

2584-15

Spring College on the Physics of Complex Systems

26 May - 20 June, 2014

A Genome as a Toolbox: Cross-genome "laws" for families

Marco Cosentino Lagomarsino Université Pierre et Marie Curie Paris A Genome as a Toolbox: Cross-genome "laws" for families June 5th 2014 Spring School, Trieste

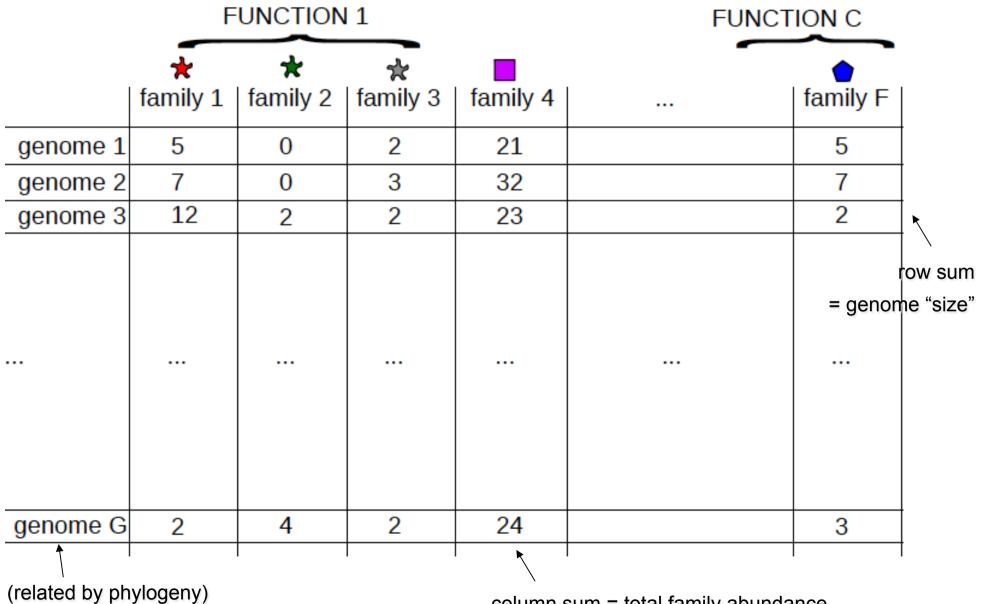
Marco Cosentino Lagomarsino

Génophysique / Genomic Physics Group

CNRS "Microorganism Genomics" UMR7238 Laboratory Université Pierre et Marie Curie, Paris

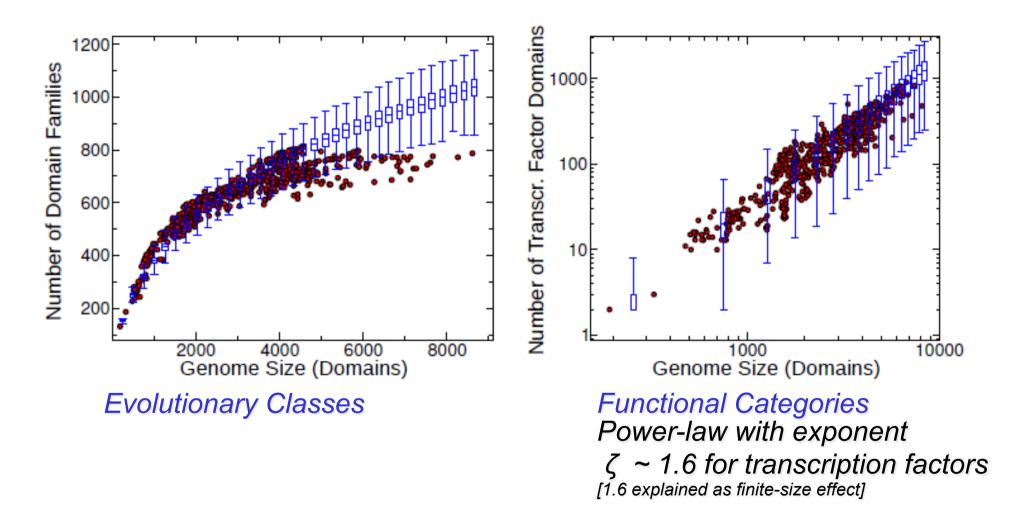
0) Where we left yesterday ...

