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Premise: why study microbes? 
“Tout ce qui est vrai pour le Colibacille est vrai pour l'éléphant”  

(J. Monod) 



Premise: why study microbes? 

Do we really care about the elephant? 
 

Microbes are most of the earth’s biomass 
 

Essential for ecosystems (including our guts) 
 

Biomed (antibiotics) 
 

Hold the key to the origins of life 
 

! and of course we like beer, wine, yogurt, bread !  



Premise: why microbial genomics?? 

The massive amount of sequenced genomes opens  
new perspectives on microbial 

 
Architecture 

 
Evolution 

 
Adaptation 

 
Ecosystems 



Premise: why with statistical physics??? 

We know how to build models 
 

Tools are needed to deal with the data 
(bioinformatics is mostly data production) 

 
Interesting “exotic” trends, in the perspective of 

complex systems theory 



The plot that I promised 



0) Where we left yesterday ... 
 



Data Structure – Many Species 

column sum = total family abundance (related by phylogeny) 

row sum  
= genome “size” 



“Evolutionary Potentials” 

+           Specificity “Preferential Attachment” 

 

 

 



Toolbox model as recipe for coordinated growth 

A larger genome gets shorter pathways  
TFs control multiple targets 

! quadratic scaling 



CRP as minimal model for partitioning into 
evolutionary families 

NOT constant in F, n 

(uniform =  
preferential attachment) 

normalizations 
A 

B 

C 



Loss does not affect main results 
e.g. uniform loss: 



Value of the ! parameter 

Adding uniform loss  
does not affect the scaling 

Observed 
Exponent 
for F(n) 



Scaling Results 

•  Agrees with Universal Scaling  
    
•      model fits better F(n) 
 
•      model fits better F(j,n)  Empirical 



 dF new folds require dn new genes for incorporation 
 OPTIMIZATION PROBLEM 

dn is a function of n  (the size of the problem) 
(exponential, polynomial ...) 

Data and model:  
innovation is less likely than duplication with increasing size 

 
WHY? 

 
 - Neutral or adaptive trend ? 
 - Small number of shapes in nature ? 
 - Role of effective population size ?  
 
 
Other hypothesis:  
 
 - Increased difficulty of “wiring” new functions into increasingly      
   complex interaction networks: 

The Scaling of the Innovation Rate Poses a 
Biological Question 



1)  “HGT paradox”  
 
 



HGT in Bacteria 
 

Recent genomic studies in Bacteria suggest that  
most new genes are the result of horizontal transfer 

rather than duplication 
 

Is innovation affected  
by the universe of accessible genes? 



Expansion-innovation model with  
HGT from finite universe of families 

dni

dt
=

(family expansion with pref. 
attachment = time scale) 

(HGT family expansion rate) 
 

(HGT innovation rate) 
 



Expansion-innovation model with finite universe 

 
 
 
 
 
 
 

Total growth in size per dt 

ṅ =
F�

i=1

ṅi + Ḟ = n+ γD



Expansion-innovation model with finite universe 

using 
 
 
 
 
 
 
 
 

dX

dn
=

dX

dt

�
dn

dt



We are back to the same type of model! 

set 
 
 
 
 
 
 
 
 
 

One gets a CRP with negative 
 

Can be analyzed by mean-field and simulation 
 (as usual)  

p(i)old =
ni − α

n+ θ

pnew =
θ + αF

n+ θ



domain  classes F 
vs domains n domain family 

histogram n n 

counts 

Family Population Family Population 

Models with finite universe  
gives the best fit with data 



n 

Family Population 



Exercise: 

Compare a CRP with negative      (see previous slides) 
 
with a model with positive      and a finite universe.  
 
In the latter model, one has the mean-field equation: 
 
 
 
Show that the mean-field dynamics of  
 
Is not the same in the two kinds of models 



The HGT Paradox in Bacteria /data 
 

Recent genomic studies in Bacteria suggest that  
most new genes are the result of horizontal transfer 

rather than duplication 
 

Two questions 
 

For duplications-deletions, it is natural that family 
expansion rates are proportional to family size  

but is this the case for HGT? (and why?) 
 

Does HGT affect the universe of accessible genes? 



