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Premise: why study microbes?

“Tout ce qui est vrai pour le Colibacille est vrai pour I'éléphant
(J. Monod)
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Premise: why study microbes?

Do we really care about the elephant?
Microbes are most of the earth’s biomass
Essential for ecosystems (including our guts)
Biomed (antibiotics)

Hold the key to the origins of life

.. and of course we like beer, wine, yogurt, bread ...



Premise: why microbial genomics??

The massive amount of sequenced genomes opens
new perspectives on microbial

Architecture
Evolution
Adaptation

Ecosystems



Premise: why with statistical physics???

We know how to build models

Tools are needed to deal with the data
(bioinformatics is mostly data production)

Interesting “exotic” trends, in the perspective of
complex systems theory



Number of Domains
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0) Where we left yesterday ...



Data Structure — Many Species

FUNCTION 1 FUNCTION C
x X R [] ®
family 1 | family 2 | family 3 | family 4 family F
genome 1 9 0 2 21 o)
genome 2 7 0 3 32 7
genome 3 12 2 2 23 2 .\

'OW Sum

= genome “size”

genome G 2 - 2 24 3

X \

(related by phylogeny) column sum = total family abundance



“Evolutionary Potentials”

“Preferential Attachment” + Specificity

10000 ey

e Translation

different duplication
rates

: | R
Bx® — > BEXOOXF
potentials /£ nctional categories

prediction: existence of scaling laws in functional categories

| ¢ Regulation of Transcription 4
| L4 Metabolic Processes i
1000k o0
E . * o]
L “ o® ]
L . _

A

L]

o I
100

&,

Ne ox n'e

—
(=]
T

pomains in runcuonai Lategory

PR | L L PRI
1000 10000
Number of Domains

S
S



Toolbox model as recipe for coordinated growth

® Tk2
\\‘f Z, _, ,f:' A larger genome gets shorter pathways
~J TFs control multiple targets
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CRP as minimal model for partitioning into

evolutionary families
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Loss does not affect main results
e.g. uniform loss:

I. Duplication of an existing domain

ii. Innovation, genesis or transfer of a domain

n—Jfa
= (1 —9
po = | >n+9
0+ fa
= (1 — 0
Py = ( >n+9
prL =0

iii.Loss of an existing domain

B 1§ Da |




Adding uniform loss
does not affect the scaling
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Scaling Results
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The Scaling of the Innovation Rate Poses a
Biological Question

Data and model:
innovation is less likely than duplication with increasing size

WHY?

- Neutral or adaptive trend ?
- Small number of shapes in nature ?
- Role of effective population size ?

Other hypothesis:

- Increased difficulty of “wiring” new functions into increasingly
complex interaction networks:

dF new folds require dn new genes for incorporation
OPTIMIZATION PROBLEM

dn is a function of n (the size of the problem)
(exponential, polynomial ...)




1) "HGT paradox”



HGT in Bacteria

Recent genomic studies in Bacteria suggest that
most new genes are the result of horizontal transfer
rather than duplication

Is innovation affected
by the universe of accessible genes?



Expansion-innovation model with
HGT from finite universe of families

dn.: (HGT family expansion rate)
T, .
g =N; = MN; + 7

t (family expansion with pref.
attachment = time scale)

F=~(D—F)

(HGT innovation rate)




Expansion-innovation model with finite universe

F
h:Zfrii—l—F:n—l—vD
i=1

Total growth in size per dt



Expansion-innovation model with finite universe

. d_X B dX /dn
SNS 0 = & /@
dn;  n;+7
dn n+~vyD

dF (D - F)
dn  n+~D




We are back to the same type of model...

set o = —7 0 =D

() _Mi—o

pold_ TL—|—9
O+ aF
Pnew — TL—I—Q

One gets a CRP with negative (X

Can be analyzed by mean-field and simulation
(as usual)



Number of Domain Classes

Models with finite universe
gives the best fit with data
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Exercise:

Compare a CRP with negative (X (see previous slides)
with a model with positive (X and a finite universe.