Data Structure – Many Species

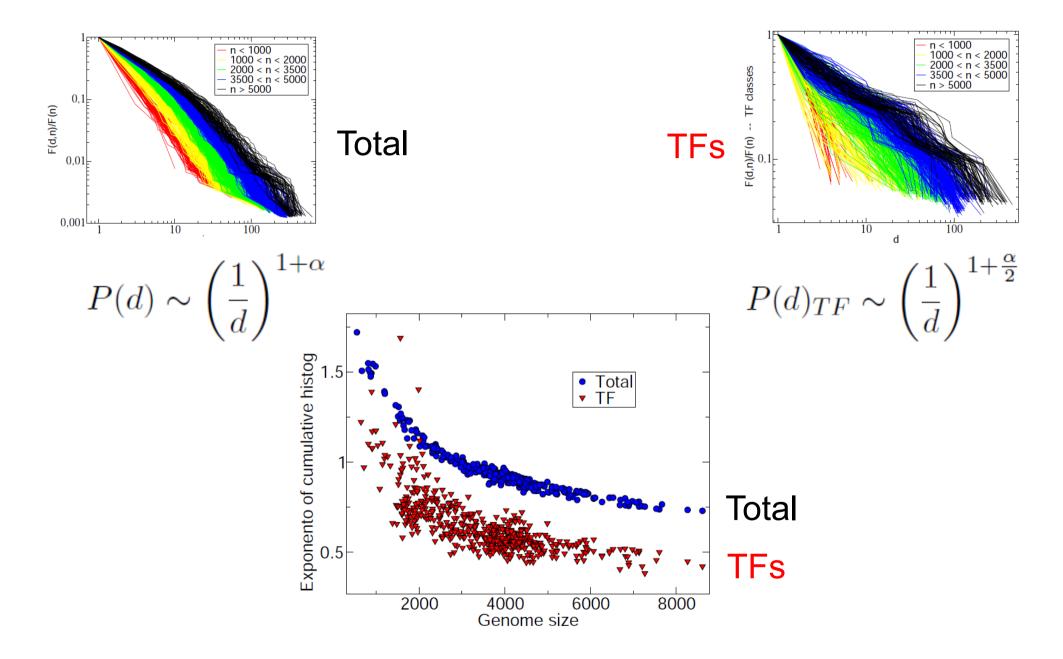


column sum = total family abundance

CRP with correlated duplication agrees well with empirical data (both variants)

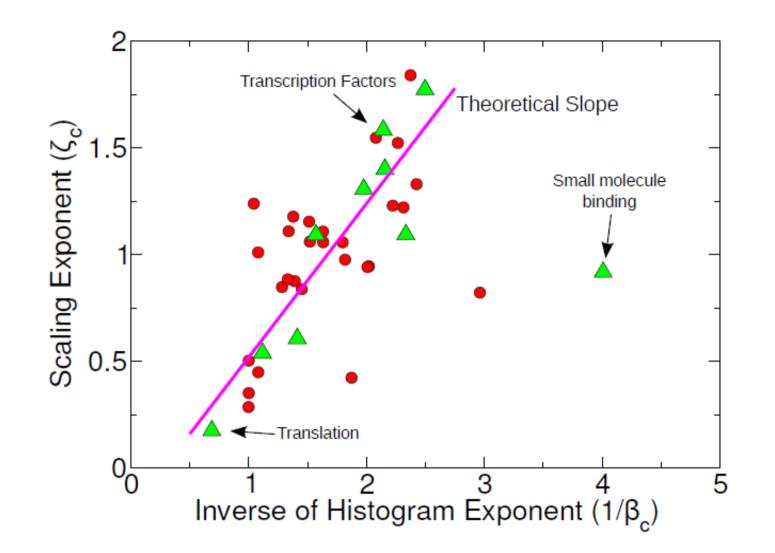


Empirical data follow the predicted trend



Empirical data follow the predicted trend

Valid for many categories $\beta_c = lpha / \zeta_c$



1) Cross-genome statistics: gene-frequency distribution, the U

Underestimated Problem: observations may depend on resolution

1) At the level of philogeny

kingdoms species clades

strains

2) At the level of homology

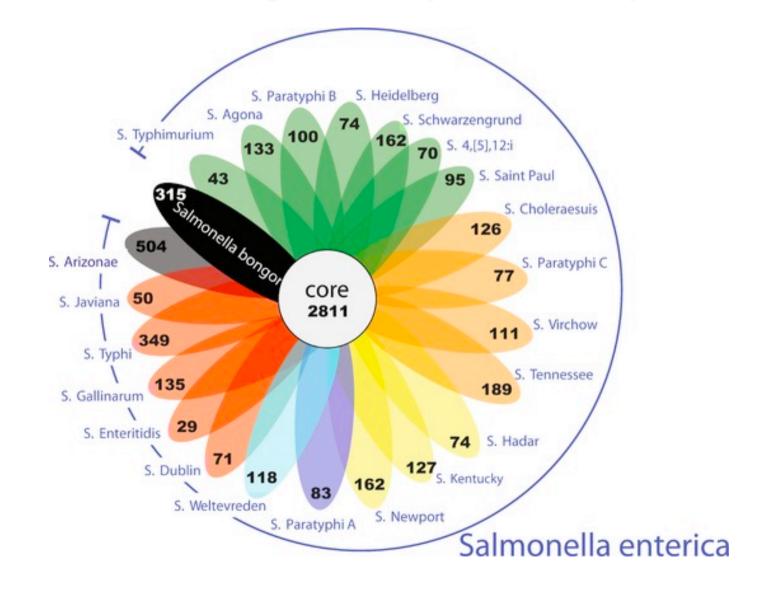
Proteins

Domains

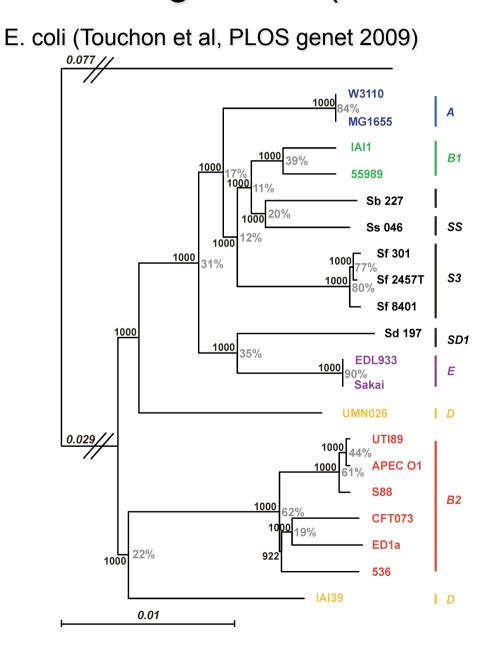
Homology criteria and thesholds

Taxonomy level

Core vs Pan genome (strain level)

