

2584-13

Spring College on the Physics of Complex Systems

26 May - 20 June, 2014

A Genome as a Toolbox: CRP and Mean-Field

Marco Cosentino Lagomarsino Université Pierre et Marie Curie Paris

A Genome as a Toolbox: CRP and Mean-Field

June 3nd 2014 (afternoon) Spring School, Trieste

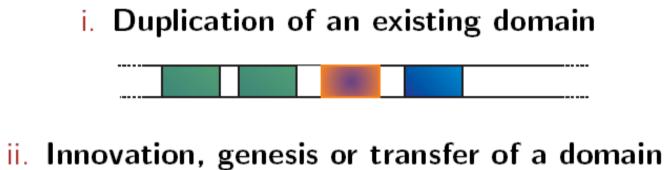
Marco Cosentino Lagomarsino

Génophysique / Genomic Physics Group

CNRS "Microorganism Genomics" UMR7238 Laboratory Université Pierre et Marie Curie, Paris

1) Mean-field calculations with the CRP

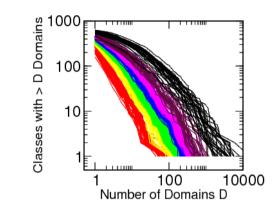
i. Duplication of an existing domain



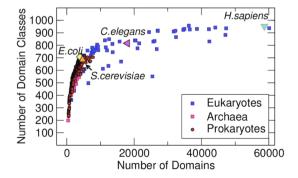
i. Duplication of an existing domain

i. Duplication of an existing domain

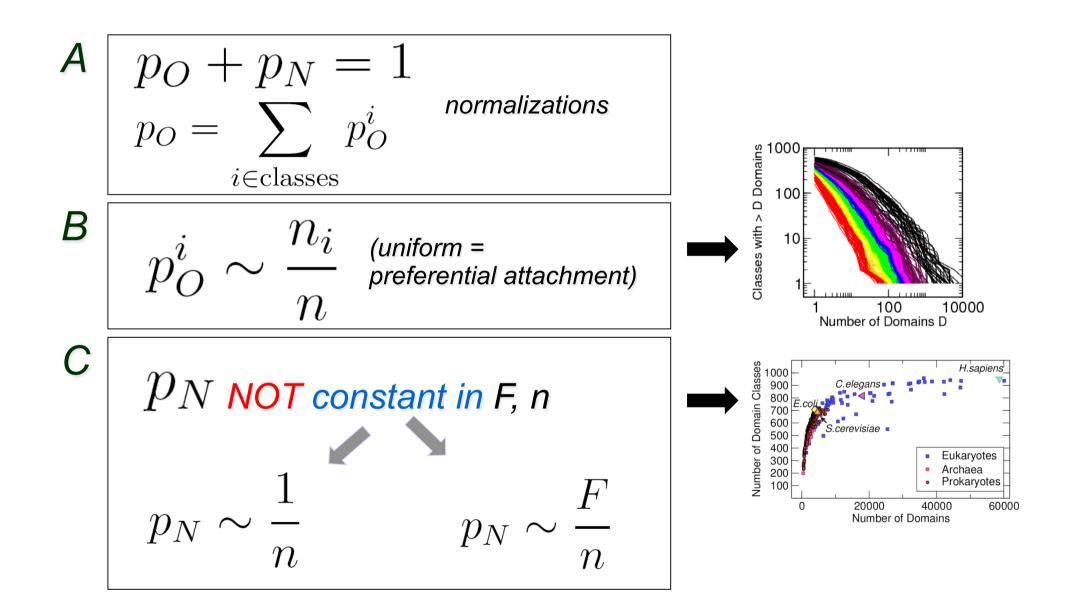
i. Duplication of an existing domain



i. Duplication of an existing domain



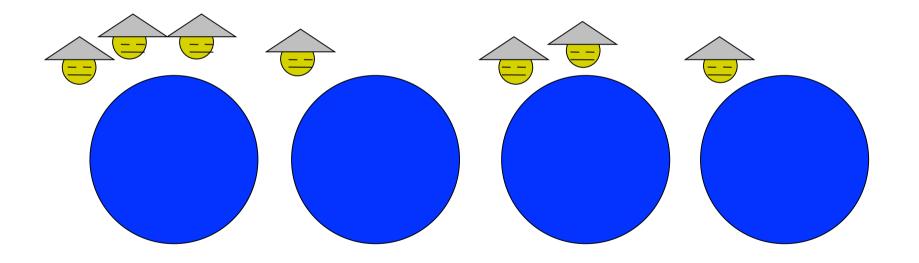
Requirements



Simplest Case

$$p_O = \frac{n - f\alpha}{n + \theta} \quad p_N = \frac{\theta + f\alpha}{n + \theta} \quad \begin{array}{l} \theta > -\alpha \\ 0 < \alpha < 1 \end{array}$$

