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Theme: Sparse recovery

@ Whatis it?
“finding an answer without asking too many questions,
knowing the answer is simple”

@ In mathematical language:
Solving an under-determined linear system

Ku=y (v, K known)

for u,
@ when number of y; is much smaller than number of u;,
@ but knowing that many of the u; are zero (“sparsity”).

@ Example: recovering an object (image) from incomplete
measurements knowing that its wavelet transform is sparse
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Mathematical framework

@ Solve linear relations between unknown u and measurement data y:
Ku=y

@ Here:
@ y = data vector (known)
@ K = linear operator(known)
@ u = model vector (unknown)

@ Problems: insufficient data, inconsistent (noisy) data, ill-conditioning
of K:
— No solution or no unique solution

@ Minimize a penalized least-squares functional:

rec

u'®® = argmin }|Ku — |3 + penalty

NB: minimizer of f(u) %l argmin, f(u)
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.
@ A trade-off between sparsity promotion and tractability (convexity)

uz
\'%: y

Uy
# nonzero< 1

‘combinatorial’

@ See [6, 3]
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Up Uo

\'%: y Ku=y
U U4
# nonzero< 1 V0ug] + /Tua] <1

¢ i ial’ ‘algebraic’
combinatorial ~__~ g

@ See [6, 3]
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Uy U Uy

\I%:y Ku=y /&y

U U4 U1
# nonzero< 1 Vg + /uz| lug| + |uz| <1

‘combinatorial’ ‘algebraic’ ‘convex’
~__ 9 ~__

@ See [6, 3]
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Uy U Uy

uz
\'%w K=y N:y /\ﬁw

U U U \JLM
# nonzero< 1 VARIERVAI?Y lug] + Jup| <1 uf +u3 <r?

‘combinatorial’ ‘algebraic’ ‘convex’ ‘linear’
~__ 9 ~__

@ See [6, 3]
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Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.
@ A trade-off between sparsity promotion and tractability (convexity)

Uz us Uz Uz
\'%w K=y N:y /\ﬁw

U U U \JLM
# nonzero< 1 VARIERVAI?Y lug] + Jup| <1 uf +u3 <r?

‘combinatorial’ ‘algebraic’ ‘convex’ ‘linear’
~__ 9 ~__

¢1-norm penalty ||u||4 def > lui| promotes sparsity and is tractable

@ See [6, 3]
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Sparsity and ¢4 norm

Unit ¢4 ball in 2-D

S
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Sparsity and ¢4 norm

Unit ¢4 ball in N-D

3
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Sparsity and ¢4 norm

Unit ¢4 ball in N-D

3

~_

“looks like”
(when N is large)
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Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.
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Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.

@ Corresponding optimization problem:

rec __

u"®® = argmin 7||Ku — y||3 + Al|Aull; (1)
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Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.

@ Corresponding optimization problem:

rec __

u"®® = argmin 7||Ku — y||3 + Al|Aull; (1)

@ Primary example of (1) is total variation (TV) penalty in imaging:
A = local gradient of an image:

lAuls = 37 \(Aew)? + (8yu)?

pixels
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Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:

u=3Sv withmany v;=0
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Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0

@ Synthesis-style sparsity (express u = Sv with v sparse):

V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)
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Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0
@ Synthesis-style sparsity (express u = Sv with v sparse):

V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)

@ Example of (2): sparse combination of wavelets
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Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0
@ Synthesis-style sparsity (express u = Sv with v sparse):
V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)

@ Example of (2): sparse combination of wavelets

@ If AS = SA =1 then:
synthesis sparsity u'™° = analysis sparsity u"°
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Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec

u"®® = argmin J||Ku — yI3 + Allu]| (3)
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Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec

u"®® = argmin J||Ku — yI3 + Allu]| (3)

® Many (Au); = 0, then use penalty of type \||Aul|+:
u'® = argmin 3|[Ku — I3 + Al Aul| (4)

