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Read carefully the following problems and provide correct and complete
answers to 5 questions chosen among the following 16, possibly within the
same problem.

A. Cauchy random walker

In one spatial dimension consider a random walker which starts from x = 0 and
proceeds by consecutive (random) jumps drawn independently from the density

p(∆x) =
1

πa

1

(∆x/a)2 + 1
with a > 0. (1)

Indicate by ∆xi the value of the i-th jump and by XN =
∑N

i=1 ∆xi the position after
N steps.

(1) Determine the probability density of the variable XN . Does the central limit
theorem apply to XN? Why?

Knowing that the P1|1 for a Cauchy process satisfies Chapmann-Kolmogorov
equation, one concludes that the sum of two variables with Cauchy distribution
has still a Cauchy distribution (stability of the law). This can be directly seen
by calculating the characteristic function of the distribution:

〈eit∆x〉 =
∫ ∞

−∞

d∆x p(∆x)eit∆x =
a

π

∫ ∞

−∞

d∆x
eit∆x

(∆x − ia)(∆x− ia)
= e−a|t|, (2)

where the residue theorem has been used for the calculation. Accordingly, the
characteristic function of the sum XN is given by 〈eitXN 〉 =

∏N
i=1〈eit∆xi〉 =

e−Na|t|, where we used the independence of the jumps. By comparison with
Eq. (2) (of by inverting the characteristic function) one concludes that XN has
a Cauchy distribution with a $→ Na. The central limit theorem clearly does not
apply to the present case (and therefore XN has not a Gaussian distribution)
because the variance of p(∆x) is not finite.

(2) Define ∆N ≡ max{∆x1,∆x2, . . . ,∆xN} the maximum forward step taken by the
walker. Write down the expression for the probability P (∆N < x). Determine
its behavior for large N , under the assumption that, typically, ∆N ' a as N
increases and plot the corresponding (Fréchet) distribution. [Hint: (1 − t)N (
e−Nt for t ) 1.]

In order for ∆N to be smaller than a certain x, all ∆xi have to be smaller than

x and therefore P (∆N < x) =
∏N

i=1 P (∆xi < x) =
[
∫ x

−∞ d∆x p(∆x)
]N

. As N

increases, this probability does not vanish only for x ' a and, correspondingly,
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the integral approaches 1: it is therefore convenient to emphasize this fact by
writing

∫ x

−∞ d∆x p(∆x) = 1 −
∫∞

x d∆x p(∆x) ( 1 − a/(πx) for x ' a. As a

result (see also the hint) P (∆N < x) ( e−Na/(πx), which is known as Fréchet
distribution. What matters in order to determin the law of the maximum ∆N

is only the asymptotic behavior of p(∆x) for large ∆x.

B. Diffusion with evaporation

On a one-dimensional lattice (with lattice spacing a) consider a particle A which can
either: (i) jump to the left or to the right of its current position at site i, with the
same rate ∆; (ii) evaporate A

εi−→ 0, with a transition rate εi, leaving the lattice
forever. We are interested in the master equation for the evolution of the probability
P (i, t) of finding the particle at site i at time t.

(3) If ∆ = 0, what is the effect of evaporation on P (i, t)? [Hint: Connect dP (i, t)/dt
to εi.] Write down the expression for the transition rates W associated to
diffusion and evaporation.

The evaporation removes the particle from the lattice and therefore it reduces
the probability P (i, t) of finding the immobile particle originally at site i still
there after a time t. In particular dP (i, t)/dt = −εiP (i, t). Heuristically, one
can associate a sort of ”transition rate” (which is however, negative) −εi to
evaporation at site i while diffusion proceeds with the usual transition rates ∆.

(4) Write the master equation for the probability P (i, t). Does this master equation
conserve the total probability

∑

i P (i, t)? Why?

The master equation is

dP (i, t)

dt
= −εiP (i, t) + ∆P (i+ 1, t) + ∆P (i− 1, t)− 2∆P (i, t). (3)

The total probability
∑

i P (i, t) is not conserved because, assuming an infinite
lattice, the sum over all lattice sites of the last three terms vanishes, while this is
not necessarily the case for the first term. Physically we know that evaporation
does not conserve probability.

(5) Express the master equation derived above in terms of the coordinate xi = i a ≡
x of the particle at site i. Discuss its continuum limit a → 0. How should ∆
and εi scale with a in order to have a well-defined continuum limit?