Chinese Restaurant Process



Exercise: write a simulation of this process

$$p_O = \frac{n - f\alpha}{n + \theta}$$
 $p_N = \frac{\theta + f\alpha}{n + \theta}$ $\begin{array}{c} \theta > -\alpha \\ 0 \le \alpha \le 1 \end{array}$

Plot some realizations of *f(n)* (#families) *f(j,n)* (#families with j members)

Mean-field for families

$$p_{O} = \frac{n - f\alpha}{n + \theta} \quad p_{N} = \frac{\theta + f\alpha}{n + \theta} \quad \begin{array}{l} \theta > -\alpha \\ 0 \le \alpha \le 1 \end{array}$$

$$p_{O}^{(i)} = \frac{n_{i} - \alpha}{n + \theta}$$

$$\frac{d\langle n_i \rangle}{dn} = p_O^{(i)}(\langle n_i \rangle)$$
$$\frac{d\langle f \rangle}{dn} = p_N$$

Mean-field for families

$$p_{O} = \frac{n - f\alpha}{n + \theta} \quad p_{N} = \frac{\theta + f\alpha}{n + \theta} \quad \frac{\theta > -\alpha}{0 \le \alpha \le 1}$$

$$p_{O}^{(i)} = \frac{n_{i} - \alpha}{n + \theta}$$

$$\langle n_{i} \rangle \sim \langle n_{0,i} \rangle \frac{n}{n_{0}}$$

$$\alpha \neq 0$$

$$F(n) = \frac{1}{\alpha} \left[(\alpha + \theta) \left(\frac{n + \theta}{\theta} \right)^{\alpha} - \theta \right] \sim n^{\alpha}$$

$$\alpha = 0$$

$$F(n) = \theta \log \left(\frac{n + \theta}{\theta} \right) \sim \theta \log \frac{n}{\theta}$$

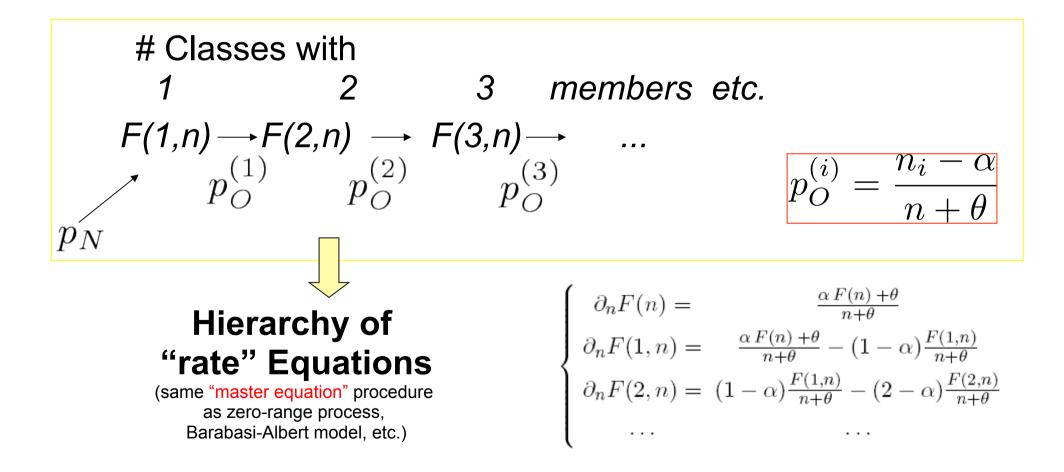
 α

$$\langle n_i \rangle \sim \langle n_{0,i} \rangle \frac{n}{n_0}$$
Hence (drop the <>) $j > n_i$ if $n_0 > n^* \sim \frac{n}{j}$

The cumulative histogram at size n is estimated by the ratio #(families born before n^*) / # (families)

$$P(n_i > j) \simeq \frac{F(n^*)}{F(n)} \sim \frac{1}{j^{\alpha}} \quad \alpha \neq 0$$
$$\sim 1 - \log(j) \quad \alpha = 0$$

$$p_O = \frac{n - f\alpha}{n + \theta}$$
 $p_N = \frac{\theta + f\alpha}{n + \theta}$ $\begin{array}{c} \theta > -\alpha \\ 0 \le \alpha \le 1 \end{array}$