(A not necessarily invertible)
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Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec
u

= argmin }|[Ku — y[3 + A|u (3)
® Many (Au); = 0, then use penalty of type \||Aul|+:
u'®® = argmin 7||Ku — y||3 + Al|Aull; (4)
(A not necessarily invertible)

@ (3)is a special case of (4): A= 1 or change of variables if 3JA~"
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@ Write iterative algorithms for finding the numerical solutions to the
following optimization problems

rec

u"®® = argmin }||Ku — yl|3 + Allu]| (5)

and
' — arg muin%HKU—}/H%Jr)\HAUW (6)

where K,y and A are given.

@ Problem (5) in part 1, problem (6) in part 2.

@ These objective functions are convex =- study the problem in the
framework of convex optimization
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@ Write iterative algorithms for finding the numerical solutions to the
following optimization problems

rec

u"®® = argmin }||Ku — yl|3 + Allu]| (5)

and
' — arg muin%HKU—}/H%Jr)\HAUW (6)

where K,y and A are given.

@ Problem (5) in part 1, problem (6) in part 2.

@ These objective functions are convex =- study the problem in the
framework of convex optimization

@ NB: “course’=definitions, properties, proofs, exercises!
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Preliminaries

@ Real d-dimensional space R?
@ Inner product of u,v € RY: (u,v) = "%, u;
@ Euclidean norm: |julj2 = /(u,u) = \/27:1 u?
® Some special products:

o Jutv|=ul+vI3+2(uv)

° 2(u,v) =|lu£v|3F||lullf F |vI3

2 112

o (wv) = 10+ VIE == vIE

® (u,Av) = (ATu,v), where A is a linear operator (matrix)
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Convex sets and convex functions

A set C ¢ RY is said to be convex if

u,veC = A+(1-AveC (7)
for all A € [0,1]. Afunction f: RY — R = RU {+oc} is said to be convex if
fOUu+ (1= X)v) < AM(u)+ (1= Nf(v) (8)

for all points u, v € R? and for all A € [0, 1]. f

u %
NB: dom(f) = {u|f(u) < +oo}, f is ‘proper means dom(f) # ()




Why convex optimization?

Property
A local minimum of a convex function is necessarily a global minimum

Proof: Suppose u is a local minimum of the convex function f. If there is
a point v where f(v) < f(u) then
fOU+ (1 =A)v) < M(u)+ (1= Nf(v) < M(u)+ (1 = Nf(u) = f(u)

forall A € [0,1[. But A\u + (1 — A\)v 221 u which contradicts the

assumption. O
@ — Easier than non-convex optimization

f(u)
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Convex functions: Examples

@ f(u) = ||u|3 is a convex function
@ Any norm on RY is a convex function, e.g.:

1/2
lulls = lul,  lullz = (Z IU;|2> and  [|ulloo = max u;|
i i

9
@ /(,-ball of radius R:
BY = {ul|ullp <R}, for p=1,20c0. (10)
are convex sets
@ The indicator functions of these convex sets:
C oo [0 Jullb<R
o (1) = { oo Jully > R (1

are also convex functions
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Subdifferential of a convex function

The subdifferential 9f (ug) of f at the point ug € RY is the set of vectors
w € R such that

f(u) > f(ug) + (w,u —ug)  YueRY. (12)
Example: f : R — R : f(u) = |u| is not differentiable in ug = 0.
ul ul ul
| |
| u Lu u
up <0 ™ 7 up>0 =
The subdifferential is:
-1 u<o0
of(uy=< [-1,1] u=0 (13)
1 u>0
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Subdifferential of a convex differentiable function

If f is differentiable at u, the subdifferential reduces to the usual gradient
Example: f(u) = 1||Ku — y||3

Of(u) = Vf(u) = KT(Ku — y) (14)
Indeed: need to show that f(u) > f(up) + (VF(up), u — up) Yu

—f(u) + f(uo) + (VF(uo),u — to) = —3lIKu—yl3+ 3|Kuo — yl3
+(KT(Kuo — y),u — uo)

= —3lIKul3 + 3||Kuol13

+(KT(Kug —X), u — Uo)
—I||Kul|3 — $|Kuo||3 — (Kuo, Ku)
= —}IK(uo —u)|3

< 0 \a%

NB: We will assume functions are subdifferentiable.