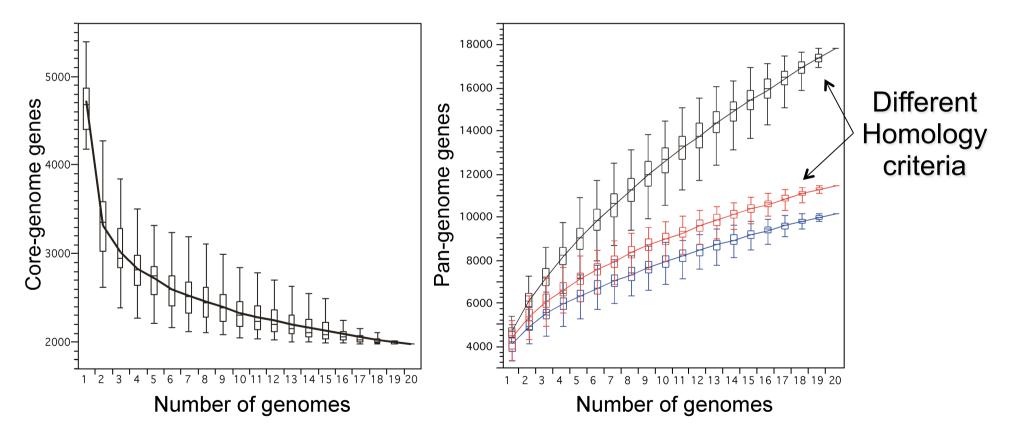


Available observations Core vs Pan genome (strain level)



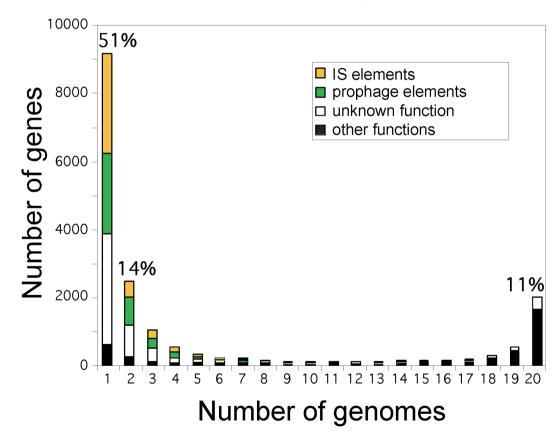
Core vs Pan genome (strain level / gene based)

E. coli (Touchon et al, PLOS genet 2009)

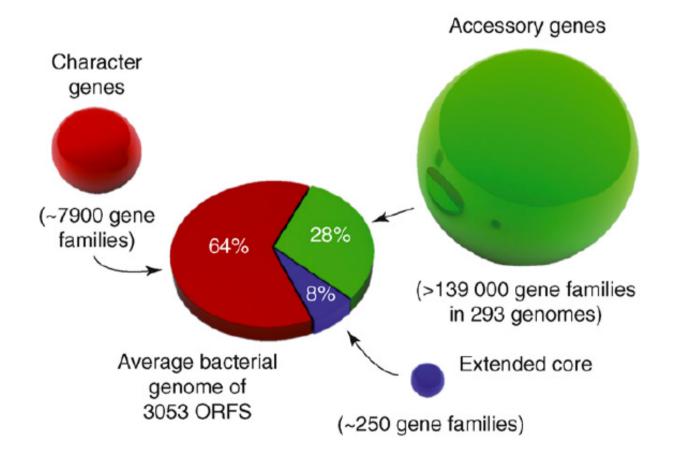


"Gene-frequency distribution"

E. coli (Touchon et al, PLOS genet 2009)

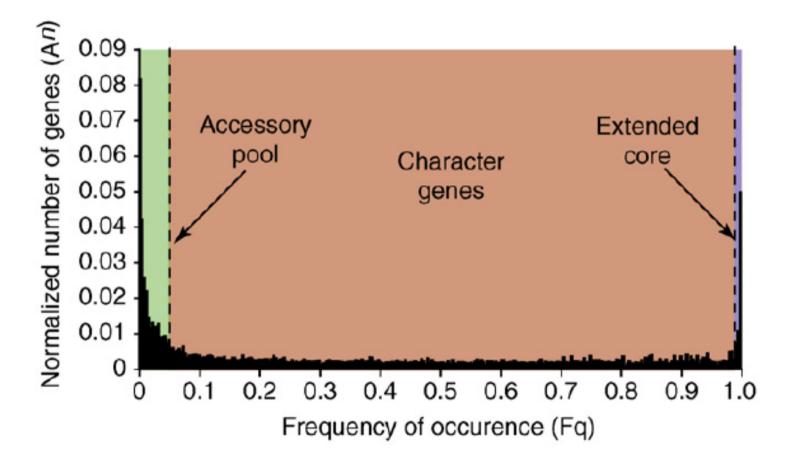


Species/gene level



~500 bacterial species (Lapierre and Gogarten TIG 2009)

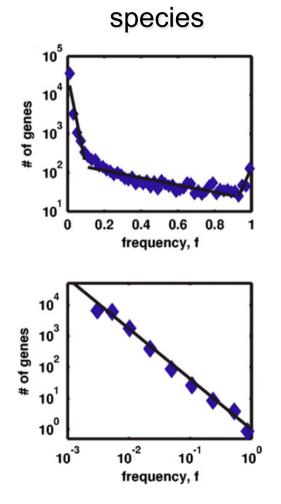
Species/gene level

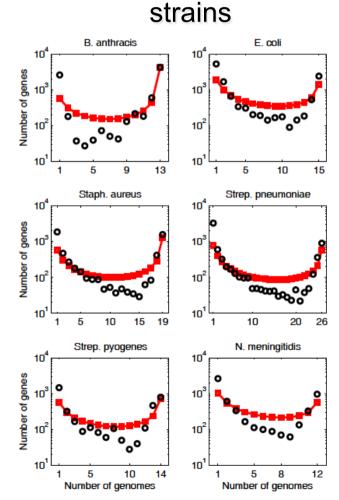


~500 bacterial species (Lapierre and Gogarten TIG 2009)

There are multiple Us!

