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1. What is really quantization?



What is really ...?

e In digital signal processing: quantization maps a large set of input values to a smaller set
such as rounding values to some unit of precision. Typically, a change of scale.

e In physics or mathematics, the term has a different meaning. For instance, the perplexing:
“ First quantization is a mystery. It is the attempt to get from a classical description of a
physical system to a quantum description of the “same” system. Now it doesn’t seem to be
true that God created a classical universe on the first day and then quantized it on the second
day...”?

e Or the following: “ We quantize things we do not really know to obtain things most of which
we are unable to measure””

e The basic procedure, named “canonical”, starting from a phase space or symplectic manifold

R?> (¢,p), {g.p} =1+~ self-adjoint (Q,P), [Q,P] =ik,
flg,p) = f(Q, P) = (Symf)(Q, P).

e Remind that [@, P|] = ihl holds true with self-adjoint @, P, only if they have continuous
spectrum (—o0, +00)

e But then what about singular f, e.g. the angle arctan(p/q)? What about barriers or other
impassable boundaries? The motion on a circle? In a bounded interval? On the half-line? ....

“J. Baez, Categories, quantization and much more, http://math.ucr.edu/home/baez/categories.html
(2006)
b].P.G., Metrobus Gavea-Botafogo 04/09/2013 morning



What about
POVM??

Quantization
MUST
be

CANONICAL !!




More mathematically precise:

e (Quantization is

(1) a linear map

Q:C(X)— A(H)

C(X): vector space of complex-valued functions f(x) on a set X
A($): vector space of linear operators

Q(f) = Ay

in some complex Hilbert space ) such that
(i) f = 1+ identity operator [ on ),
(iii) real f > (essentially) self-adjoint operator A in $).

e Add further requirements on X and C(X) (e.g., measure, topology, mani-
fold, closure under algebraic operations, time evolution or dynamics...)

e Add physical interpretation about measurement of spectra of classical f €
C(X) or quantum .A($)) to which are given the status of observables.

e Add requirement of unambiguous classical limit of the quantum physical
quantities, the limit operation being associated to a change of scale






Integral quantization: general setting and POVM

e (X, v): measure space.

e X 51z — M(z) € L($): X-labelled family of bounded operators on
Hilbert space ) resolving the identity /:

/ M(z) dv(x) =1, ina weak sense (1)
X

e If the M(z) x are positive and unit trace,
M(x) = p(x) (density matrix)
e If X is space with suitable topology, the map
B(X)> A~ / p(x)dv(z)
A

may define a normalized positive operator-valued measure (POVM) on the
o-algebra B(X) of Borel sets.



Integral quantization: the map

e Quantization of complex-valued functions f(z) on X is the linear map:
frs Ay = / M(z) f(z) dv(z), @)
X
e understood as the sesquilinear form,

By, ) = [ ilM@)a) f(@) dv(a). &)

defined on a dense subspace of ).

e If f is real and at least semi-bounded, the Friedrich’s extension of 5 uni-
vocally defines a self-adjoint operator.

e If { is not semi-bounded, no natural choice of a self-adjoint operator asso-
ciated with By, a subtle question’. We need more information on H.

“see for instance H. Bergeron, JPG, P. Siegl, A. Youssef, Eur. Phys. Lett. 92 60003 (2010); H.
Bergeron, P. Siegl, A. Youssef, J. Phys. A: Math. Theor. 45 244028 (2012)



Integral quantization: back to classical

e If M(z) = p(x) and with another (or the same) family of positive unit trace
operators X 3 x — p(x) € LT($) go back to the classical

As s f(z) = / SEEE) ) S, Toversnbs? @)

X

provided the integral be defined.

e Then classical limit condition means: given a scale parameter € and a dis-

~

tance d( f, f):

~

d(f,f) =0 as e€—0. (5)



Integral quantization: comments

e Quantization issues, e.g. spectral properties of A;, may be derived from
functional properties of the lower symbol f.

