

2584-12

Spring College on the Physics of Complex Systems

26 May - 20 June, 2014

A Genome as a Toolbox: Species-centered laws and models

Marco Cosentino Lagomarsino Université Pierre et Marie Curie Paris

A Genome as a Toolbox: Species-centered laws and models

June 3rd 2014 Spring School, Trieste

Marco Cosentino Lagomarsino

Génophysique / Genomic Physics Group

CNRS "Microorganism Genomics" UMR7238 Laboratory Université Pierre et Marie Curie, Paris

0) Where we left yesterday...

1st "law", gene-family size distributions

Protein domains as coarse-grained view of proteins

"Coarse-grained" view of a protein Structure / Evolution / Function

Protein domains as coarse-grained view of genomes

100

domain families **F** vs domains **n**

domain families **F** vs domains **n**

Scaling Laws – Superfamilies & Folds

Trend is not dependent on domain taxonomy level

Functional Annotations

Data Structure – One Species

Data Structure – Many Species

column sum = total family abundance

2nd "law" scaling of functional categories

(E.van Nimwegen, 2003)

Category	Bacteria	Eukaryotes
Transcription regulation	1.87 ± 0.13	1.26 ± 0.10
Metabolism	1.01 ± 0.06	1.01 ± 0.08
Cell cycle	0.47 ± 0.08	0.79 ± 0.16
Signal transduction	1.72 ± 0.18	1.48 ± 0.39
DNA repair	0.64 ± 0.08	0.83 ± 0.31
DNA replication	0.43 ± 0.08	0.72 ± 0.23
Protein biosynthesis	0.13 ± 0.02	0.41 ± 0.15
Protein degradation	0.97 ± 0.09	0.90 ± 0.11
Ion transport	1.42 ± 0.28	1.43 ± 0.20
Catabolism	0.88 ± 0.07	0.92 ± 0.08
Carbohydrate metabolism	1.01 ± 0.11	1.36 ± 0.36
Two-component systems	2.07 ± 0.21	NA ^b
Cell communication	1.81 ± 0.19	1.58 ± 0.34
Defense response	NA ^b	3.35 ± 1.41

2nd "law" scaling of functional categories

	ζ_c	β_c
Transcription Factors	1.6 ± 0.02	0.47 ± 0.01
Translation	0.176 ± 0.003	1.46 ± 0.02
Small molecule binding	0.918 ± 0.006	0.25 ± 0.01
Nucleotide transport and metabolism	0.61 ± 0.01	0.71 ± 0.01
DNA replication/repair	0.54 ± 0.01	0.9 ± 0.01
Inorganic ion transport and metabolism	1.40 ± 0.02	0.46 ± 0.01
Redox	1.3 ± 0.01	0.52 ± 0.02
Transferases	1.09 ± 0.01	0.43 ± 0.01
Other enzymes	1.09 ± 0.01	0.64 ± 0.01
Signal transduction	1.77 ± 0.03	0.4 ± 0.01

"Spherical cow" view on metabolic and transcription networks

Metabolites

Transcriptional Regulation

Metabolism

Growth by HGT: Add pathways Add Transcription Factors 1) Partitioning of a genome into functional categories

(Monod at the genome scale)

Category counts for many genomes

Near-quadratic scaling for TFs

Tells us about regulatory complexity vs genome size

TF<Kout> = NG<Kin> = # edges, hence

TF/NG = <Kin>/<Kout> increases with NG

<Kout> decreases: functions become more specialized <Kin> increases: regulation becomes more interconnected

(likely both phenomena occur)

Hypotheses for the scaling of TFs = RECIPES

Coding limits?

Optimization of the number of expression patterns?

Constraints in genome growth?

Growth Model for Functional Categories

"Evolutionary Potentials"

(Molina and van Nimwegen, Trends Genet. 2009)

"Preferential Attachment" + Specificity $\frac{dn_c}{dn} \propto \rho_c \frac{n_c}{n}$ Observed scaling law $n_c \propto n^{\gamma_c} \rightarrow \frac{dn_c}{dn} \propto \gamma_c \frac{n_c}{n}$ Expected equality exponent - potential $\rho_c = \gamma_c \quad \forall c$

Estimate of evolutionary potentials

Note: normalization couples the growth of different functions!

$$\frac{dn_c}{dn} = \rho_c \frac{n_c}{C(n)} \quad \text{ is consistent if } C(n) = \sum_c \rho_c n_c$$

because
$$dn = \sum_{c} dn_{c}$$

Also one needs $C(n) \sim n$

(more on this tomorrow...)