Ansatz $F(j,n) \approx \chi_j F(n)$ (Large n)

$$\begin{cases} \partial_n F(n) = \frac{\alpha F(n)}{n} \\ \alpha \chi_1 = \alpha - (1 - \alpha) \chi_1 \\ \alpha \chi_2 = (1 - \alpha) \chi_1 - (2 - \alpha) \chi_2 \\ \cdots \\ \alpha \chi_j = (j - 1 - \alpha) \chi_{j-1} - (j - \alpha) \chi_j \end{cases}$$

Ansatz $F(j,n) \approx \chi_j F(n)$

$$\begin{cases} \chi_1 = \alpha \\ 2\chi_2 = (1-\alpha)\chi_1 \\ \dots \\ j\chi_j = (j-1-\alpha)\chi_{j-1} \end{cases}$$

$$\chi_j = \prod_{l=1}^{j-1} (l-\alpha) \frac{1}{\Gamma(j+1)} \alpha = \frac{\alpha}{\Gamma(1-\alpha)} (j-1)^{(1-\alpha)} \frac{\Gamma(j-1)}{\Gamma(j+1)} \frac{\Gamma(j-1)}{\Gamma(j+1)} \alpha$$

$$P(j) = \chi_j = \alpha \frac{1}{\Gamma(1-\alpha)} \left[\frac{1}{j}\right]^{1+\alpha}$$

"Qian-Gerstein" process

Qian et al, JMB, 2001

$$p_O = (1 - r)$$
$$p_O^{(i)} = (1 - r)\frac{n_i}{n}$$

$$p_N = r$$

"Qian-Gerstein" process

Qian et al, JMB, 2001

Problems:

Gives *F*(*n*)~*n*

Gives exponent > 2 for F(j,n)

Fit parameters by genome (no common trend detected)

2) General facts about the CRP

There is a lot of math (probability) literature about the CRP

Paradigm of "exchangeable" distribution

$$P(n_1, n_2, \dots, n_f) = P(n_{\pi(1)}, n_{\pi(2)}, \dots, n_{\pi(f)})$$

NB: independence implies exchangeability but not viceversa

(Pitman, st Flour 2006, for the hard-boiled)

Example: Polya urn

Urn with W_0 white balls and B_0 black ones. Iteratively,

1) Draw a ball

2) Place the ball back with a balls of the same color

Xi = 1 BLACK Xi = 0 WHITE $P(1,1,0,1) = = \frac{B_0}{B_0 + W_0} \times \frac{B_0 + a}{B_0 + W_0 + a} \times \frac{W_0}{B_0 + W_0 + 2a} \times \frac{B_0 + 2a}{B_0 + W_0 + 3a}$ $P(1,0,1,1) = \frac{B_0}{B_0 + W_0} \times \frac{W_0}{B_0 + W_0 + a} \times \frac{B_0 + a}{B_0 + W_0 + 2a} \times \frac{B_0 + 2a}{B_0 + W_0 + 3a}$

But the sequence $\{X_i, i \ge 1\}$ is not iid

De Finetti's theorem

Echangeable RVs are conditionally independent

For Polya (binary variables), Mixture of Bernoulli with a "hidden variable"

$$\mathbf{P}(X_1 = x_1, ..., X_n = x_n) = \int_0^1 p^{S_n} (1-p)^{n-S_n} dF(p)$$
$$S_n = \sum_i x_i$$

... in this case the density turns out to be

Beta
$$\left(\frac{B_0}{B_0 + W_0}, \frac{W_0}{B_0 + W_0}\right)$$

De Finetti's theorem

More in general

$$p(x_1, \dots, x_n) = \int_{\Theta} \prod_{i=1}^n p(x_i | \theta) p(\theta) d\theta$$

For the CRP the basic distribution can be multinomial and the mixing one can be computed

Note: each class in the CRP behaves like a Polya Urn

Links of CRP with...

Ewens sampling formula

Neutral theory biodiversity

Stick-breaking process

Bayesian clustering

. . .

CRP limit theorems for number of families F(n)

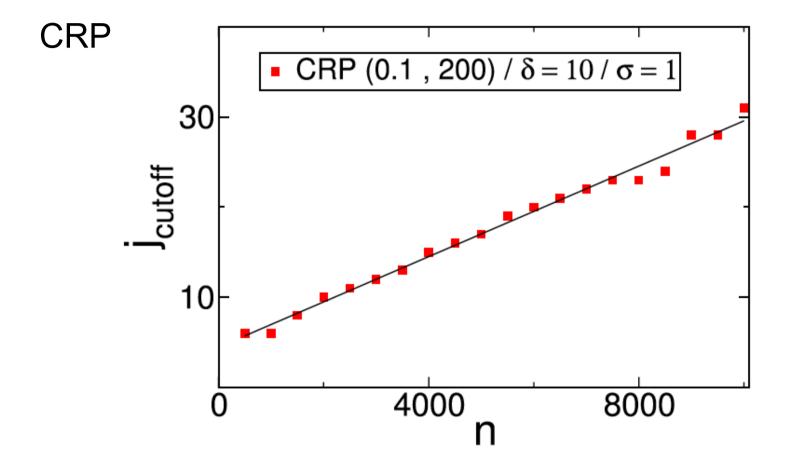
For $\alpha = 0$ mean and variance of *F*(*n*) scale as $\theta \log \frac{n}{\theta}$

