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A tsunami of data



A tsunami of data



Finding a needle in a haystack



Quantifying the amount of data

• Unit: 1 bit (b) (0 ou 1)

• 1 byte (B) = 8 bits

Assume everything is encoded in binary form,
namely by zeros and ones



Quantifying the data deluge

• 1 kB = 1 kilobyte = 1000 bytes (other definition: 1024)

• 1 MB = 1 megabyte = 1000 kB = 106 Byte

• 1 GB = 1 gigabyte = 1000 MB = 109 Byte

• 1 TB = 1 terabyte = 1000 GB = 1012 Byte

• 1 PB = 1 petabyte = 1000 TB = 1015 Byte

• The next prefixes: exa (1018), zetta (1021), yotta (1024)



Examples: the petabyte era

• bytes : 1 byte ∼ 1 letter (ascii symbol)

• kilobytes : 1 kB ∼ 1 page,
1 article in pdf (50-500 kB) , 1 small image

• megabytes : 1 book

• gigabytes : 1 Audio CD (700 MB), 1 DVD (5 GB),
a private library

• terabytes : a public library
LOC (20 TB) (digital content of U.S. Library of Congress)

• petabytes : amount of data treated by the servers of
Google in one hour (1 PB)



Growth

• 90 % of the recorded data have been collected
during the last two years!!!

• Most data are now digital (numbers)
(1 % en 1986, 25 % en 2000, 94% en 2007)

• In 2007, ∼ 300 exabytes of data stored
(61 CD-ROM per person, i.e. a stack which would go
beyond the moon!)

• et ∼ 2 zettabytes of data exchanged!

(M. Hilbert, P. López, Science 2011)



Storage capacity



Data flux



Flux/Storage



Computing Power



Mathematics Awareness Month April 2012

Intelligent design to exploit them!



Big challenges ...

for

• mathematicians

• statisticians

• computer scientists, engineers, etc.

in order to develop automatic procedures for extracting useful
information from huge amounts of data.

→ rapid development of (new) research fields:

• Computer vision

• Data Mining

• Statistical Learning (“Machine Learning”)

• Bioinformatics, etc.



... in all scientific areas

• Physics
The LHC (Large Hadron Collider) (CMS) at CERN collects
per seconde 1 Petabyte of raw data (600 million collisions
at 1 MB each), reduced to ∼ 100 000 by the “trigger”, then
to ∼ 100 per second by the “grid” (→ 15 PB of data stored
per year)

• Astronomy
The “Sloane Digital Sky Survey” (SDSS), with 200 GB per
night, has recorded in a few weeks more data than all
astronomical observations in history (already 71 TB)!

• Geophysics
Arrays of seismographs permanently monitoring the Earth.
For example, the “US Array” records per day 4.9 GB
(already for a total of 12 TB)



... in all scientific areas

• Biology (chiefly genomics, proteomics)
Your own genome as a birthday present?

• Economics and finance
(“tick-by-tick data”)

• Social sciences
Studies, “Data Journalism”

• Politics
More than 100 statisticians, mathematicians, engineers,
etc. worked for Obama’s campaign



A new scientific journal



Some mathematical tools for Big Data

• Digitization (sampling and quantization)

• Compression

• Sparsity

• Compressed sensing

• Dimension Reduction

• Algorithms



Digitization
an analog signal, e.g. sound or speech

• Sampling: recording the values of a signal (samples) in
discrete points, in general equidistant and separated - at most -
by the Nyquist distance 1/2νmax , where νmax is the maximal
frequency in the signal) (Shannon’s theorem)

• Quantizing: expressing the values of a signal as integer
multiples of some finite quantity (e.g. 256 grey levels in an
image) – and transforming them in fine into binary numbers

→ interesting mathematical problems



Data compression

Coding by sums and differences:
a et b = values of 2 successive samples

c =
a + b

2
d =

a−b
2

One can always recover: a = c + d et b = c−d
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Data compression

• Note that in the new coding many coefficients vanish
→ no need to store/transmit those values

• One can always recover the original signal
(“lossless” compression)

• One can also set to zero the smallest coefficients
(thresholding) and reconstruct an approximation of the original
signal
( “lossy” compression)



Data compression

reconstructed signal: (1) lossless compression (rate 5/8)
(2) lossy compression (rate 4/8)



Data compression

Example of compression (in a Haar wavelet basis):
original (top); 56% (middle); 2 % (bottom)

(from: Y. Nievergelt, “Wavelets Made Easy”)



Data compression

• A generalization of such coding (in a basis of Haar wavelets)
has been devised by Ingrid Daubechies (Daubechies’ wavelets),
in which the sums and differences are more refined and include
more points

• This can be applied to digital images (pixels), line by line and
column by column

• These ideas gave rise to a new image compression standard
(JPEG 2000) implemented nowadays e.g. in digital cinema and
for medical images



Sparsity

“Entia non sunt multiplicanda sine necessitate”

William of Ockham (∼ 1288 - 1348)



Sparse representations

The digital signal s (vector) can be expressed as a linear
combination of elements of a dictionary (basis vectors)
{φ1,φ2, . . . ,φp}: s = ∑

j=p
j=1 aj φj or equivalently

s1

s2
...

sn

 = a1


φ11

φ12
...

φ1n

+ a2


φ21

φ22
...

φ2n

+ · · ·+ ap


φp1

φp2
...

φpn


with few nonzero coefficients aj (without knowing in advance
which ones)

Special case: orthogonal basis of p = n elements
(but one can also have p > n – redundant or overcomplete
basis)



Sparse representations

In matrix form: s = Φa where Φ is a n×p matrix, i.e.


s1

s2
...

sn

 =


φ11 φ21 . . . . . . φp1

φ21 φ22 . . . . . . φp2
...