U-shaped occurrence profile at different resolutions ("gene-frequency distribution")





(Haegeman and Weitz BMC Genomics 2012)

There are multiple Us!

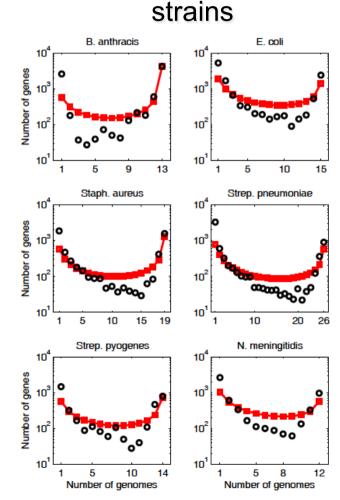
Model for strains: neutral population dynamics with HGT

N individuals = Gene presence/absence Boolean vectors of length M

Moran model [genetic drift] (Polya Urn with constant population / each addition accompanied by random removal)

+

"Horizontal transfer" = innovation



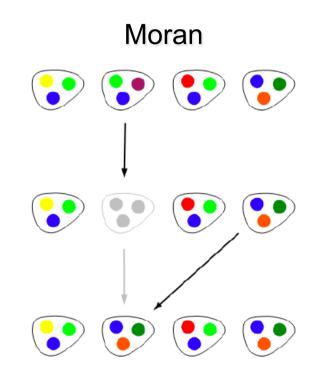
(Haegeman and Weitz BMC Genomics 2012)

N individuals (population size) = Gene presence/absence Boolean vectors of length *M* (genome size)

Moran model [genetic drift] (Polya Urn with constant population / each addition accompanied by random removal)

+

"Horizontal transfer" = innovation



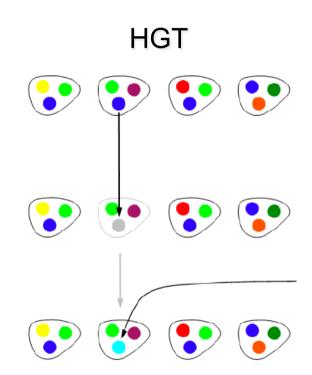
(Haegeman and Weitz BMC Genomics 2012)

N individuals (population size) = Gene presence/absence Boolean vectors of length *M* (genome size)

Moran model [genetic drift] (Polya Urn with constant population / each addition accompanied by random removal)

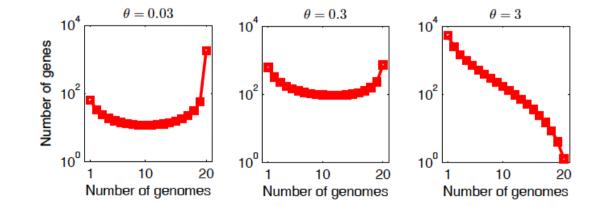
+

"Horizontal transfer" = innovation



Parameters: *N, M* reproduction rate *r* HGT rate *s*

- \Rightarrow Combine in θ = Ns/Mr
- \Rightarrow if $\theta < 1$ U-shape



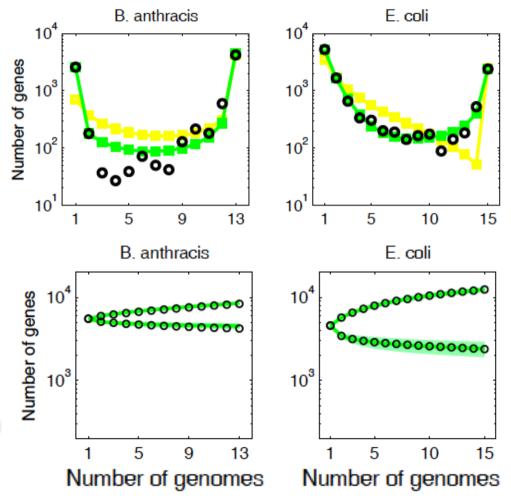
(Haegeman and Weitz BMC Genomics 2012)

Fit θ (effective HGT rate) for different clades

Fit pan-genome scaling (equivalent)

Criticism:

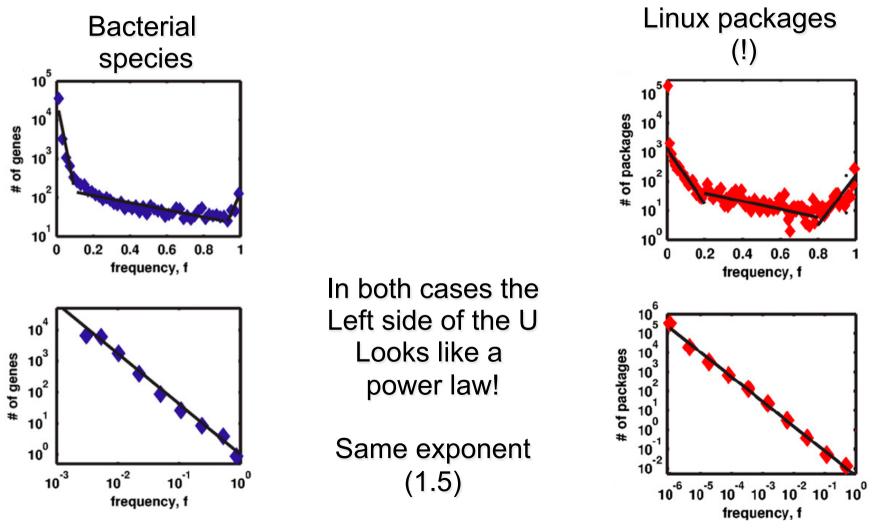
Others with similar neutral models Claim that thay can be rejected evidence for selection? (Collins&Higgs, Koonin, Baumdiecker)



(Haegeman and Weitz BMC Genomics 2012)

There are multiple Us!