Taking into account that P (i, t) $→ P (xi ≡ x, t), we have P (i ± 1, t) $→
P (x±a, t) = P (x, t)±a∂xP (x, t)+(a2/2)∂2

xP (x, t)+O(a3); accordingly Eq. (3)
becomes

dP (x, t)

dt
= −εxP (x, t) +O(εa) + a2∆∂2

xP (x, t) +O(a3∆) (4)
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and a proper continuum limit is obtained for ε ∼ 1 and ∆ ∼ a−2. This latter
scaling is expected because it characterizes the scaling of the diffusion process
which is recovered for ε = 0.

(6) In the continuum limit, solve the master equation for P (x, t) assuming a spa-
tially constant evaporation rate ε(x) ≡ ε and the initial condition P (x, 0) =
δ(x).

In order to solve the differential equation, it is sufficient to note that P (x, t)
is expected to decrease exponentially in time because of the evaporation and
therefore it is convenient to look for a solution of the form P (x, t) = e−εtp(x, t).
Substituting this expression in the original equation one finds that p(x, t) sat-
isfies the diffusion equation and therefore p(x, t) = exp{−x2/(4Dt)}/

√
4πDt

where D ≡ a2∆. Alternatively, Eq. (4) can be solved by considering its Fourier
transform in space, which turns it into a ordinary differential equation in time.

(7) Using the result of the previous point, calculate 〈x(t)〉 and 〈x2(t)〉 and plot them
as a function of t. Determine the time tM at which the spreading %(t) ≡

√

〈x2(t)〉
is maximum and the corresponding value %M ≡ %(tM). Interpret these results.

The solution P (x, t) found at the previous point is nothing but the probability
density of a standard diffusion process with an overall extra factor e−εt; ac-
cordingly, one concludes that 〈x(t)〉 = 0 whereas 〈x2(t)〉ε #=0 = e−εt〈x2(t)〉ε=0 =
e−εt2Dt. This function vanishes at time t = 0, grows till it reaches a maximum
at tM = 1/ε, and then decreases exponentially to zero. The maximal spread-
ing %M for a single particle is obtained for %M = %(t = tM) =

√

2D/(eε).
Note that 〈x2(t)〉 decreases for t > tM because this analysis assumes that
an evaporated particle does not contribute to 〈x2(t)〉 and the probability of
the particle not being evaporated at time t decreases exponentially. Alterna-
tively, one could calculate the spreading by accounting for the contribution of
the evaporated particle. (1)In fact, at a certain time t, the particle is not evapo-

rated with probability Pa(t) = e−εt and in that case it is characterized by a spreading

"2ne(t) ≡ 〈x2(t)〉ε=0 = 2Dt; on the other hand, the particle might have been already

evaporated, and this occurs with probability 1 − e−εt. The contribution of an evap-

orated particle to the spreading, given by 〈x2(te)〉ε=0 = 2Dte, depends on the time

te at which it evaporated, the density of which is pe(t) = −dPa(t)/dt = εe−εt. As

a result the contribution of evaporated particles to the average spreading is "2e(t) ≡
∫ t
0 dte pe(te)〈x

2(te)〉ε=0 = 2D(1−e−εt−εt e−εt)/ε. The total spreading is then given by

"2T (t) ≡ 〈x2〉 = "2ne(t)Pa(t)+[1−Pa(t)]"2e(t) = 2D[(1−e−εt)2+εt e−2εt]/ε, which tends

to the constant "2T (t → ∞) = 2D/ε for ε -= 0, while it reproduces the result of pure

diffusion for ε = 0. Note that the second contribution to "2T in brackets corresponds

to the one previously calculated.

1Thanks to Dr. Sayed-Allaei for raising this point.
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C. Binary annihilation process

Consider a population consisting of individuals A, each of which might undergo the
following processes, with the specified rates:

(i) A
σ−→ A+ A branching,

(ii) A+ A
λ−→ ∅, binary annihilation.

The reaction in (ii) occurs among all possible pairs of individuals of the population.

(8) Describe qualitatively the expected behavior of this population, depending on
the values of σ ≥ 0 and λ ≥ 0.