... . . . . . .
...

φn1 φn2 . . . . . . φpn




a1

a2
...
...

ap



If many elements of the vector a are zero, one says that the
vector a is “sparse”



Sparse representations

For our example of the (orthonormal) Haar basis : Φ =
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Sparse representations: examples

• Typically, a natural image admits a sparse representation in a
wavelet basis (or other ?-lets members of the family)

• An astronomical image made of isolated stars is sparse in the
pixel representation

• Some signals contain only certain frequencies and are sparse
in a Fourier basis



Sparse representations: examples

• In statistics (linear regression), the matrix Φ is made of data:
one measures/observes the values of p variables for n
instances/individuals and one assumes that the observed
response y is a linear combination of the values of these
variables

The standard notation in statistics for such relation is

y = Xβ

In some cases, one can assume that the vector β is sparse and
use – to infer it from y and X – (least-squares) regression
methods which enforce sparsity (“lasso” regression) and hence
select a few variables (corresponding to the nonzero elements in
β)



A new statistics

“The coming century is surely the century of data. A combination of
blind faith and serious purpose makes our society invest massively in
the collection and processing of data of all kinds, on scales
unimaginable until recently. Hyperspectral Imagery, Internet Portals,
Financial tick-by-tick data, and DNA Microarrays are just a few of the
better known sources, feeding data in torrential streams into scientific
and business databases worldwide. In traditional statistical data
analysis, we think of observations of instances of particular
phenomena (e.g. instance, human being), these observations being a
vector of values we measured on several variables (e.g. blood
pressure, weight, height,...). In traditional statistical methodology, we
assumed many observations and a few, well chosen variables. The
trend today is towards more observations but even more so, to
radically larger numbers of variables - voracious, automatic, systematic
collection of hyper-informative detail about each observed instance.”
David L. Donoho



A new statistics

• Traditionally, many observations (n) relative to a small number
of variables (p)

• “Modern” statistics : relatively few observations (n)
relative to a large number of variables (p)

(“large p, small n paradigm”)

• This calls for the development of new methodologies (variable
selection, regularization, etc.)



Compressed Sensing = Compressive Sampling

• Parsimony in the way of collecting data relative to a sparse
model/vector

• To sense/reconstruct a quantity (vector) of interest which is
sparse (with k nonzero elements on p, and k � p),
it seems indeed absurd to have to collect a number of
(linear) measurements or samples n of the order of p and
subsequently to compress the acquired data!

• Many recent mathematical papers on the subject have
shown that, in general, a number of measurements of the
order of k log(p/k) are sufficient provided that they are
acquired in a properly randomized fashion

(Candès, Tao 2006; Donoho 2006, etc.)



Compressed sensing

Reconstruction (d) of a signal which is sparse in the Fourier domain
(10 frequencies) (a) from 30 random samples (in place of 300) in the

time domain (b)
(Fornasier, Rauhut 2009)



Dimension reduction

A data cloud can be represented by a n×p matrix X (n points
living in Rp) and one wants a (reliable) lower-dimensional
representation of this cloud.
Some examples of methods to do so:

• Principal Component Analysis (PCA)
Project the data on the directions of maximal variance, i.e.
on the k top eigen-directions of the p×p sample
covariance matrix 1

n X T X (after centering)

• Factor Analysis
Represent the matrix X (approximately) as a product ΛF of
matrices of low rank: Λ, the matrix of the “loadings”, is
n× k and F , the matrix of the “factors”, is k×p



Dimension reduction

• Nonnegative Matrix Factorization (NMF)
Represent a matrix X with nonnegative elements
(approximately) as a product AB of a n× k matrix A and a
k×p matrix B, both with positive elements

• Independent Component Analysis (ICA)

• Random (linear) projections
Projections of a data cloud of n points in Rp

onto lower k -dimensional subspaces approximately
preserve the Euclidean structure (i.e. do not modify the
pairwise distances by more than 1± ε) provided that these
subspaces are chosen randomly and k ≥ (log n)/ε2

(Johnson-Lindenstrauss Lemma)



Algorithms for Big Data

• Need for algorithms that are tailored for Big Data, i.e. are
sufficiently fast, do not require too much memory and scale
well with the dimensionality
(e.g. Page Rank used in Google)

• A new trend: probabilistic algorithms
which trade accuracy/reliability for speed and are only
expected to deliver the correct answer “with high
probability”



The end of Theory?

The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete
Petabytes allow us to say: "Correlation is enough." We can stop
looking for models. We can analyze the data without hypotheses about
what it might show. We can throw the numbers into the biggest
computing clusters the world has ever seen and let statistical
algorithms find patterns where science cannot.
[...] The new availability of huge amounts of data, along with the
statistical tools to crunch these numbers, offers a whole new way of
understanding the world. Correlation supersedes causation, and
science can advance even without coherent models, unified theories,
or really any mechanistic explanation at all. There’s no reason to cling
to our old ways. It’s time to ask: What can science learn from Google?

Chris Anderson (Wired Magazine 2008)



Security issues

Risk of theft, manipulation, leaks, deterioration, etc.



Sherlock Holmes

“Data! Data! Data!” he cried impatiently. “I can’t make bricks
without clay”
(Arthur Conan Doyle, The Adventure of the Copper Beeches,
1892)

“It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of
theories to suit facts.”
(Arthur Conan Doyle, A Scandal in Bohemia, 1892)