Model for species: dependency networks



Idea: Occurrence = Importance

= component needed for proper functioning of other components

= High rank in *dependency network*

Dependency network

- A \rightarrow B means A depends on B for its function
- Formalized for Linux software packages
- For metabolic enzymes given by upstreamdownstream positions in pathways

Argument

The dependency network is *feedforward D* = mean out-degree

Poisson graph growth model t = size of network when a package was added

> A package at time t'>t sends link to package added at time with probability t = D/t'

It inherits (indirectly) its dependencies

Argument

Importance ~ K_{dep} (#indirect dependencies)

$$K_{dep}(t) = 1 + \int_{t+1}^{N} K_{dep}(t')D/t'$$

Implies:

$$K_{dep}(t) = (t/N)^{-D}$$

Argument

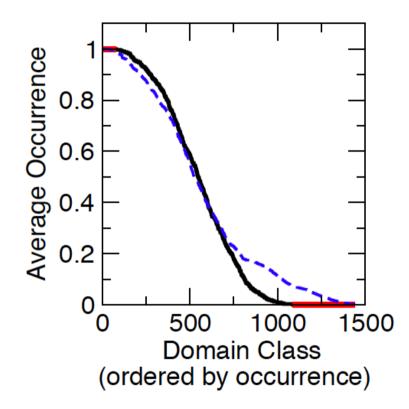
$$P(K_{dep} > k) = P((t/N)^{-D} > k)$$

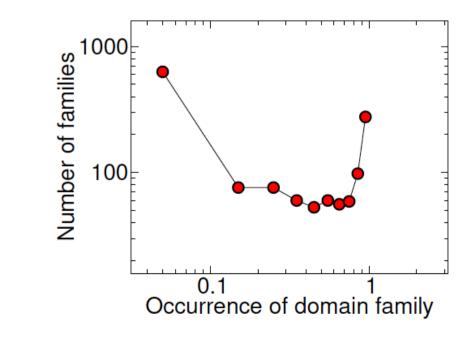
= $P(t < NK^{-1/D}) = \frac{NK^{-1/D}}{N}$

Hence

$$P(K_{dep}) \propto \frac{1}{k^{1+\frac{1}{D}}}$$

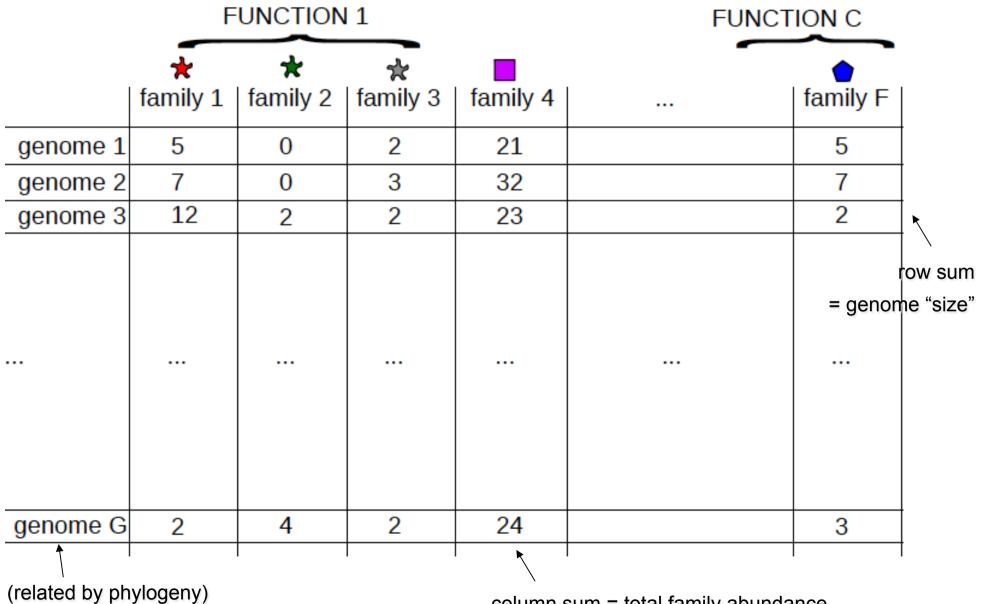
Degree can be measured: $D_{met} = 1.7;$ $D_{linux} = 2.4$ Side note: species/domain family level occurrence pattern is more like a U (much fewer families)