For
$$\alpha > 0$$
 $s = \frac{f(n)}{n^{\alpha}}$ asymptotically follows a finite-variance distribution

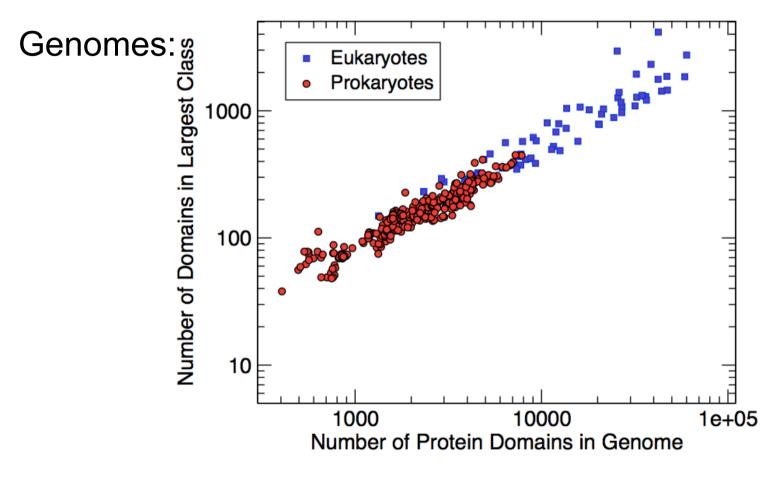
=> No self-averaging

3) Finite-size effects

The cutoff of *F*(*j*,*n*) scales *linearly* with size



The cutoff of *F*(*j*,*n*) scales *linearly* with size

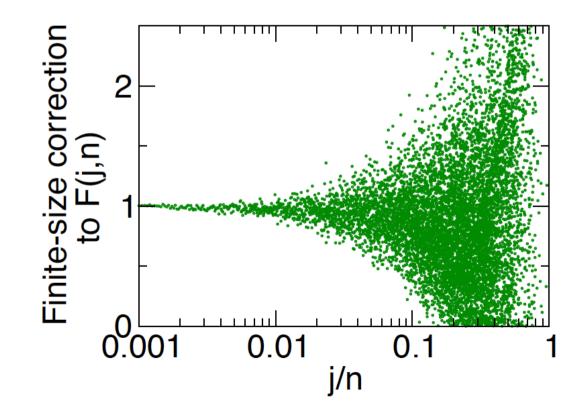


Not true for the "Qian-Gerstein" process

The CRP Has Anomalous Finite-size Effects

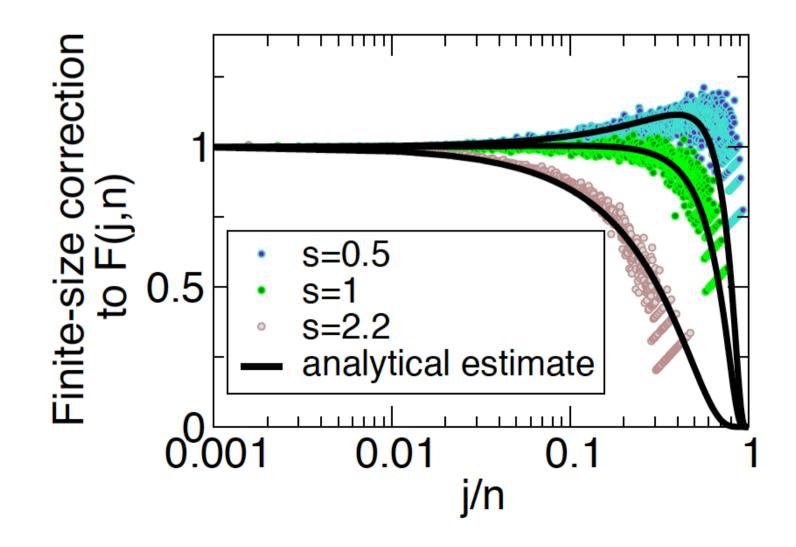
For $\alpha > 0$ $F(n)/n^{\alpha}$ converges to a probability distribution This corresponds to non-selfaveraging: StDev[F(n)]/F(n) diverges