e Quantizing constraints: suppose that (X, 7/) is a smooth n-dim. manifold
on which is defined space D’(X) of distributions as the topological dual
of compactly supported n-forms on X. Some of these distributions, e.g.
d(u(z)), express geometrical constraints. Extending the map f +— A; to
these objects yields the quantum version Aj,(,)) of these constraints.

e Different starting point, more in Dirac’s spirit” (e.g. see (Loop) Quantum
Gravity and Quantum Cosmology) would consist in determining the kernel
of the operator A, issued from integral quantization u — A,,.

e Both methods are obviously not mathematically equivalent, except for a few
cases. They are possibly physically equivalent.
P.A.M. Dirac, Lectures on Quantum Mechanics, Dover, New York, 2001




3. A toy example: Sea star algebra



Prologue: Euclidean plane with physicist notations

j=In/2) 0)

Orthonormal basis (or frame) of the Euclidean plane R? defined by the two vectors (in Dirac ket
notations) |0) and |g>, where |6) denotes the unit vector with polar angle 6 € [0, 27). This frame is

such that o -
oo =1=(3|5). of5)-o

and such that the sum of their corresponding orthogonal projectors resolves the unity

e -

1.e. a trivial reinterpretation of the matrix identity:

(09)=(o0)*(a7)



How marine bottom is 5-fold orientationally explored by starfish (sea
star)“

Possibly, in a noncommutative way through the pentagonal set of unit vectors (the “arms”)

%TW> =R (—%TW) |0) = “coherent” state (CS)”° n =0,1,2,3,4 mod(5)
. cosf sinf
with R(0) := <— sinf cos 0) '

¢A marine echinoderm with five radiating arms. The undersides of the arms bear tube feet for locomo-
tion and, in predatory species, for opening the shells of mollusks. On the end of each arm or ray there is a
microscopic eye which allows the sea star to see, although it only allows it to see light and dark, which is
useful to see movement.

bJ-P. G., Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009)
¢S. T. Ali, J.-P. Antoine, and J.-P. G., Coherent States, Wavelets and their Generalizations (Graduate

Texts in Mathematics, Springer, New York, 2000). Second edition just appeared, November 2013



The 5-fold frame

e To the unit vector |0) = cos@|0) + sinf |Z) , corresponds the orthogonal
projector Fy given by:

cos 6 : cos’f  cosfsinb
Fy = 10001 = < ) (est) gint) = (cos@sin@ sin” 0 )
= R(—0)|0){0|R(0)

e Sea star resolution of the unity:

_Z 27m> <27m (é (1)) _ ©)

e Here X = {0,1,2,3,4} = is the set of orientations = angles 27n /5
explored by the starfish. It is equipped with discrete measure with uniform

weight 2 /5. The operator
2mn > < 2mn
5 D

M(n) = p(n) = actson §) = C”




What about /V-fold frame? The unit circle?

e Actually resolution of unity holds for any regular N-fold polygon in the

plane.
2 .27\ /2nn| (10
N; N/\N| \01

e And even in the continuous case:

L[ ame=(g )

™ Jo

e [s thus obtained a continuous frame for the plane, that is to say, the con-
tinuous set of unit vectors forming the unit circle, for describing, with an
extreme redundancy, the euclidean plane.



Measure set X explored by the starfish

e The set of angles 27n / b, or, equivalently, of orientations 7, is finite :
X = {0,1,2,3,4}, and equipped with discrete measure allowing to de-
fine a scalar product:

o 2 v 2
[ 7@ ) 3 s, (940) = 3 6m) o).
e Choose 2 orthonormal elements, ¢g(n) = cos(27n/5) and ¢1(n) =

sin(27n/5), in “Hilbert space” L*(X, ) and build the 5 unit vectors
(the sea star CS’s!) in the Euclidean plane with usual orthonormal basis