The dynamics of this population results from the competition between (i) and
(ii). In a first approximation, this dynamics is described by the rate equation
ṅ = σn − 2λn2 for the average population size n. Given that the rate of
(i) is ∝ n, while the one of (ii) is ∝ n2, (ii) will always dominate in large
populations, while (i) will do so in small populations. As a result, we expect
that they balance at some stationary state which is achieved as long as σ,λ -= 0
and which is characterized by the stationary value ns = σ/(2λ) predicted by
the rate equation. Note that the case under study here differs from the one
discussed in the lectures with (ii) replaced by a death A

µ−→ ∅ and therefore
one does not expect a phase transition. The stationary state alluded to before,
however, is destabilized by fluctuations (at last in low space dimensionality)
and the population will eventually reach the absorbing state. For σ = 0 and
λ -= 0, instead, one expects a fast extinction, whereas for σ -= 0 and λ = 0 an
exponential increase of the population.

(9) Write down the transition rates W (n → n + 1) and W (n → n − 2) for the
number n of individuals in the population, associated to (i) and (ii). Is there
an absorbing state for the dynamics?

The transition rates are given by W (n → n + 1) = σ n and W (n → n − 2) =
λn(n− 1) (with a possible factor 1/2 adsorbed in the definition of λ.) n = 0 is
clearly an absorbing state because W (0 → . . .) = 0.

(10) Write down the master equation for the probability Pn(t) of having n individuals
at time t. Determine the evolution equation of the average population 〈n〉t ≡
∑∞

n=0 nPn(t) at time t.

The master equation is

∂tPn = σ(n− 1)Pn−1 + λ(n+ 2)(n+ 1)Pn+2 − [σn+ λn(n− 1)]Pn, (5)

where the first term on the r.h.s. is present only for n ≥ 1. By multiplying the
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previous expression by n and summing over n, one finds

∂t〈n〉t =
∞
∑

n=0

{

σn(n− 1)Pn−1 + λ(n+ 2)(n + 1)nPn+2 −
[

σn2 + λn2(n− 1)
]

Pn

}

= σ〈(n+ 1)n〉+ λ〈n(n− 1)(n− 2)
︸ ︷︷ ︸

n2(n−1)−2n(n−1)

〉 −
[

σ〈n2〉+ λ〈n2(n− 1)〉
]

= σ〈n〉 − 2λ〈n(n− 1)〉 = (σ + 2λ)〈n〉 − 2λ〈n2〉.
(6)

(11) Introduce the mean-field approximation 〈n2〉t ( 〈n〉2t . Solve the evolution equa-
tion for 〈n〉t and discuss the qualitative features of the result as a function of
σ ≥ 0 and λ ≥ 0.

Within the mean-field approximation, the previous equation becomes (n ≡ 〈n〉)

ṅ = (σ + 2λ)n− 2λn2, (7)

with the initial condition n(0) = n0. For λ = 0 the solution is clearly a growing
exponential n(t) = n0eσt (assume σ = 0). For λ -= 0 it is convenient to rescale
the time variable t in order to get rid of the constant of the eventual exponential
approach to the stationary state ns by writing t = τ/(σ+2λ) and g ≡ 2λ/(σ+
2λ). In these terms the evolution equation becomes ∂τn = n−gn2 and therefore

∫

dn

(
1

n
+

g

1− gn

)

= τ + const. =⇒ ln

(
n

1− gn

)

= τ + const. (8)

which yields

n(τ) =
1

g + c e−τ
(9)

and, by imposing the initial condition n(τ = 0) = n0 one determines c = n−1
0 −g

and therefore

n(τ) =
1

g(1− e−τ ) + n−1
0 e−τ

. (10)

Independently of the value of n0, one finds that n(t → ∞) ≡ n∞ = g−1 =
1 + σ/(2λ), and the approach to n∞ occurs exponentially with a time scale set
by 1/(σ + 2λ).

Add now diffusion with coefficient D, assuming the model to be in d spatial dimen-
sions.

(12) On the basis of the master equation for the process, determine the reaction
hamiltonianHR within the Doi-Peliti formalism and the associated field-theoretical
action AT on the continuum (neglecting boundary terms).