In the latter model, one has the mean-field equation:
dF - aF + 0D — F

dn~ n+60 D
Show that the mean-field dynamics of f — F/D

Is not the same in the two kinds of models



The HGT Paradox in Bacteria /data

Recent genomic studies in Bacteria suggest that
most new genes are the result of horizontal transfer
rather than duplication

Two questions
For duplications-deletions, it is natural that family
expansion rates are proportional to family size

but is this the case for HGT? (and why?)

Does HGT affect the universe of accessible genes?



Study on data
Obtain HGTs

(Lercher data set on 21 genomes)
(HGT-DB database, 959 genomes)

See where they expand and innovate in terms of
Domain families

(SUPERFAMILY)
(PFAM)

(Grassi et al 2012)



A. Family expansion rates by HGT
Are (roughly) proportional to family size

Detailed study of 21 genomes in the E.coli clade
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A. Family expansion rates by HGT
are proportional to family size

Systematic data on HGT from 959 bacterial genomes
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A. Family expansion rates by HGT
are proportional to family size

Not dependent on functional category

Measured number of
horizontal transfers

Number of transfers
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B. Novel domains acquired by horizontal transfer are
compatible with extraction from a finite universe

Detailed study of 21 genomes in the E.coli clade
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B. Novel domains acquired by horizontal transfer are
compatible with extraction from a finite universe

Systematic data on HGT from 959 bacterial genomes
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B. Novel domains acquired by horizontal transfer are
compatible with extraction from a finite universe

Systematic data on HGT from 959 bacterial genomes
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randomization = random re-assignment of horizontally transferred genes to receiving genomes



2) Joint partitioning of a genome

iInto functional and evolutionary classes
(Monod marries Dayhoff)



Data Structure — Many Species

FUNCTION 1 FUNCTION C
x X R [] ®
family 1 | family 2 | family 3 | family 4 family F
genome 1 9 0 2 21 o)
genome 2 7 0 3 32 7
genome 3 12 2 2 23 2 .\

'OW Sum

= genome “size”

genome G 2 - 2 24 3

X \

(related by phylogeny) column sum = total family abundance



New “law”: the number of evolutionary families
belonging to a functional category grows
linearly with a category-dependent coefficient

O 71— 0277 1 1 . Nucleotide transport
- — . _ and metabolism
% - L T —| = Small molecule binding
- Translation
. DNA replication,
recombination, repair
Transcription Factors

_ Inorganic ion transport
and metabolism

100—
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50 + Signal transduction
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fe=Ac+xcf



To sum up: we have counts for

1200 T T T = M
8 e cRPuc03Le=70 1 Evolutionary Classes.
§1000_— = Archaea B .
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combine CRP with functional growth models

prediction:
domain classes scaling

/N
/ C0999®® duplication

Domain classes \ o _
S999®® " innovation

% #. duplication of leaves

é}%i f\*1\3 [

FUHC tional C&I‘EQ'UF es . .

H in a regulation network
1
1 9 /

correlation: a new duplicated

\ ene must be requlated
i BB HH| Y J

prediction: exponent 2 for transcription factors




CRP with correlated family expansion

f o
i D j—1 @il — O
Po — f 9

D i im1 Wigng +

(3,5 —> creating members in family i
|s affected by the population of family j

we want couplings a;;to describe
dependencies between functional categories

*Choice™ we put couplings only
In family expansion



CRP with correlated family expansion

B af + 0
S aign;+0

PN

*Choice™ we put couplings only
In family expansion



One needs to describe
iInnovation at the function level

We set pgﬁ) = XcPN

a newly added family belongs to category ¢ with probability y..