ULB Ignace Loris (igloris@ulb.ac.be)



Characterization of the minimizer(s) of a convex

function

Notation: minimizer of f(u) % argminy f(u)

Property

U € arg mJn f(u) & 0 € of (). (15)

Proof:

Example: Suppose one wants to find a mini
is differentiable but g is not.

0 =argmin, f(u) +g(u) < 0€d(f(0)+g(d))
= 0e V@) +ag(d)
< Iweodg(t) st 0=VFiO)+w
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Proximal operator: definition

The projection onto the non-empty closed convex set C can be written as

-1 .
Po(u) =argmin o [u — V|3 +ic(v), (16)
. - . . /0 veC
where i¢ is the indicator function of C: ic(v) = { % VEC

Definition (Proximal operator)

The proximal operator of a convex function f : R? — R is defined as:

prox;(u) = argmin %Hu —v||3 +f(v). (17)

Remarks:
@ f is assumed to be lower semi-continuous and proper (£ +o0)
@ prox; is uniquely defined because ||u — v||3 is strictly convex
@ ‘standard tool for non-smooth, constrained, large-scale minimization
problems’ [9]
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Proximal operator: elementary examples

It is easy to check that (exercise):

fluy=(a,u)y+b = prox(u)=u-—a (18)
fw)=Glulz = prox(u) = 17— (19)
f(u) = plul (1 var.) = proxs(u) = 2_ 1sgn(u) m ;Z(ZO)

0 |f u <
S

~ Hu,
L (U) e
7/
Proximity operator of ulu| //
is “soft-thresholding”: 7
proxs(u) = S, (u) - |7
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Proximal operator: Properties

Property

Letf : RY — R be a convex function, then:

g(u)="~f(u—a) = proxg(u) = a+proxs(u —a).  (22)

Proof: One finds that:
prox,(u) = argmin, 3[lu—v|3+g(v)

= argmin, 3|ju — V|3 +f(v —a)
= a-+argming 4llu —a— V|3 +f(7)
= a+proxs(u—a)

NB: Similar formula for prox,(uv) where g(u) = f(au):

1
proxg(u) = aproxazf(au)

Ignace Loris (igloris@ulb.ac.be)



Proximal operator: Properties

Property

Letfy: R% — R and f, : R% — R be convex functions of uy and u;
respectively. Let f : R%+% — R. One has:

f(ur,u2) = fi(uq) + fa(u2) = proxe(uq, uz) = (Proxg (uq), proxg (uz)).
(23)

Proof: Setting u = (uq, u2) and v = (v, v2) (both elements of R%1+%),
one has

1 9
argmv|n§||u—v|| +f(v)

1
= arg min (ur, Up) — (v1,v2)|[3 + f1(v1) + Fa(v2)

5l
1 , 1 ,
= argmin §||U1 =iz + fi(ve) + §||U2 — V2|3 + fa(v2)

= (proxy, (u1), proxy, (uz)) O

Ignace Loris (igloris@ulb.ac.be)



Proximal operator: Example

Example 1:
0 luil < p
F=ulule = prox(u) = { P s
ui —sgn(up il = p.
Proximity operator of Su(U) ,’/
wllulls is component- //
wise “soft-thresholding”: e
proxs(u) = S, (u) 0
iz u

Example 2: f(u) = > /U2, + u?,
(0,0) it \Ju? 4+ U, <p
(proxe(u)); = (U1 bia) 2 2 (25)
: (Ui, Ui2) — M\/ﬁ if Ui +ui >

using formula (21).
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Proximal operator: Properties