2) Cross-genome statistics: abundance fluctuations and HGT

Data Structure – Many Species



column sum = total family abundance

"Moves" of gene-family dynamics

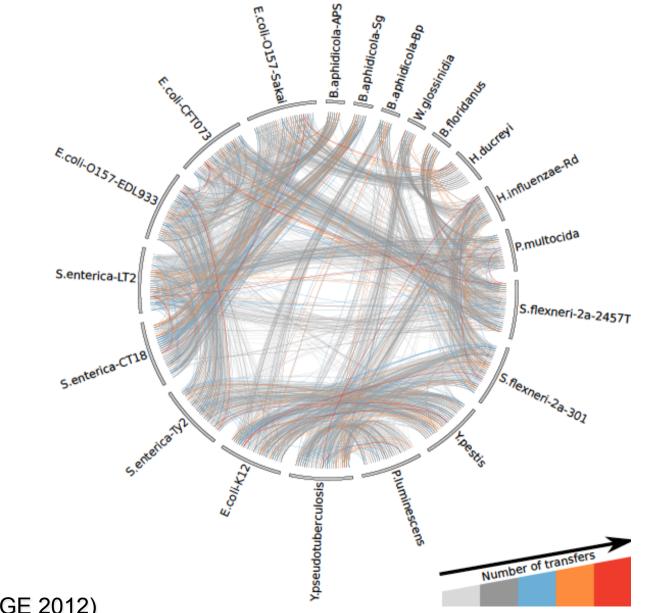
Copy-Paste

Intra species HGT + Duplication

Inter-species HGT

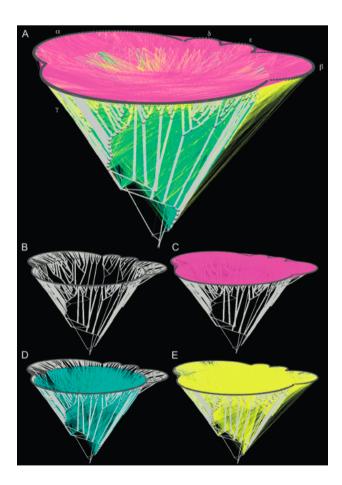
Loss

Horizontal transfer of genes is a dominant force of bacterial gene-family evolution

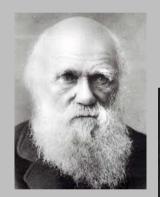


(Grassi et al MGE 2012)

A tree or a network, or both?

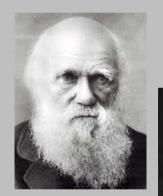


A null "collisional" model (bearded scientists)



. . .

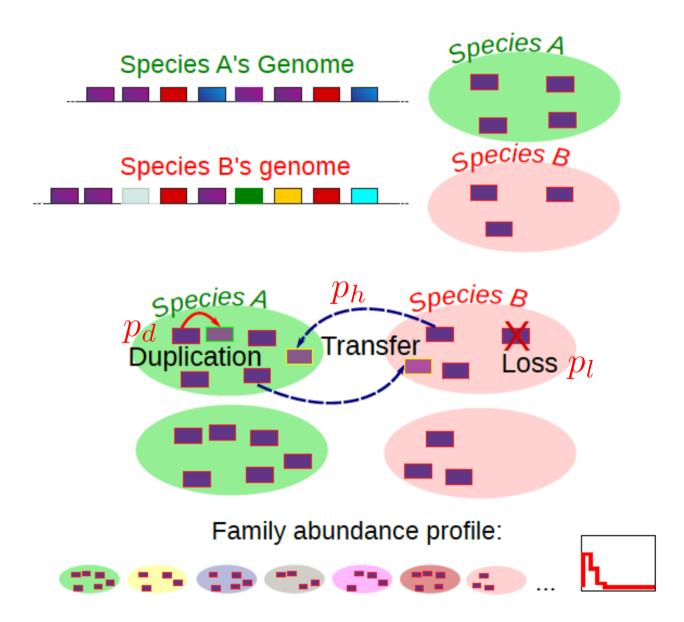
A null "collisional" model



...

Boltzmann-like "collisional" model Between *species* (no population)

Model Ingredients



Model Ingredients

$$\begin{cases} V_j(\tau+1) = V_j(\tau) + DL[V_j(\tau)] + H[V_i(\tau)] \\ V_i(\tau+1) = V_i(\tau) + DL[V_i(\tau)] + H[V_j(\tau)] \end{cases}$$

Species *i* samples species *j* for horizontal transfer, and itself for "duplication"/loss $p_d \qquad p_l$

Assumptions:

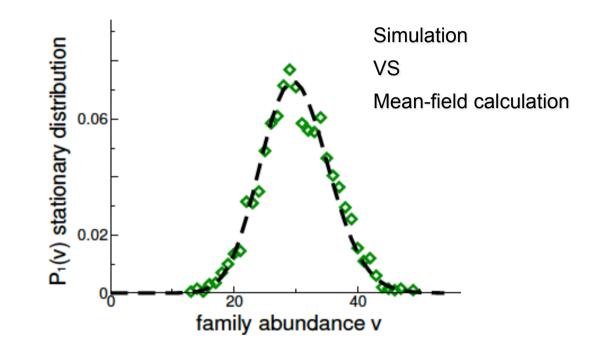
(I) Independence of families (II) *Mean* abundance conserved

$$p_d = p_l \qquad \left\langle \sum_{i=1}^N V_i(\tau) \right\rangle = \left\langle \sum_{i=1}^N V_i(0) \right\rangle$$

 $p_h +$

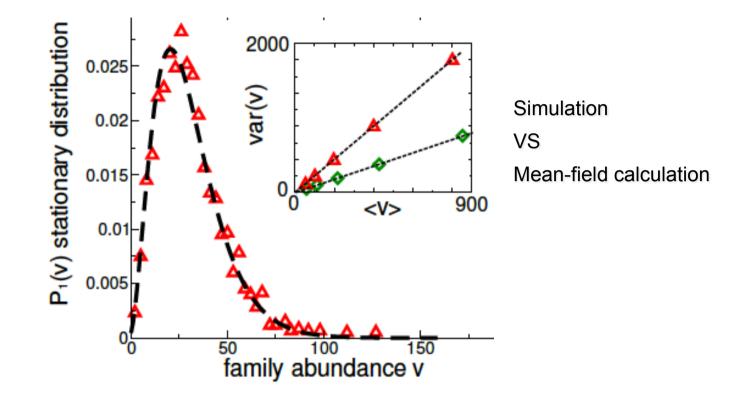
(III) What matters is steady state

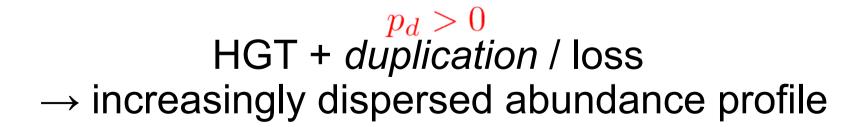
Model Predictions



HGT / loss \rightarrow Poisson abundance profile $p_d = 0$

Model Predictions





The model is tractable analytically Mean-field theory:

$$\frac{\partial f(v,t)}{\partial t} = \operatorname{Prob}(V_1 + DL[V_1] + H[V_2] = v) - f(t,v)$$
$$V_1, V_2 \sim f$$