0}, |3):
)

e Then this set of 5 unit vectors or coherent states resolve the identity in the

Euclidean plane R?,
[ 12 al dutz) =
X

ﬁﬂ>=%mw»+@m>

Xon+—|n)= :




The quantum world of the starfish

e The resolution of the identity by the 5 “coherent” arms of the starfish opens
the door to its quantum world through the quantization

2nm > < 2n

5 D
more precisely through spectral values and CS mean values of the 2 X 2
matrix Ay, e.g. quantum angle is yielded with f(n) = 2mn/5

fo) = [ £(@)la)al dut@) = =3 f(n)

EAf

7/2),

e If instead one had chosen as a finite frame the orthonormal basis |0),
in R?, we would have obtained the trivial commutative quantization:

(f(0), F(1)) = Ay = diag(£(0), (1))

e Similarly, quantum version of f(6) — Ay =1 [7 f(0)|6) (0] d6.



“CS Quantization” as a particular “Integral Quantization”

e Start from a set X equipped with a measure ;. and the Hilbert space L?(X, p1). Then pick an
orthonormal set O of ¢,,(z)'s € L*(X, p) satisfying 0 < N'(z) =Y |¢n(2)[* < oo (a.e.)

e Pick a Hilbert space H (the space of “quantum states”) with orthonormal basis {|e;)} in one-
to-one correspondence {|e,) <> ¢, } with the elements of O.

e There results a family C of unit vectors |z) (the “coherent states”) in #, which are labelled by
elements of X and which resolve the unity operator in #:

K2 el = s S a@le, [ N@laiel dutir) = 1

e It is the departure point for analysing the original set X and functions living on it from the
point of view of the frame (in its true sense) C:

) Ay dff/ N(z z)(z| du(dz) (CS quantization)

e We end in general with a non-commutative algebra of operators in #. In turn, considering
the properties of f(z) & (x|Ay|z) in comparison with the original f(z) allows to decide if the
procedure does or does not make sense mathematically.

e Changing the frame family C produces another quantization, possibly mathematically and/or
physically equivalent to the previous one, possibly not.



Quantum angle for starfish?

e Quantization of “classical observable:

4
2

5 _ — E
(C > f - (a07alaa’27a37a4 5

2n7r><2n7r _ (3 ?) = A; e M(2,C)

e Quantum version of the classical angle function n — A(n) = 27n/5 mod 5:

4
2 2nm\ /2nm| (3 B 1o 82 4.
A(n) HAA_EZ (= _5(5 5>,@ —(3-1)2~ 0325,

n=0

where 7 = 2cos § = 1+2\/5 is the golden mean.

e Spectral values of the starfish quantum angle:

1017 /
Ay = (44 1+52)W~{2-95 At A A

5
5

e Eigenvectors: |2.257/5 = 97/20), |197/20)



Covariance

e Given f = (ag, ay, as,as,ay), i.e. f(n) = a, and extended periodically
mod(5), the operator A, is covariant with respect to rotations R (27n’/5),
n' =0, 1, 2, 3, 4 mod(5):

R(—Qﬂn'/5)AfR(27rn'/5) = AR(_Qﬂn//@f

where

R(27mn'/5)f(n) = f(n —n' mod(5)).
e In particular for the quantum angle,

on'm

5

R(—2mn'/5) A R(2mn'/5) = As+ R



Back to the classical world

~

e Lower symbol of the quantum angle: f = (ao, a1, Gs, 3, ay),

a, = Q”T”| Ay |2”T7T>, is more regular.

e It is the following function on X:

e We observe that its values oscillate around 47 /5 which is the mean value
of the two eigenvalues and which is also the average of the original angle
function in the following classical sense:

e It is proved” that (f)uas is the limit which is reached after infinitely re-
peated maps f +— f > f ...,

e Meaning of all that in Biomechanics?

“Finite tight frames and some applications, N. Cotfas and JPG (topical review) J. Phys. A: Math.
Theor. 43, 193001-27 (2010).



