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1) Mean-field calculations with the CRP 



Duplication / Innovation Model 
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Duplication / Innovation Model 



Duplication / Innovation Model 



Requirements 

NOT constant in F, n 

(uniform =  
preferential attachment) 

normalizations 
A 

B 

C 



Simplest Case 



Chinese Restaurant Process 



Exercise: write a simulation of this process 

Plot some realizations of 
f(n)  (#families) 

f(j,n) (#families with j members) 



Mean-field for families  

d�ni�
dn

= p(i)
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Mean-field for families  

p(i)
O

=
ni − α

n+ θ

�ni� ∼ �n0,i�
n

n0



Estimating the histogram /1 

�ni� ∼ �n0,i�
n

n0
Hence (drop the <>)                if j > ni n0 > n∗ ∼ n

j

The cumulative histogram at size n is estimated by the 
ratio   #(families born before n*) / # (families) 

∼ 1− log(j) α = 0

P (ni > j) � F (n∗)

F (n)
∼ 1

jα
α �= 0



Estimating the histogram /2 

F(1,n)   F(2,n)    F(3,n)    ... 

Hierarchy of  
“rate” Equations 

(same “master equation” procedure  
as zero-range process,  

Barabasi-Albert model, etc.) 

# Classes with 
  1           2        3      members  etc. 

p(i)
O

=
ni − α

n+ θ



Estimating the histogram /2 

Ansatz 
(Large n) 

F (j, n) ≈ χjF (n)



Estimating the histogram /2 

Ansatz F (j, n) ≈ χjF (n)

P (j) =



“Qian-Gerstein” process 
Qian et al, JMB, 2001 

p(i)
O

= (1− r)
ni

n

pO = (1− r) pN = r



“Qian-Gerstein” process 
Qian et al, JMB, 2001 

Problems: 
 
Gives F(n)~n 
 
Gives exponent > 2 for F(j,n) 
 
Fit parameters by genome (no common trend detected)  



2) General facts about the CRP 



There is a lot of math (probability) 
literature about the CRP 

Paradigm of “exchangeable” distribution 
 
 
 
 

NB: independence implies  
exchangeability but not viceversa 

 
(Pitman, st Flour 2006, for the hard-boiled) 

P (n1, n2, . . . , nf ) = P (nπ(1), nπ(2), . . . , nπ(f))



Example: Polya urn 

Urn with W0 white balls and B0 black ones. Iteratively, 
 

1) Draw a ball 
 

2) Place the ball back with a balls of the same color 
 

Xi = 1 BLACK  Xi = 0 WHITE 
 
 
 
 

But the sequence                  is not iid 



De Finetti’s theorem 

Echangeable RVs are conditionally independent 
 

For Polya (binary variables), 
Mixture of Bernoulli with a “hidden variable” 

 
 
 
 
 

! in this case the density turns out to be 



De Finetti’s theorem 

More in general 
 
 
 
 

For the CRP the basic distribution can be multinomial 
and the mixing one can be computed 

 
 

Note: each class in the CRP behaves like a Polya Urn 
 



Links of CRP with! 

Ewens sampling formula 
 

Neutral theory biodiversity 
 

Stick-breaking process 
 

Bayesian clustering 
 
! 
 



CRP limit theorems for number of families F(n) 

For               mean and variance of F(n) scale as 
 
 
For                                          asymptotically follows a  
 

finite-variance distribution 
 

=> No self-averaging 
 
 

α = 0

α > 0



3) Finite-size effects 



The cutoff of F(j,n) scales linearly with size 

CRP 



The cutoff of F(j,n) scales linearly with size 

Genomes: 

Not true for the “Qian-Gerstein” process 



The CRP Has Anomalous  
Finite-size Effects 

For !>0 F(n)/n! converges to a probability distribution 
This corresponds to non-selfaveraging: StDev[F(n)]/F(n) diverges  

"

The finite-size correction to F(j,n),  
F(j,n)/F(j,") is realization-dependent 



The CRP Has Anomalous  
Finite-size Effects 

The finite-size correction to F(j,n)  
related to the realization-specific scaling of F(n) 



Comparison 

CRP 
The cutoff scales linearly 

Density diverges 
Realization-dependent “bump” 

 
Zero-range process ~ Qian-Gerstein 

The cutoff scales sublinearly 
Density may diverge or not, tunable in ZRP 

High density gives condensation  



4) Role of gene loss 



Adding Uniform Domain Loss Does Not 
Affect the Scaling 



Value of the ! parameter 

Adding Uniform Domain Loss Does Not 
Affect the Scaling 

Observed 
Exponent 



A Model with Weighted Loss has 
Interesting Scaling Behavior 



“phase diagram” of F(n) scaling 

A Model with Weighted Loss has 
Interesting Scaling Behavior 



Conclusions 

!  One can do a lot of simple estimates with this process 
 
!  Math literature gives all you need (and more!) for the basic CRP 

(but not the variants) 

!  Finite-size behavior interesting for statistical physics 

!  Gene loss affects the qualitative behavior only weakly 