Property

Letf: RY — R be a convex function. If t+ = prox,(t~ + A) then:
It =13 < It~ —tI3 — It — 7[5 +2(t" —t, A) + 2f(¢) — 2f(t*) (26)

for all t.
Proof: t* = prox:(t~ + A)
& tr=argmin %Ht ()R +£(t)
0ctt —t~ —A+af(th)
t~+ At cof(th)
f(t)y>f(tT)+ (" +A -t t—tT)
0<2(t™ —tT tT —t) +2(tT —t,A) + 2f(t) — 2f(tT)
It —t15 < |t~ — )5 — tT — 7|5 +2(t" —t, A) + 2f(t) — 2f(t")

S
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Firmly non-expansive operators

Amap T : RY — RY is said to be firmly non-expansive if

|Tu—Tv|3<(Tu—Tv,u—v) Vu,veR? (27)
prox; is firmly non-expansive.
Proof: If ut = prox,(u), eq. (26) implies (t* = u™,t- =u,A=0,t =v™T):
u— v — [lu™ —ul5 + 2f(vF) — 2f(u™)
If v = prox,(v), eq. (26) implies (t" =v*,t- =v,A=0,t =u™):

IV —utZ < v —utlZ — vt - viE+2f(ut) - 2f(vY)

lu™ = vz <

2 2 2 2 2
=2ut —vhs < Ju—vTz—llut —ullz+[lv —uTl5 — (v —v]3
= —2uvT +2utu—2wut +2vTv

= 2t —vtu—v) O
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Proximal operator: Continuity

Property
proxs(u) is Lipschitz continuous in u, with Lipschitz constant equal to 1:

Iprox(u) — prox(v)[l2 < [lu — v[2  Vu,v €R. (28)
Proof: prox; is firmly non-expansive:

Iprox(u) — prox;(v) |3 < (prox;(u) — proxy(v),u —v)

Thus:
Iproxg(u) — prox¢(v)|[3 < [[prox¢(u) — proxe(v)|l2 [lu — v||2
and hence:
[[prox(u) — prox¢(v)|l2 < [[u — vl 0
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Proximal operator: Continuity

Property

For fixed u, prox,s(u) is continuous with respect to o (o > 0).

Proof: Let u, = prox,¢(u) and u,, = prox, (u). We need to prove that
[Ua — Uggll2 “=3° 0.

Eq. (26) with (t" = u,,t~ = u, A =0,t = u,,) implies:
|t — a3 < [1U — tagllz — llte — ull3 + 20F(Uay) — 20F(ua)
Eq. (26) with (t7 = uy,,t~ = u,A = 0,t = u,) implies:
|ty — Ual3 < 11t — Uall3 — [|Uay — ll3 + 200 (us) — 200f (Uay)

Together:
2||u — Uao|l3 < 2(ev = a0)(F(Uao) — F(Ua))

We treat the left and right limit (&« — «p) separately:
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Proximal operator: Continuity

@ Case a > ag and a — ag: Choose ag < a < 2aq (With 2ag > ag).

Then f(uzq,) < f(Uo):
[Ua — UaoHS (o — aO)(f(uao) — f(ua))

a—aQ

<
< (Oé - aO) (f(uao) A f(u2ao)) — 0
NB: if g > 0 then uy,, U2y, € dom(f) # () and rhs is finite
® Case a < ap and a — ap: Choose ap/2 < o < a (With a9 /2 < ).
Then f(ua) < f(Uay2)-
I = tegl3 < (o0 =) (F(ua) = Flg)
< (a0 — @) (f(Uag/2) = F(Uag)) — 0 _

We have used:

Property

Let u, = prox,¢(u) = argmin, ||lv — u||3 + af(v). If a > j then
lua — ull2 > ||ug — ull2 and f(u.) < f(ug). (Proof: exercise).
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Proximal operator: Continuity

Property
prox,¢(u) is continuous with respect to (u, o) for u € RY and o > 0.