The finite-size correction to F(j,n), $F(j,n)/F(j,\infty)$ is realization-dependent



The CRP Has Anomalous Finite-size Effects

The finite-size correction to *F*(*j*,*n*) related to the realization-specific scaling of *F*(*n*)



Comparison

CRP

The cutoff scales linearly Density diverges Realization-dependent "bump"

Zero-range process ~ Qian-Gerstein

The cutoff scales sublinearly Density may diverge or not, tunable in ZRP High density gives condensation 4) Role of gene loss

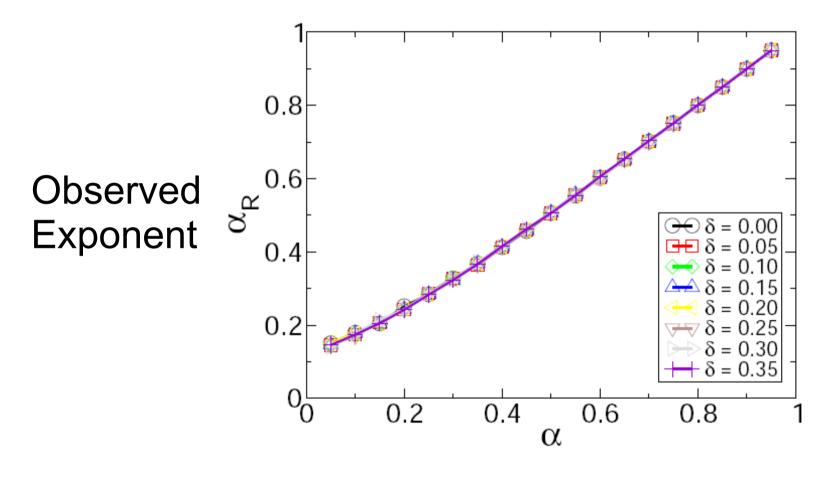
Adding Uniform Domain Loss Does Not Affect the Scaling

$$p_O = (1 - \delta) \frac{n - f\alpha}{n + \theta}$$

$$p_N = (1 - \delta) \frac{\theta + f\alpha}{n + \theta}$$

$$p_L = \delta$$
 iii.Loss of an existing domain

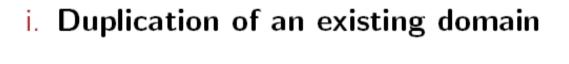
Adding Uniform Domain Loss Does Not Affect the Scaling

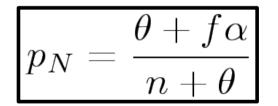


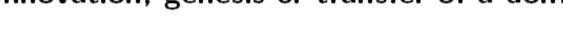
Value of the α parameter

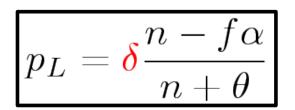
A Model with Weighted Loss has Interesting Scaling Behavior

$$p_O = (1 - \delta) \frac{n - f\alpha}{n + \theta}$$





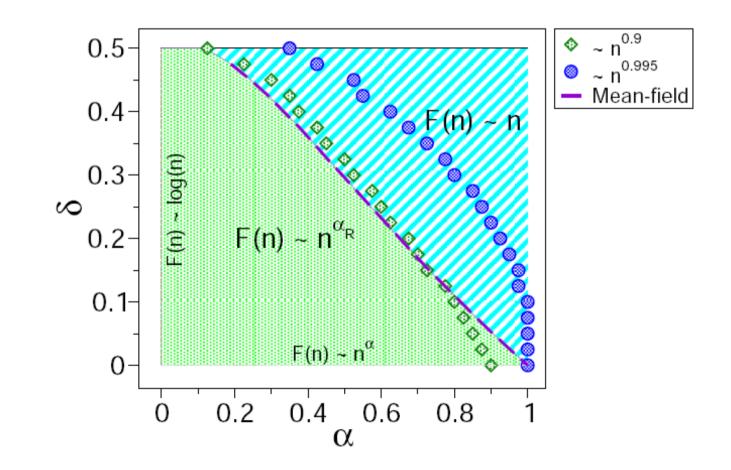






A Model with Weighted Loss has Interesting Scaling Behavior

"phase diagram" of F(n) scaling



Conclusions

- One can do a lot of simple estimates with this process
- Math literature gives all you need (and more!) for the basic CRP (but not the variants)
- Finite-size behavior interesting for statistical physics
- Gene loss affects the qualitative behavior only weakly