Alternative Picture: Correlated Expansion of Functional Categories

Metabolism at Large Scale

Metabolic network

Transcription at Large Scale /1

E.coli network

Back to operon model: transcription factors and metabolic enzymes

Related to regulatory network size needed to control ~n targets

"Toolbox model" for large-scale transcription and metabolism

(Maslov et al PNAS 2009)

A universal and finite metabolic network exists New branch = random walk

Each new branch must be regulated by a transcription factor

 $\Delta n_{TF}/\Delta n_{met} = n_{met}/U \longrightarrow \text{quadratic scaling}$

Predictions of the Toolbox model

Should work with real-world metabolism (KEGG) *works* Power-law distribution of pathway size $P(s) \sim 1/s^3$ Same distribution for regulon size

2) Partitioning of a genome into evolutionary families (Dayhoff's Dream)

Scaling Laws for Evolutionary classes

Number of evolutionary families # classes F vs genome size n

Population distribution of evolutionary families class population cumulative histogram The existence of these scaling laws is surprising

It indicates that domain class partitioning depends on size and not on the specific evolutionary history of a genome

It's a spin overlap

$$O(g',g'') = \frac{1}{D} \sum_{i=1}^{D} \delta(\sigma_i^{g'}, \sigma_i^{g''}) \qquad \qquad \sigma_i^g = \begin{cases} 1 & \text{if domain class i is present in genome g} \\ -1 & \text{if domain class i is not present in genome g} \end{cases}$$

Phylogenetic Tree!

SHOT Prokaryote tree (gene order + shared orthologs)

Clusters of Genome Domain Families

Phylogenetic Tree!

SHOT Prokaryote tree

Clusters of Genome Domain Families

Phylogenetic Tree!

Better signal accounting for domain classes that are absent in both genomes when measuring overlap

SHOT Prokaryote tree

Clusters of Genome Domain Families

Clustering genomes by domain class overlap gives a phylogenetic Tree

Clusters of Genome Domain Families

Duplication / Innovation / Loss Model

The Ways of Genome Evolution

i. Duplication of an existing domain

i. Duplication of an existing domain

i. Duplication of an existing domain

i. Duplication of an existing domain

i. Duplication of an existing domain

Requirements

Simplest Case

$$p_O = \frac{n - f\alpha}{n + \theta} \quad p_N = \frac{\theta + f\alpha}{n + \theta} \quad \begin{array}{l} \theta > -\alpha \\ 0 < \alpha < 1 \end{array}$$

Exercise: write a simulation of this process

$$p_O = \frac{n - f\alpha}{n + \theta}$$
 $p_N = \frac{\theta + f\alpha}{n + \theta}$ $\begin{array}{c} \theta > -\alpha \\ 0 \le \alpha \le 1 \end{array}$

Plot some realizations of *f(n)* (#families) *f(j,n)* (#families with j members)

Mean-field for families

$$p_{O} = \frac{n - f\alpha}{n + \theta} \quad p_{N} = \frac{\theta + f\alpha}{n + \theta} \quad \begin{array}{l} \theta > -\alpha \\ 0 \le \alpha \le 1 \end{array}$$

$$p_{O}^{(i)} = \frac{n_{i} - \alpha}{n + \theta}$$

$$\frac{d\langle n_i \rangle}{dn} = p_O^{(i)}(\langle n_i \rangle)$$
$$\frac{d\langle f \rangle}{dn} = p_N$$

More in the afternoon...

Scaling Results

	K_i	$\frac{p_N}{p_O}$	$rac{p_N}{p_O^i}$	F(n)	F(j,n)/F(n)
$\mathbf{CRP}\alpha=0$	$\sim n$	$\sim n^{-1}$	$\sim n^{-1}$	$\sim \log(n)$	$\sim \frac{\theta}{i}$
$\operatorname{CRP}\alpha>0$	$\sim n$	$\sim n^{\alpha-1}$	$\sim n^{\alpha-1}$	$\sim n^{lpha}$	$\sim j^{-(1+lpha)}$
Qian <i>et al</i> .	$\sim n^{p_O}$	= R	$\sim n^{1-p_O}$	$\sim n$	$\sim j^{-(2+R)}$

- Agrees with Universal Scaling
- θ model fits better *F*(*n*)
- α model fits better *F*(*j*,*n*)

The Scaling of the Innovation Rate Poses a Biological Question

Data and model:

innovation is less likely than duplication with increasing size

WHY?

- Neutral or adaptive trend ?
- Small number of shapes in nature ?
- Role of effective population size ?

Other hypothesis:

- Increased difficulty of "wiring" new functions into increasingly complex interaction networks:

dF new folds require *dn* new genes for incorporation OPTIMIZATION PROBLEM *dn* is a function of *n* (the size of the problem) (exponential, polynomial ...)

The Scaling of the Innovation Rate Poses a Biological Question

Data and model: innovation is less likely than duplication with increasing size

WHY?

TOMORROW! ©

Conclusions

- Evolutionary potentials rationalize exponents for functional categories
- Toolbox model gives a proportional recipe for transcriptional regulation vs metabolism
- Duplication-innovation processes rationalize the partitioning of a typical genome into evolutionary families