Proof:

[[prox,(u) — P"OXaof(Uo)Hz
= |lprox,¢(u) — prox,s(Uo) + Prox,¢(Uo) — Prox,.¢(to)|l2
< [[prox,¢(u) — prox,¢(uo)|l2 + [IProx,¢(Uo) — prox, ¢(uo)|l2
< |[Ju — o2 + [[prox,¢(Uo) — Prox,.s(to)|l2
<e€/2+¢€/2 if ||(u,a)— (uo,ap)] <6 O

NB: This means that if o, —3 o and u, "== u then:

prox,, ¢(Un) =3 prox¢(u) (29)

Olnf
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Characterization of subdifferential

Property

Let g : R? — R be a convex function. One has:
w e og(u) & u = proxg(u + w) (30)

Proof: w € dg(u)

< 0e—w+0g(u)
s0ev—(u+w)+0og(v) at v=u
s0ed [Fllv—(u+w)3+g(v)] at v=u

u=arg minv%||v— (u+w)3+g(v)= proxg(u + w) O
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Characterization of minimizers of f + g

Property

Letf : RY — R convex differentiable and g : RY — R convex functions.
The following are equivalent:

@ 0 is a minimizer of f(u) + g(u).
© There exist w € dg(i) such that w = —V£({)

© 0 that satisfies the equation: i = prox,q(0 — aVf({)) for a > 0.
Proof: (2) & 0 =prox,(t+w) st w=-VFf()
& U= proxg (0 — VI(u))

and minimizer of f(u) 4+ g(u) is same as minimizer of af(u) + ag(u). O

NB: The last equation is a fixed-point equation (Ansatz for writing an
iterative algorithm).
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Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)

@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
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Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))
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Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))

or
Upy1 = proxang(un - Oéan(Un)).
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Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))

or
Upy1 = proxang(un - Oéan(Un)).

@ We will study convergence of:

{ Upg1 = Prox,,q (Un — anVf(up))
Upp1 = (1= An)n + Anlingq

with 0 < A\p < 1.
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Lemma: %Vf is firmly non-expansive

Property

Iff : RY — R is convex with Lipschitz continuous gradient (L) then %Vf is
firmly non-expansive:

IVF(u) — VF(V)|3 < L(VF(u) = VF(v),u—v) VYuveR! (31)

Proof: see [7, Part 2, Chapter X, Th. 4.2.2]. Here we give a proof for
f(u) = 1||Ku — y||3. In this case Vf(u) = KT (Ku — y) and L = omax(K)?,
such that:

IVF(u) = VE()I3 = KT (Ku~y)—KT(Ku-y)l3
LK
LIK(u—v),K(u—v))
= LIKTK(u—v),u—v)
L(Vf(u) — Vf(v),u—v) O

[N
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Proximal gradient algorithm

Theorem (proximal gradient algorithm [ ])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),

g: RY — R is convex, proper, lower semi-continuous,

and a minimizer of F (u) = f(u) + g(u) exists,

THEN the proximal gradient algorithm:

{ Up1 = Prox,,q (Un —anVi(up)) (32)
Uprr = (1= An)Up + Anlingq

with ug = arbitrary, e < ap < 2/L — e and e < A\, < 1 converges to a
minimizer of F(u).

