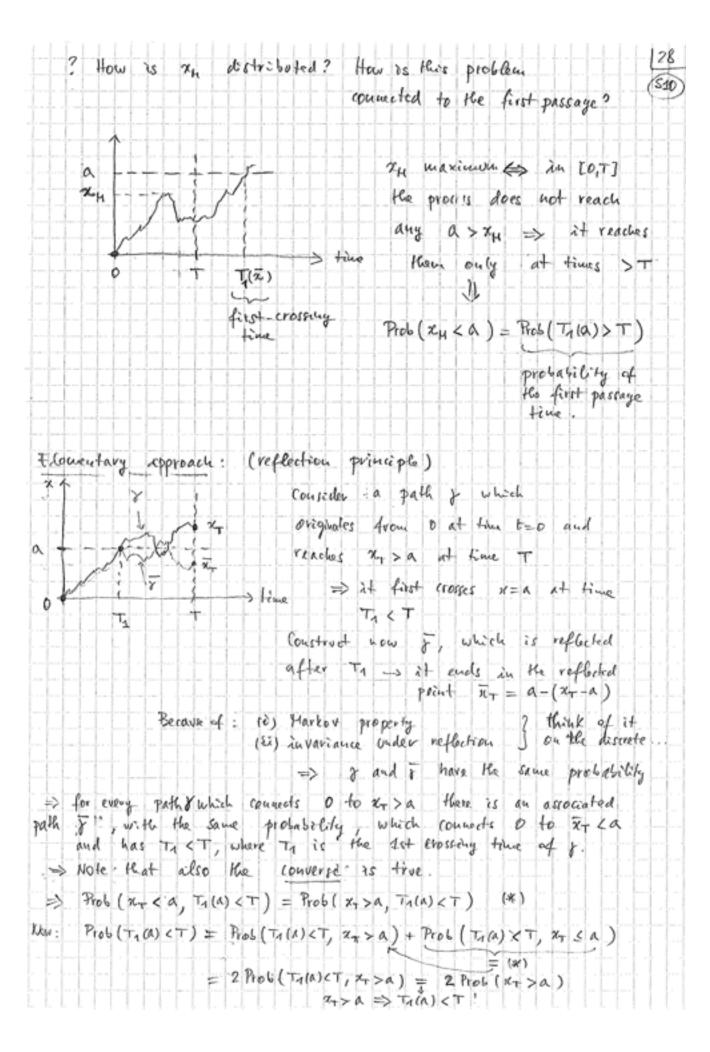
my analogous of the Euclidean adjust for system with Hamiltonian: H=Dp+V

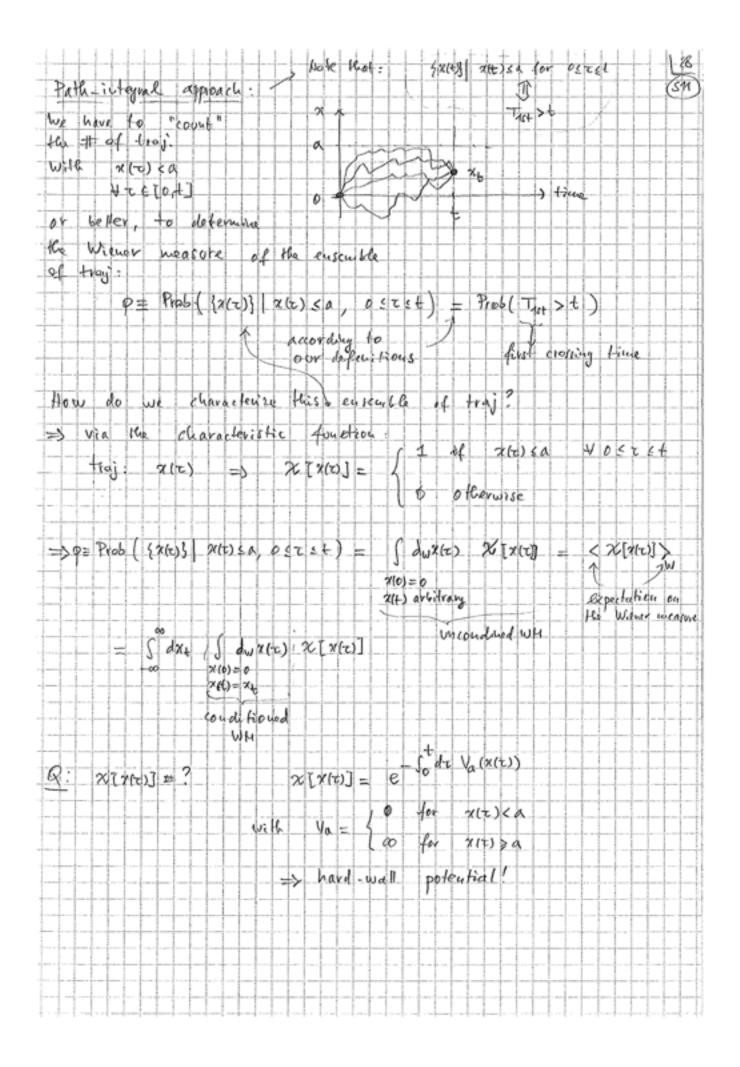
and:

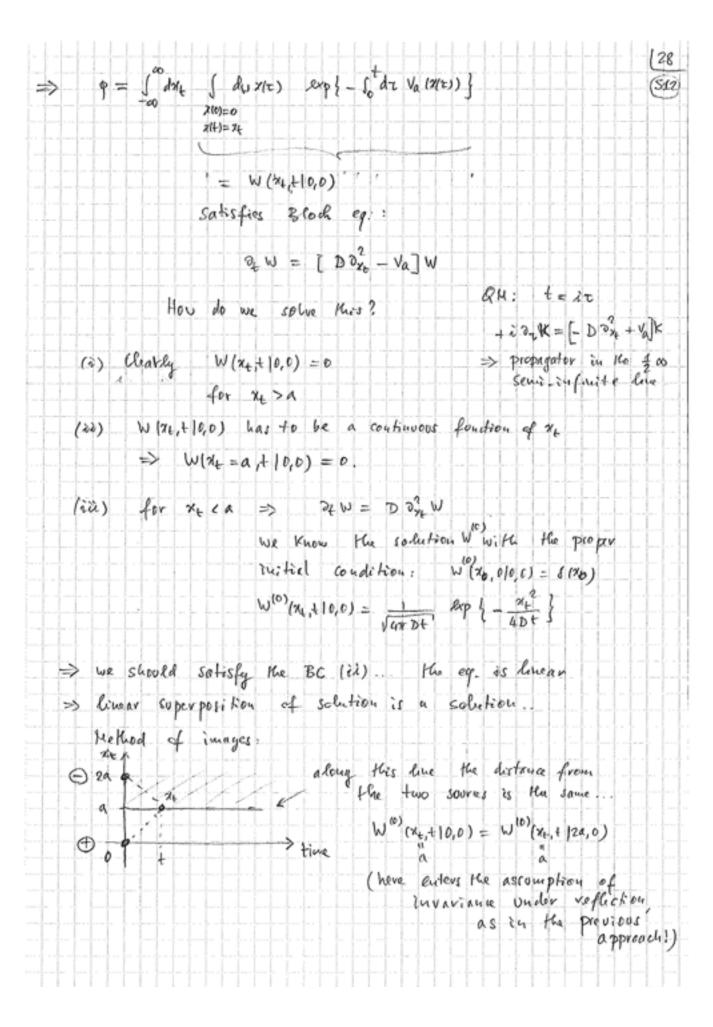
$$\mathfrak{g}^{\mathsf{f}} \, \mathbb{M} = \left[\mathfrak{D} \, \mathfrak{g}_{5}^{\mathsf{X}^{\mathsf{f}}} - \mathbb{A} \right] \mathbb{M}$$