How deep marine bottom is 7-fold orientationally explored by
starfish?

Very recently seven-fold sea stars have been observed in Antarctic deep-sea
hydrothermal vents!



Might hand fingers form a quantum frame?




What about the continuous frame?

e Quantization of “classical observable’:

76) > 2 [ db £6) 19) (6] = 4, € M2, )

0

e Quantum version of the classical angle function:
1
7T —_—=
9 — A,g — ( 1 2> .

A=m+£1/2

e Spectral values:

e Lower symbol

in 26
(0] Agl0) = 7 —

is a sort of rough regularization of the angle function which varies between
the two eigenvalues of Aj.



Probabilistic aspects I

e Behind the resolution of the identity lies an interpretation in terms of ge-
ometrical probability which could reveal interesting for understanding the
starfish!

e Consider a subset A C X (finite case) or a Borel A C [0,27) and the
restrictions
2mn\ /2mn
— db|0)
v ) (] o = L
e One easily checks:

2
a(A):NHEZA
(@):O a(X or|0,2m)) = I,
(Uies ) = a(A;), ifANA; =0 foralli#j.

ieJ

Map A +— a(A) defines a normalized measure on the set of subsets of X
or on the o-algebra of the Borel sets in the interval [0, 27), assuming its
values in the set of positive linear operators on the Euclidean plane: it is a
POVM.



Probabilistic aspects II (continuous case)
e For |¢) a unit vector the application
A (@la(2)]6) =+ [ cost(6 - o) a9
TJAa
is a probability measure. It is positive, of total mass 1, and it inherits o-additivity from a(A).

e The quantity (¢|a(A)|¢) means that direction |¢) is examined from the point of view of the
family of vectors {|0), § € A}. As a matter of fact, it has a geometrical probability interpre-
tation in the plane. With no loss of generality let us choose ¢ = 0.

e Recall the canonical equation describing a straight line Dy, in the plane :
(Olu)y = cosfx+sinfy=p,

where |) is the direction normal to Dy, and the parameter p is equal to the distance of Dy,
to the origin.

e There follows that dpdf is the (non-normalized) probability measure element on the set
{Dy,} of the lines randomly chosen in the plane.

e Picking a certain 0, consider the set { Dy, } of the lines normal to |0) that intersect the segment
with origin O and length | cos 6| equal to the projection of |¢) onto |0) as shown in Figure of
next slide.



10)

cos? 0 {

O
——

cos b

Set { Dy, } of straight lines normal to |¢) that intersect the segment with origin
O and length | cos @ | equal to the projection of |6) onto |0).



Probabilistic aspects III (continuous case)

e The measure of this set is equal to :

cos®
( / dp) df = cos* 0 de . (7)
0

Integrating (7) over all directions |#) gives the area of the unit circle.

e Hence (¢|a(A)|¢) is the probability for a straight line in the plane to belong
to the set of secants of segments that are projections {¢|6) of the unit vectors
10), 0 € A onto the unit vector |¢).

e One could think in terms of polarizer (6| and analyzer |6) “sandwiching”
the directional signal |¢).

e The discrete case can be considered in the same way: maybe something of
interest here for analyzing the perception of orientations by the sea star...



Unit circle: quantization with more general POVM

e Just replace Py = |0)(0] in
1 27 1 2

I=— [ Pdo==[ R(-OPRO) I,

™ Jo ™ Jo

b d

e We still have the resolution of the unity and the resultant quantization:

1
m(a+d) Jo

by a 2 X 2 symmetric matrix M = <a b).

Ay = f() R(—=0)MR(6) db .

e In particular, with a density matrix M = p = (Z | E a)’ 0<a<land
detp=a — (a*>+b*) > 0,ie. |b| < \/a(l — a), we obtain a POVM.

5 —a T

2 > .

eigenvalues: m — b £ (5 — a) and eigenvectors |7/4),

e The corresponding quantum angle reads as Af = <71T —b5 : cg) with
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