Proof: Let & € argmin, f(u) + g(u), i.e. U = prox,q (0 — aVF(Q)).
One has:

lup1 = 8113 = (1= Xn)lltn — 8lZ + AnllTn 1 — 81Z = An(1 = An) [ Un — 113
(33)
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Recall property of proximal operators

If t+ = prox,(t~ + A) then:
[ =5 < It~ —t3 — [t =75 +2(t" —t,A) +2g(t) — 2g(t™) (34)
for all t.
We will use this property on the (iteration) relation:
Unt1 = Prox,, g (Un — anVf(up))

with tt = U1, = up, t =0, A = —ayVF(up),
and on the fixed-point relation:

U = prox,,q (0 — ap V(1))

with t+ = 0,6~ = 0, t = {ips1, A = —a, V(D)
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Proximal gradient algorithm: proof of convergence

It follows from Up1 = proxang( — apVif(up)) and eq. (26) with
tt = lpq,t™ = Up,t = 0,A = —ap,VF(up) that:

lnsr — 13 < un— 13— [[Gn1 — tnl3 + 20l — 0, —anVF(up))
+2ag(0) — 20ng (Tins)

It follows from & = prox,, 4 (0 — anVF(0)) and eq. (26) with
tt =0t = t Uit A = —a, VF(@1) that:

o =taT3 < |0 =73 — o= + 2(0 — fins1, —an V(@)
+2ang(Uns1) — 2ang(0)
Together:

Jins — a3 < un— @3 — ny1 — w3 gy 99
+20 (U — Uny1, VFE(Un) — VE(U))

The inner product can be bounded by:
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Proximal gradient algorithm: proof of convergence

(O — Upyq, VE(up) — V()= (0 — up, Vi(up) — VE(D))
+(Un — Uny1, VE(up) — VI(T))

()P N
< THVf(Un) — V()3
+(up — Upyq, VE(uy) — VF(O))
. 1 N
= (VL(Up — lpy1) - W(Vf(un) — VI(a)),
1
—(Vf(up) — V(O
\fL( (Un) (@)))
- 2 - 2 2
oy P18 a2 _ Lllun = Gnia +Ollz = llun = o = 7 -2
b} - 4 4
L -
< ZHUn — Un41 ||%
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Proximal gradient algorithm: proof of convergence

The latter inequality combined with expression (35) yields:
|Upg1 — 0”% < lun — UH% — |ltns1 — Un”% + 2Oén%HUn — Upy1 ||%
= lun = @13 = (1= 45| Tns1 — unll3
This can be inserted in expression (33) to yield:
N 33 N ~ A ~
[Uns1 — U||§(:)(1 — A)l[un = GlI5 + Anll8n1 — U521 = An)[|Un — Tng1]3

< (1= Aa)lltn — &3 + A [lln — 13 = (1 = 285) 1 — ]3]
(1 = An)lltn = Gny1l3

= fun — G013 = A [(1 = 25 + 1= o)l 1 — unl3]
<y — 813 — e(eL/2 + 0)Ens1 — U3

as\p>e,1— X\, >0and 1— 2t > el /2.
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Proximal gradient algorithm: proof of convergence

One therefore has (with ¢ = €2L/2 > 0):
[Uny1 — QI3 < |[un — 015 = ¢ |lng1 — unll3 (36)

@ Eq. (36) implies: ||ups1 — U2 < ||up — |2, i.e. (un)n is bounded. As
(an)n and (A\p), are also bounded, there exists a common
converging subsequence:

un ZF Ut an X a >0, A SN (with0 < A < 1)
@ Eq. (36) also implies (N > M):
¢ S pmllnst = unll3 < opT llun — 813 — unsr — 83
= lum — 0I5 — lluw — 03 (37)
< |lum — |3 (= independent of N)

. . ~ j—
This means that [|Zp4.1 — Unll2 "= 0 and thus: i1 '— uf
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Proximal gradient algorithm: proof of convergence

@ Butas i, 11 = prox,, 4 (Un, — anVFf(up)), one finds (j — o) that:
)
u' = prox,, (uT - an(uT))
i.e. u is a minimizer of f + g.
@ Finally, choosing & = uf, inequality (37) implies that:
luy — |3 < [lum — u'(13 for N>M
As Un, jif ut, the rhs can be made as small as one likes. This
shows that the whole sequence (uy,), converges to u'.
One also has:
[ln1 —u'llz = |lprox,,q (Un — anVF(un)) — prox, 4 (u' — apVF(u')) |;