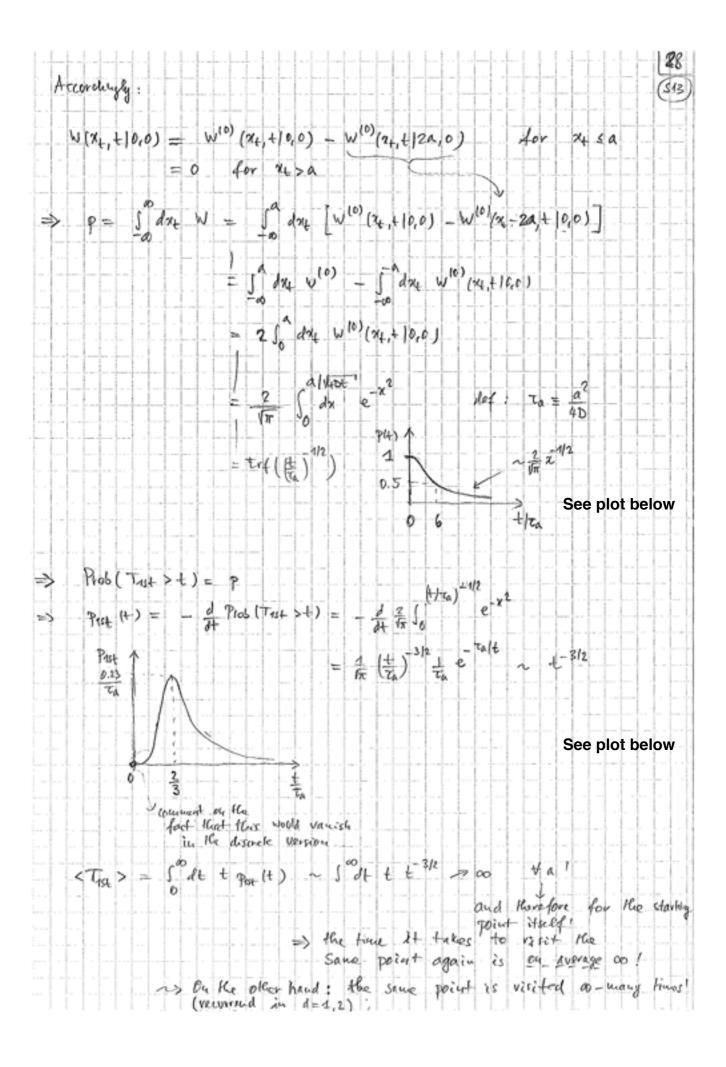
Harting.