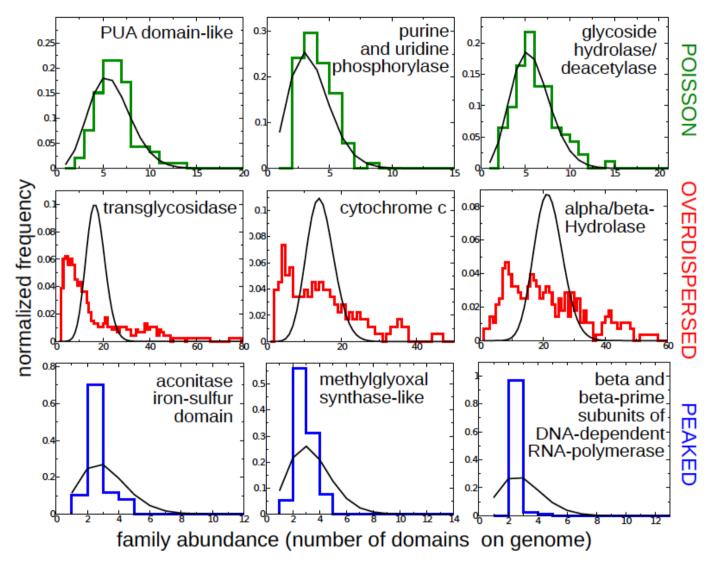
Equations for moments using generating function

Self-consistent argument for $p_d = 0$ leading to Poisson

For $p_d > 0$ approximate solution (negative binomial)

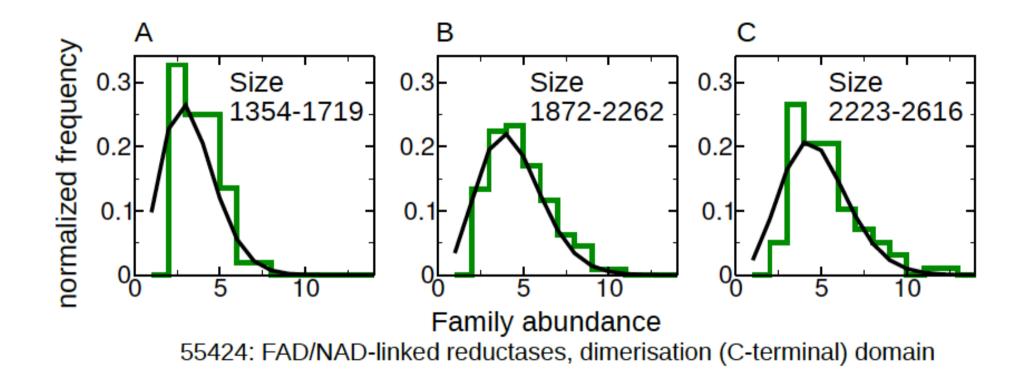
Empirical data on abundance fluctuations (domain families)

Empirical family abundance profiles



(binned by genome size in domains)

Family abundance profiles are robust for different ranges of genome size



Order Parameters

"**Q**f"

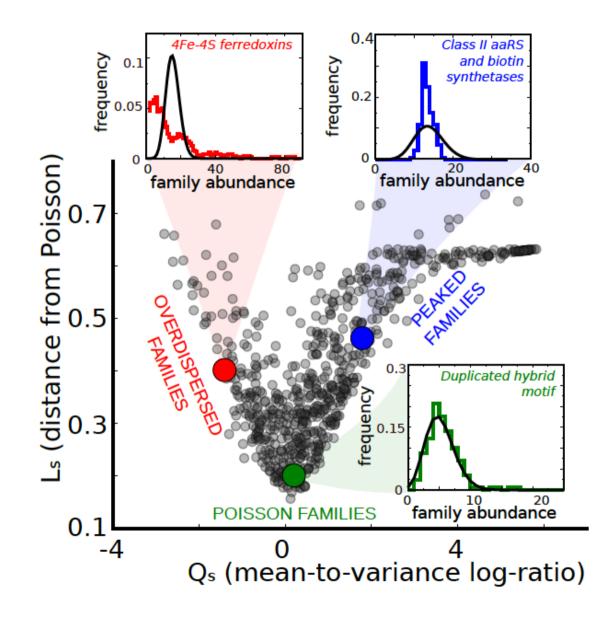
Average mean-to-variance log ratio of the family abundance histograms across bins of genome size

"Lf"

Average L1 distance with Poisson distribution

(both weighted on sampling)

Classification of families by abundance profiles



Abundance profiles and functions

Enrichment Tests:

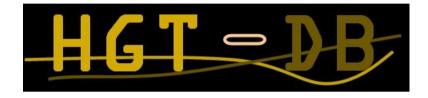
Peaked abundance profile families Are enriched for translation & RNA processing

Poisson abundance profile families

Are enriched for metabolism

Overdispersed abundance profile families Are enriched for DNA-binding (TF) & signal transduction

Horizontal transfer candidate data



(S. Garcia-Vallve et al NAR 2003)