The reaction Hamiltonian can be determined by multiplying both members of

5



Eq. (5) by the Fock basis |n〉 and summing over n, taking into account the
definition of the state vector |Φ(t)〉 =

∑∞
n=0 Pn(t)|n〉:

∂t|Φ(t)〉 =σ
∞
∑

n=1

(n− 1)Pn−1|n〉+ λ
∞
∑

n=0

(n+ 2)(n+ 1)Pn+2|n〉

−
∞
∑

n=0

[σn+ λn(n− 1)]Pn|n〉.
(11)

In the first term one can replace (n − 1)|n〉 = a†(a†a)|n − 1〉, in the second
(n + 2)(n + 1)|n〉 = a2|n + 2〉, in the third n|n〉 = (a†a)|n〉, and in the fourth
n(n− 1)|n〉 = (a†)2a2|n〉. Collecting the various contribution one finds

∂t|Φ(t)〉 =
[

σ(a†)2a + λa2 − σa†a− λ(a†)2a2
]

︸ ︷︷ ︸

−HR(a†,a)

|Φ(t)〉. (12)

As expected, one immediately verifies that HR(a† = 1, a) = 0. The correspond-
ing action AT on the continuum, neglecting boundary terms, is (make use of
the notes)

AT =

∫

ddx

∫

dt
{

φ̃(∂t −D∇2)φ−HR(1 + φ̃,φ)
}

∫

ddx

∫

dt
{

φ̃(∂t −D∇2 − σ)φ+ 2λφ̃φ2 − σφ̃2φ+ λφ̃2φ2
}

.
(13)

(13) Determine the rate equations for the evolution of the system as the the mean-
field equations derived from AT . Compare with the result of point (10) and
comment. Expand the theory around the mean-field solution and determine
the form of the propagators both in the frequency and in the time domain.

Assuming a space-independent mean-field field φ̃ and φ, the saddle-point equa-
tions are satisfied by φ̃ ≡ 0. Accordingly, the remaining equation can be derived
from

δAT

δφ̃
= 0 = (∂t − σ)φ+ 2λφ2. (14)

In order to compare it with Eq. (6) one should take into account that 〈n〉 =
〈P|a†a|Φ(t)〉 = 〈P|a|Φ(t)〉 $→ 〈φ〉 (remember the property 〈P|a† = 〈P|), whereas
〈n2〉 = 〈P|a†aa†a|Φ(t)〉 = 〈P|a†(1 + a†a)a|Φ(t)〉 $→ 〈φ + φ2〉. Accordingly,
within the saddle-point approximation we are considering, 〈n〉 $→ φ, while
〈n2〉 $→ φ + φ2. With this identification, Eq. (6) turns into Eq. (14). (The
propagators of the theory can be read from the lecture notes, as they are actu-
ally independent of the form of the interaction.)

D. Response function

Consider a stochastic system of discrete interacting particles described by an initial
state |Φ0〉 in the Fock space, with Hamiltonian H .
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(14) Show that the average number n0 of particles at time t and position x can be
expressed as 〈φ(x, t)〉 where

〈· · · 〉 =
∫

DφDφ∗ · · · e−A[φ,φ∗]; (15)

A contains all the contributions discussed in the lectures, including the one of
the initial distribution.

The mean number of particles can be expressed as 〈P|a†xax|Φ(t)〉 = 〈P|ax|Φ(t)〉,
which is a particular case of the general expression discussed at the lectures for
the expectation value of a generic observable O(a†, a). The result then follows
from the notes and n0 = 〈φ(x, t)〉.

(15) Consider now the case in which a particle is added at time 0 and position x′ to
the state |Φ0〉. Express (in terms of 〈P|, H , ax, and a†x′) the average number n1

of particles which can be measured at time t and position x in this perturbed
state. Translate this result in terms of the path integral in Eq. (15).

The state |Φ′
0〉 after having added a particle can be expressed as |Φ′

0〉 = a†x′ |Φ0〉
and therefore n1 = 〈P|a†xax|Φ′

0(t)〉 = 〈P|axe−Ht|Φ′
0〉 = 〈P|axe−Hta†x′|Φ0〉. In

terms of the path-integral, the latter expression translates as n1 = 〈φ(x, t)φ∗(x′, 0)〉
as it can be easily seen by introducing an overcompleteness relation right before
the temporal evolution.

(16) On the basis of the previous expressions show that the change δn ≡ n1−n0 due
to adding one particle to the initial state |Φ0〉 is given by

δn = 〈φ(x, t)φ̃(x′, 0)〉. (16)

Accordingly, the correlation of fields on the r.h.s. of this equation expresses the
response function.

By using the relations found at the previous points, one concludes that δn =
n1−n0 = 〈φ(x, t)φ∗(x′, 0)〉−〈φ(x, t)〉̃ = 〈φ(x, t)[φ∗(x′, 0)−1]〉 = 〈φ(x, t)φ̃(x′, 0)〉,
q.e.d.
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