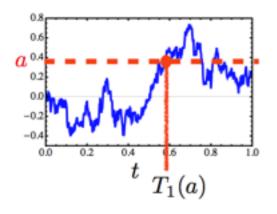


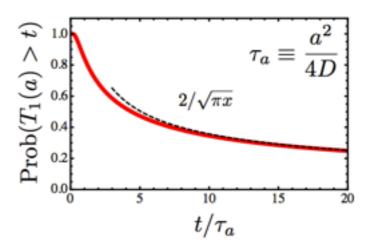




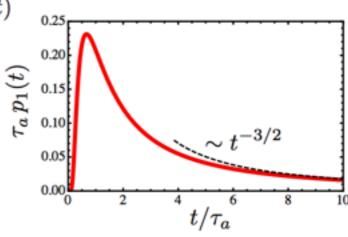




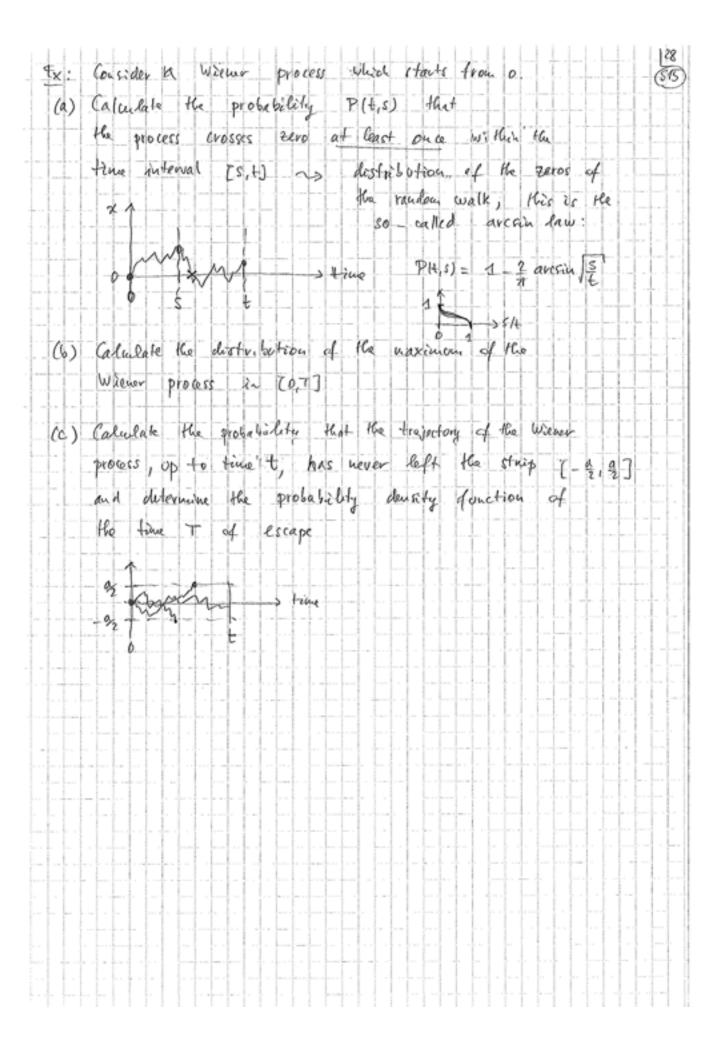




$$p_1(t) = -\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Prob}(T_1(a) > t)$$



128 Durked; this can be easily seen by considering the discrete S46) Wersiton : Starts from 0 => it can be in 0 only after an even id the walker Which is the probability prio be in a after + leven steps? => # of steps taken to the right = A of steps to the left => Pr = 2-1 (r/2 1 if the welker is in 0 at the r-th clep 20 otherwise N of vicils to the origin = even receive the foot) $\langle D_r \rangle = \sum_{r=1}^{r} p_r = diverges!$ < N > = (ex: calculate thus for a biased RW and show that it is ferrete. 0 Re persistance probability. A quantity related to Prst 1,5 P(+) = persistence probability - Prob / 20. x(E)>0 + TE(OE)? Clearly. prob. of first crossing P(+, st) - P(+) of zero in the orterval st = - Post) St dP(+) - Pig(+) (that could be inferred directly a.e. P(+) = Prob (Task > +) from the deferition!) For t large enough (t >> ta), there are cases in which PI+) ~ + + with universal exponent (2e, index of > 0 is called PERSISTENCE EXPODENT (nontrivial!) , dud actually the pure of the the Wholer process