In mean field:

Onfe = XePN

proportionality law for categories fc — AC + ch



Mean-field equations

8'n,ni — pz)
&nf — PN
8nfc — XcPN

Opne = Oy Z n; = Zanni + anfc — ZPZO + XePN

1EC 1EC 1€C



Different correlated recipes are possible

Simplest case, two functional classes:
TFs and Targets (Metabolic Enzymes)

Nmet T (Pure Toolbox Model)
U nrp
; » — Ifi isa TF andj a leaf.
1, (= 0 otherwise, TFs are
slaved by Targets)
0i,j+0ij

b (Allows for intrinsic growth of TF

= N / n, classes, at equal rates,

bJ ¢ mel Generalizable to arbitrary
exponents)



Different correlated recipes are possible

Pure Toolbox Model

Both variants give

2
nrep ~ n'met

in mean field

Allows for intrinsic growth of TF
classes, at equal rates,
Generalizable to arbitrary
exponents



Toolbox recipe

(i) We restate the toolbox

U

Nmet

A77ﬂrn,et —

Antp =1

as

Anmet — Nmet

AnTF — Nmet nT(r}et

This rescaling leaves invariant

AnTF

An’met



Toolbox recipe

(i) We impose
)
met 7 Nmet — Qfmet
. pO —
< zGZmet C(n)
TF . i "l et —afT R
Po = > icTFPo = —* C(n)
and
/ Z Nmet T4 n: — Qv
: t J
pp = =L ifi € TF
< Zi,j—l ai jn;j + 0
- n; — o o
PO = 7 : if © € met
X Zi,j:l a;jnj + 0

Metabolic families grow on their own / TFs follow



Number of Domain Families

CRP with correlated duplication agrees well
with empirical data (both variants)
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Non-trivial prediction:
domain class histograms for transcription factors

From mean-field master equation:

Targets Restricted to TFs

I+« 1+5
P(d) ~ G) P(d)rr ~ (11)

Corrected by

category exponent!!

In general, the histogram restricted to a functional category
IS expected to scale as: Pl (1) 14fe

where ﬁc — CY/CC

d



F(d,n)/F(n)
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Empirical data follow the predicted trend
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Empirical data follow the predicted trend
Valid for many categories (3. — a/CC
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CRP with evolutionary potentials — also possible

prediction:
domain classes scaling

N
/ 0999 ® duplication

Domain classes

999 ® "% innovation

’/

different duplication
rates

- S S
volutionar RO —_— F*OOT R
potentials Functional categories

prediction: existence of scaling laws in functional categories
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in a regulation network
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“W‘%\ correlation: a new duplicated
58

gene must be regulated

prediction: exponent 2 for transcription factors




CRP with evolutionary potentials
Insert evolutionary potentials in family expansion moves:
Pe(i)Ti — K

Zf:l Pe(j)1j + 0

Giving per-function rates:

PO =

c 7 Pclle — afc
Po -= ZPO —
1€C z] 1 Pe J)n +0
As usual:
af +6 c
PN = PN -— XcPN

Z 1pc nj+9



C(n)/n

CRP with evolutionary potentials

IOCnC _I_ QXC
— I C(n) ~ N

C’(n) these are the usual

Evolutionary potentials
C(n)>~>_. pin;

Model with 3 categories (met, TF ,others)
15 . , . l . ; . ; . 1,5 : | : : : : : :

Onne

1.4 Biological sizes _ 1.41

Large n behaviour
1,3 . 1.3

unyn

1,2 7 1,2

1,1+ = 1,1

1 | 1 | 1 | N | N 1 1 N 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 10 1e+06 2e+06 3e+06 4e+06 5e+06
Number of Domains Number of Domains



CRP with evolutionary potentials

Problems:

— Does not give large-n power-law

— cannot easily give exponents > 1 (as for TFs)

A common description of homology classes and
functional scaling laws in terms of evolutionary
potentials is possible but not entirely convincing



Conclusions

. Effectively finite universe for innovation

« Nontrivial predictions from joint partitioning into functional and
evolutionary classes