A

n—oo

Hence Uy, also converges to ut. O
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Proximal gradient algorithm: remarks

1) It is possible to introduce error terms at each step:

Theorem (proximal gradient algorithm [ ])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — R is convex, proper, lower semi-continuous,

and a minimizer of F(u) = f(u) + g(u) exists,

THEN the proximal gradient algorithm:

{ []n+1 = pI'OXang (Un - Oén(Vf(Un) + 5n)) + €n (38)
Unt1 = (1 —=2An)Un+ Anlinya

with ug = arbitrary, e < ap < 2/L — ¢, e < Xy <1, > ||dn]l2 < oo and
S, llenll2 < oo converges to a minimizer of F(u).

Proof: exercise. O
2) Theorem also holds in (infinite-dimensional) Hilbert space, see [4].
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Special case: sparse recovery

Choose f(u) = }||Ku — y||3 and g(u) = pl|ulls, i.e.:

~ . 2
G =argmin 3 |[Ku — y|3 + plulls

@ Vi(u) = KT(Ku —y), with L = omax(K)? = || K]|?

_ ; _J0 uj| < pa
® PBeg = S 18- Sualily = { t; — pesgn(ui) || > o
@ The proximal gradient algorithm reduces to:

Unit = (1= An)Un + AnSans (un — KT (Kup — y)) (39)
@Eg \My=1anda,=awith0 < a<2/L:
Uit = Say (u,, — aKT (Kup — y)) (40)

So-called “iterative soft-thresholding algorithm” (ISTA) [5]
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Iterative soft-thresholding algorithm (1)

@ lterative algorithm for finding minimizer of
F(u) = 51K — yl5 + ullull:

Un+1 = SOW« |:Un + O[KT(y - Kun)] SM(U) %
with §,, = component-wise soft-thresholding:
u—pu uzpu K .
Su(u) =4 0 ul < p - u
u—+p u<-—p 7
@ Properties: -

@ Simple
© Converges for o < 2/||K||?
© Soft-thresholding guarantees sparsity of u, at every iteration

o n2
Q F(u)) —F(0) < w vn >0
@ (Other algorithms exist as well)

9 [5, 4]
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lterative soft-thresholding algorithm (2)

’Un—1

@ ISTA can be slow |

@ Improvement (FISTA): ’.’u,7
lun + )\nX

Upp1 = T(Un + )\n(un — Un_—])) i:l. ugii/‘(un y Un_1)
with same T
— T n-—1
T(u) =Sau [u+aK (y —Ku)| and X\, = s

NB: up + An(Un — up—1) is not a convex combination of u, and u,_4
@ Advantages:
@ Simple
© Works for o < 1/||K||?
o _ Aluo — 1|l
© F(un) - F(o) < A
© Optimal (in some sense)
® See[1, 8]

vn >0
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Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u
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Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u

® prox, 4 = Pc (projection)
@ The proximal gradient algorithm reduces to:

up = arbitrary, e < ap <2/L —¢,e < \y <1
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Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u

® prox, 4 = Pc (projection)
@ The proximal gradient algorithm reduces to:

up = arbitrary, e < ap <2/L —¢,e < \y <1
@ Other step-length selection schemes are possible. E.g. one can
show that Vo, > 0 in iteration (41) there exists A, such that:

f(un) — f(Uny1) > —oXn [(VF(Un), up — Upsq)] >0 0<o<)

(“Armijo step-length selection rule”).
In this way, «, can be chosen freely to accelerate convergence,
while A\, is chosen to guarantee convergence [2, 11, 10]
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Second part

@ Discuss iterative algorithm for the problem
f(u) + g(Au) (42)

where f is convex with Lipschitz continuous gradient, g is convex
and A is a linear map,

@ using only knowledge of Vf, A and prox,,

@ but without knowledge of prox, 4.y !
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