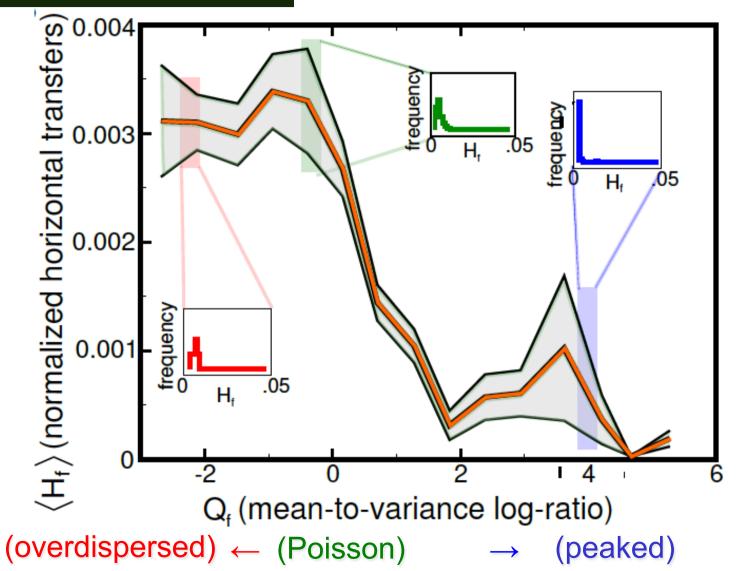
DarkHorse HGT Candidate Resource

(Podell et al Genome Biol 2007)

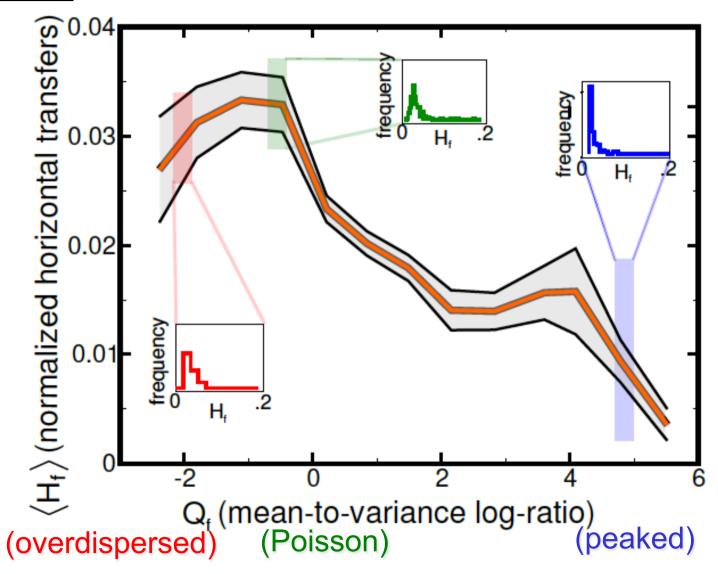
And other data (Treangen & Rocha, Abby et al, ...)

Abundance profiles and horizontal transfers

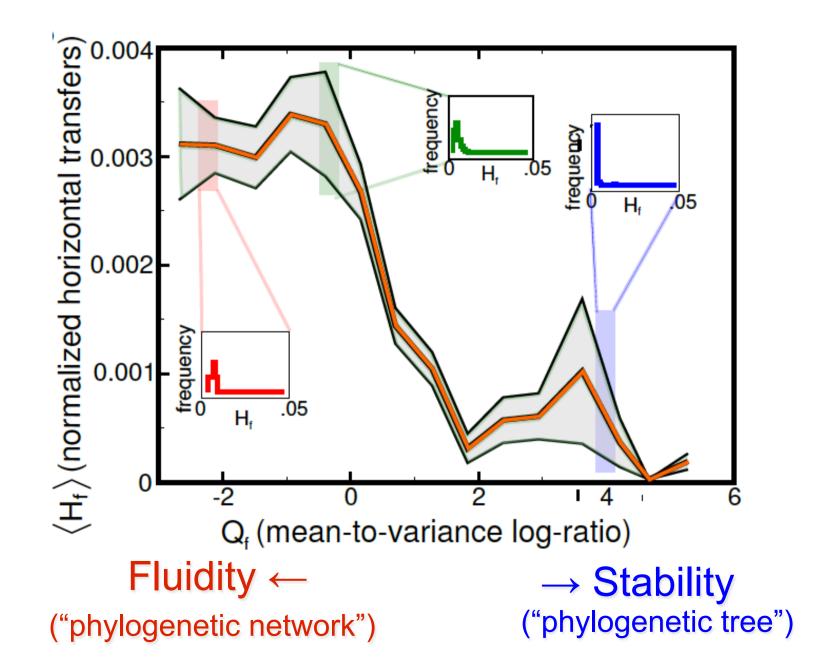
DarkHorse HGT Candidate Resource



Abundance profiles and horizontal transfers



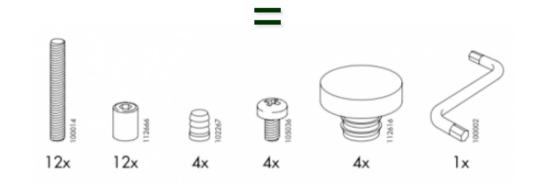
Abundance profiles and horizontal transfers



Conclusions

- Population models for strain-level gene occurrence distribution
- Species-level gene occurrence distribution and dependency networks
- Heuristic value of "collisional" model
- There is a link between abundance fluctuations and HGT
- Differential genome fluidity for different functional classes of genes

Thank you!



Normal Boltzmann Eq.

$$\begin{split} \frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} &= \left(\frac{\partial f}{\partial t}\right)_{\mathrm{coll}} \\ dN &= f(\mathbf{r}, \mathbf{p}, t) \, d^3 \mathbf{r} \, d^3 \mathbf{p} \end{split}$$

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = \iint gI(g,\Omega)[f(\mathbf{p}'_A,t)f(\mathbf{p}'_B,t) - f(\mathbf{p}_A,t)f(\mathbf{p}_B,t)] \, d\Omega \, d^3\mathbf{p}_A.$$