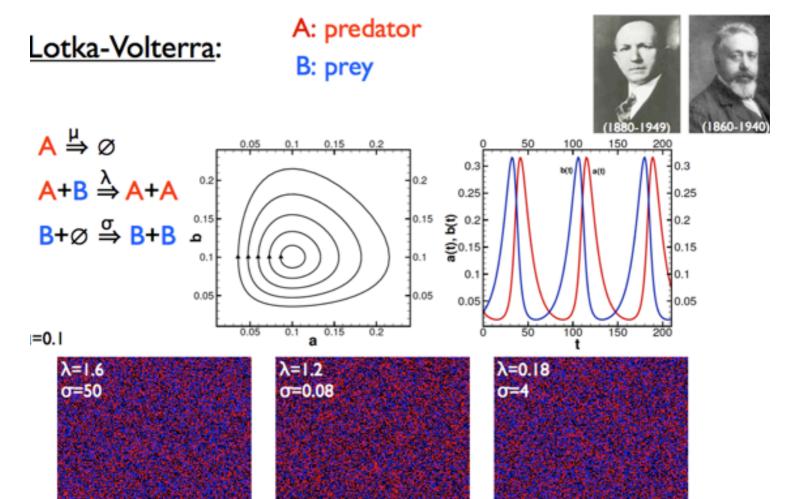


Flu	ctuations,	correlate	us qu	d field	+ theore to	ral meth	2/5	- [4
	lthough "						general	ly
Ve	W. I	have	nlways	causide	red e	(a uples	of	
8	ugle - pat	tale (3	nowuisy	dynamics)	or a	ses with	no spat	irl
8	roctore (gopulation	dynamic	5),				
Qu	the att	les hand	Comp	lex behav	ibur ef	ten inve	eves	
(1	tfusin)	spreading	front	\$ 10 pa	galion	and sp	outa woos	or
ù	diced 9	cattern do	rmation.	(1	lany - boo	(y !)		
4	in order	to dos	icribe al	e that	we we	1 to in	eludo	
	spatial	degrees	of fro	edom	so that	the typ	orcal que	rage
	quantite	es (mesos	topic Va	niables)	which o	deseribe	the h	acrescep
	be havid	or of the	system	be come	local	dousity	fields .	
	Stochas	tocity e	uters in	the	frm of	randon	by occum	y
	(i) propa	gation,	(ii) in	teraction	by a	(212) r	actions	
	Such	sto chasti	c protes	res gene	rate			
	(0)	internal	youse	(95 in	the case	of pop	ulation de	promice
	(6)	external or u	additive weltplantiv	e (> 1	i in the syprically a color class.	the case	when	thene
1	, the 6	ehaviour	of 10c	system	at lar	ge scoles	and	
	long	tones h	ight be	crocoally	affected	1 by H	ase fluci	leentikus
	espeux	elly in	those con	es on c	which the	system	beames	per.
	partic	elarly	1.2046	to per-	lor be leeus	(as i	l is the	
	C486	upon a	proachs	g chita	al poin	(!! 2}		
	or be	Cokes .	ione how	" cel	ective" o	r "юер	erative".	
	+ -				-1-1 1-1		4-1-1-1-1	

A grantitative mathematical analysis of complex spatio-temporal structures and cooperative behaviour in stochastic interacting systems with many degrees of freedom Expically relies on the study of correlation functions (Field- Hebretic methods have here doveloped and employed by I this context starting from the 40. ingredients: · usually space-time dependent fields on the continuoum (or, in some cases, on a lattree...) o dileraction a stochastic puchtion defined exther > Via a taster typeatern -> Via Jangevin egs those typical of many body physics methods: and quantum and statestical field theory. (RG etc. this allows one to construct systematic application schemes (eg. perturbative expansions lowes - level: mean-field, no fluctentud small, which weasures the strought of with respect to some parameter, presoned to be fluctuations) If one is interested in spale invariant phenomena then RG is a powerful asthol which can be naturally extended to stochastic dynamics (both equilibrium and non-equilibrium) when it is east in field - theoretical form

Here we focus on the case of dynamics defined who Master towation and how it can be mapped outo a field - theose treal problem Before toing it, lot us focus on aunther model of to pulcifican dynamics with interaction (and a surprisingly with behaviour): the lotka - Volterra model. aim: describe energing periodic oscillations in (Lotka) auto catalytec reactions (Volterra) Adriatic Fish population 2 species: A -> predator B - prey $A \stackrel{\mathsf{M}}{\rightarrow} \phi$ predator death dynamics: B B+B prey proliferation A+B & A+A predation interaction (predator reproduces only if food is available!) 2=0 - decoupling predator face exchirtion, prey proliferate. Bescribe the populations was their giverage densities A -> a(+) ; 3-> b(+) for 1 =0 they obeg a rate equation $a(t) = -\mu a(t)$ leading to expansion $b(t) = \sigma b(t)$ extinction | prolifer. 1 = 0 => competitions between the two populations. (s to quantify it we should know the probability of fonding an A-B pair at time to Taking also into account also space, say a lattice on which A and perform random welks

ipredation will occurr only of predator and prey occupy adjacent sites. the evolution egs for the mean densities have to be ancended by the ± 1 2 9(2, t) b(x, t) > terms: ensemble QULTAJES. Assuming that the populations A and B are unconslated (certainly out true) La (n,t) b(n,t) > = <a(n,t) > (b(n,t) > (nean-field) one obtains the so-affect determination L-V egs. a = 1 ab - 4a 6 = -196 +00 Ohs: KIN = X [a+6] - or ena - plab is a constant of the motion (k=0) > regular non linear population as cillations whose frequency and amplitude are determined by one fool conditions. Q: How can we describe this model beyond noan field? MC! as IT! (it gives easy access to long-time large-distance properties and scale-invariant behaviours ...)



http://www.phys.vt.edu/~tauber/