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0) Where we left yesterday... 
 



1st “law”, gene-family size distributions 

(Huynen Nimwegen MBE '98) 



Protein domains  
as coarse-grained view of proteins 

“Coarse-grained” view of a protein 
Structure / Evolution / Function 



n domains 

F domain  
   families 

Protein domains  
as coarse-grained view of genomes 



Scaling Laws = Common Trends 
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n < 1500 
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gene family 
histogram 
(1998) 
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Scaling Laws = Common Trends 
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Scaling Laws = Common Trends 

Number of domains 
n < 1500 

1500   –   3000 
3000   –   6000 
6000   – 12000 
12000 – 24000 
    n > 24000 

# domain families F 
vs domains n 

domain family histogram exponent 



Scaling Laws – Superfamilies & Folds 

Superfamilies Folds 

Trend is not dependent  
on domain taxonomy level 



Functional Annotations 

 
Transcriptional  
Regulation  
 
Metabolism 
 
Translation 
 
!  



Data Structure – One Species 



Data Structure – Many Species 

column sum = total family abundance (related by phylogeny) 

row sum  
= genome “size” 



2nd “law” scaling of functional categories 
(E.van Nimwegen, 2003) 



2nd “law” scaling of functional categories 



“Spherical cow” view on 
metabolic and transcription networks 

Metabolites  
 
Transcriptional  
Regulation  
 
Metabolism  

Growth by HGT: 
Add pathways 

Add Transcription Factors 



1) Partitioning of a genome  
    into functional categories 
     (Monod at the genome scale) 
 
 



Category counts for many genomes 
(E.van Nimwegen, 2003) 

More recent Data: 



Near-quadratic scaling for TFs 

Tells us about regulatory complexity vs genome size 
 
TF<Kout> = NG<Kin> = # edges, hence 
 
TF/NG = <Kin>/<Kout>  increases with NG 
 
<Kout> decreases: functions become more specialized 
<Kin>   increases: regulation becomes more interconnected 
 

(likely both phenomena occur) 



Hypotheses for the scaling of TFs = RECIPES 

Coding limits? 
 
 
 
 
Optimization of the number of expression patterns? 
 
 
 
Constraints in genome growth?  



Growth Model for Functional Categories 



“Evolutionary Potentials” 

+           Specificity “Preferential Attachment” 

Observed scaling law !  

 

 

(Molina and  van Nimwegen, Trends Genet. 2009)  

Expected equality exponent -  potential 



Estimate of evolutionary potentials 

 

 

 



Note: normalization couples the growth  
of different functions! 

  is consistent if C(n) =
�

c

ρcnc

dn =
�

c

dnc  because 

(more on this tomorrow!) 

C(n) ∼ nAlso one needs 

dnc

dn
= ρc

nc

C(n)



Alternative Picture: Correlated Expansion of 
Functional Categories 



Metabolism at Large Scale 

Metabolic 
network  



Transcription at Large Scale /1 

E.coli network  

IN OUT 

Target Gene 

TF1 TF2 



Back to operon model: transcription factors 
and metabolic enzymes 

 
  Exponent ~two for 
  transcription factors 

Related to regulatory network size 
needed to control ~n targets 



“Toolbox model” for large-scale transcription 
and metabolism 

A universal and finite metabolic network exists 
New branch = random walk 

Each new branch must be regulated by a transcription factor 

! quadratic scaling 

(Maslov et al PNAS 2009) 

 



Predictions of the Toolbox model 
Should work with real-world metabolism (KEGG)  works 
 

Power-law distribution of pathway size P(s) ~ 1/s3 
 

Same distribution for regulon size 



2) Partitioning of a genome  
    into evolutionary families 
     (Dayhoff's Dream) 
 
 



Scaling Laws for Evolutionary classes 

Number of domains 
n < 1500 

1500   –   3000 
3000   –   6000 
6000   – 12000 
12000 – 24000 
    n > 24000 

Number of evolutionary 
families 
# classes F 
vs genome size n 

Population distribution of 
evolutionary families 
class population 
cumulative histogram 

Number of 
domains 
n < 1500 

1500   –   3000 
3000   –   6000 
6000   – 12000 
12000 – 24000 
    n > 24000 



The existence of these scaling laws is 
surprising 

 
It indicates that domain class partitioning 

depends on size   
and not on the specific  

evolutionary history of a genome 



Genome Overlap 

It’s a spin overlap 

Pair of genomes Common domain 
class usage 



Genome Clustering by Overlap 

Clustering Tree: 
(400 bacteria, now 700) 

Pair of genomes Common domain 
class usage 



Phylogenetic Tree! 

SHOT Prokaryote tree 
(gene order + shared orthologs)! Clusters of Genome Domain Families 



Phylogenetic Tree! 

SHOT Prokaryote tree Clusters of Genome Domain Families 



Phylogenetic Tree! 

SHOT Prokaryote tree Clusters of Genome Domain Families 

Better signal accounting for domain classes that are absent in both 
genomes when measuring overlap 



Clustering genomes by domain class overlap 
gives a phylogenetic Tree 

Clusters of Genome Domain Families 

Reference  
Phylogenetic tree 



Duplication / Innovation / Loss Model 

p(old) p(loss) p(new) 



Duplication / Innovation Model 



Duplication / Innovation Model 



Duplication / Innovation Model 



Duplication / Innovation Model 



Duplication / Innovation Model 



Duplication / Innovation Model 



Requirements 

NOT constant in F, n 

(uniform =  
preferential attachment) 

normalizations 
A 

B 

C 



Simplest Case 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Chinese Restaurant Process 



Exercise: write a simulation of this process 

Plot some realizations of 
f(n)  (#families) 

f(j,n) (#families with j members) 



Mean-field for families  

d�ni�
dn

= p(i)
O
(�ni�)

d�f�
dn

= pN

p(i)
O

=
ni − α

n+ θ

More in the afternoon! 



Scaling Results 

•  Agrees with Universal Scaling  
    
•      model fits better F(n) 
 
•      model fits better F(j,n)  Empirical 



 dF new folds require dn new genes for incorporation 
 OPTIMIZATION PROBLEM 

dn is a function of n  (the size of the problem) 
(exponential, polynomial ...) 

Data and model:  
innovation is less likely than duplication with increasing size 

 
WHY? 

 
 - Neutral or adaptive trend ? 
 - Small number of shapes in nature ? 
 - Role of effective population size ?  
 
 
Other hypothesis:  
 
 - Increased difficulty of “wiring” new functions into increasingly      
   complex interaction networks: 

The Scaling of the Innovation Rate Poses a 
Biological Question 



Data and model:  
innovation is less likely than duplication with increasing size 

 
WHY? 

 
TOMORROW! ! 

  

The Scaling of the Innovation Rate Poses a 
Biological Question 



Conclusions 

 

"  Evolutionary potentials rationalize exponents for functional 
categories 

 
"  Toolbox model gives a proportional recipe for transcriptional 

regulation vs metabolism 
 
"  Duplication-innovation processes rationalize the partitioning of a 

typical genome into evolutionary families  
 