Study on data 
 

Obtain HGTs 
 

(Lercher data set on 21 genomes) 
(HGT-DB database, 959 genomes) 

 
See where they expand and innovate in terms of 

Domain families 
 

(SUPERFAMILY) 
(PFAM) 

(Grassi et al 2012) 



A. Family expansion rates by HGT  
Are (roughly) proportional to family size 

Measured number of 
horizontal transfers 

Family size 

Detailed study of 21 genomes in the E.coli clade 



A. Family expansion rates by HGT  
are proportional to family size 

Measured number of 
horizontal transfers 

Family size 

Systematic data on HGT from 959 bacterial genomes 



A. Family expansion rates by HGT  
are proportional to family size 

Measured number of 
horizontal transfers 

Family size 

Not dependent on functional category 



B. Novel domains acquired by horizontal transfer  are 
compatible with extraction from a finite universe  

Measured probability 
of horizontal transfers 
carrying new domains 

Genome size in proteins 

Detailed study of 21 genomes in the E.coli clade 



B. Novel domains acquired by horizontal transfer  are 
compatible with extraction from a finite universe  

Measured probability 
of horizontal transfers 
carrying new domains 

Genome size in proteins 

Systematic data on HGT from 959 bacterial genomes 



B. Novel domains acquired by horizontal transfer  are 
compatible with extraction from a finite universe  

Measured probability 
of horizontal transfers 
carrying new domains 

Genome size in proteins 

Systematic data on HGT from 959 bacterial genomes 

randomization = random re-assignment of horizontally transferred genes to receiving genomes 



2) Joint partitioning of a genome  
    into functional and evolutionary classes 
     (Monod marries Dayhoff) 
 
 



Data Structure – Many Species 

column sum = total family abundance (related by phylogeny) 

row sum  
= genome “size” 



New “law”: the number of evolutionary families 
belonging to a functional category grows 

linearly with a category-dependent coefficient 



To sum up: we have counts for 

Functional Categories: 
 
- Grow like Power-laws 
 
- Exponent ~two for 
  transcription factors 

Can a common model describe them ? 

Evolutionary Classes: 
 
- common behavior reproduced by 
class-expansion / innovation 



combine CRP with functional growth models 



CRP with correlated family expansion 

! creating members in family i  
      Is affected by the population of family j 

we want couplings ai,j to describe  
dependencies between functional categories 

 
*Choice* we put couplings only  

in family expansion 



CRP with correlated family expansion 

 
 

*Choice* we put couplings only  
in family expansion 



One needs to describe  
innovation at the function level 

proportionality law for categories 

We set  p(c)N = χcpN

In mean field: 

a newly added family belongs to category c with probability !c. 



Mean-field equations 



Different correlated recipes are possible 
Simplest case, two functional classes:  
TFs and Targets (Metabolic Enzymes) 

If i  is a TF and j a leaf.  
 (= 0 otherwise, TFs are 
slaved by Targets) 

(Pure Toolbox Model) 

(Allows for intrinsic growth of TF 
classes, at equal rates, 

Generalizable to arbitrary 
exponents) 



Different correlated recipes are possible 

 Pure Toolbox Model  

 Allows for intrinsic growth of TF 
classes, at equal rates, 

Generalizable to arbitrary 
exponents  

Both variants give 
 
 

in mean field 



Toolbox recipe 

(i) We restate the toolbox 

as 

This rescaling leaves invariant  
∆nTF

∆nmet



Toolbox recipe 

(ii) We impose 

and 

Metabolic families grow on their own / TFs follow 



CRP with correlated duplication agrees well 
with empirical data (both variants) 

Evolutionary Classes 
 

Functional Categories 
Power-law with exponent  
 !  ~ 1.6 for transcription factors  
[1.6 explained as finite-size effect] 



Non-trivial prediction:  
domain class histograms for transcription factors 

Restricted to TFs Targets 

From mean-field master equation: 

In general, the histogram restricted to a functional category  
is expected to scale as: 

where 

Corrected by  
category exponent!! 



Empirical data follow the predicted trend 

TFs Total 

Total 

TFs 



Empirical data follow the predicted trend 
Valid for many categories 



CRP with evolutionary potentials – also possible 



CRP with evolutionary potentials 
Insert evolutionary potentials in family expansion moves: 

Giving per-function rates: 

As usual: 



CRP with evolutionary potentials 

If C(n) ~ n  
these are the usual  

Evolutionary potentials 

Model with 3 categories (met, TF ,others) 



CRP with evolutionary potentials 

Problems: 

! Does not give large-n power-law 

! cannot easily give exponents > 1 (as for TFs) 

A common description of homology classes and 
functional scaling laws in terms of evolutionary 
potentials is possible but not entirely convincing 



Conclusions 

 
!  Effectively finite universe for innovation 

 
 
!  Nontrivial predictions from joint partitioning into functional and 

evolutionary classes 


