

2585-27

Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Numerical algorithms for sparse recovery

I. Loris ULB, Brussels Belgium

Numerical algorithms for sparse recovery (part 1)

Ignace Loris

Université Libre de Bruxelles

Coherent state transforms, time-frequency and time-scale analysis, applications
Trieste, Italy, June 2–21, 2014

Theme: Sparse recovery

What is it?

"finding an answer without asking too many questions, knowing the answer is simple"

In mathematical language:
 Solving an under-determined linear system

$$Ku = y$$
 $(y, K \text{ known})$

for u,

- when number of y_i is much smaller than number of u_i ,
- but knowing that many of the u_i are zero ("sparsity").
- Example: recovering an object (image) from incomplete measurements knowing that its wavelet transform is sparse

Mathematical framework

Solve linear relations between unknown u and measurement data y:

$$Ku = y$$

- Here:
 - y = data vector (known)
 - K = linear operator(known)
 - u = model vector (unknown)
- Problems: insufficient data, inconsistent (noisy) data, ill-conditioning of K:
 - → No solution or no unique solution
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

NB: minimizer of $f(u) \stackrel{\text{def.}}{\leftrightarrow} \arg \min_{u} f(u)$

- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)

- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

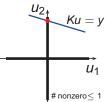
A trade-off between sparsity promotion and tractability (convexity)

- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)



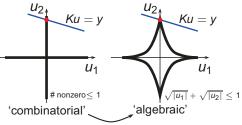
'combinatorial'

- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)

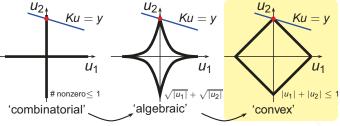


- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)

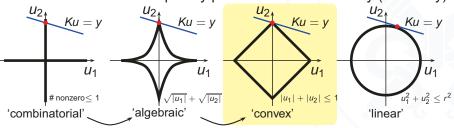


- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_2^2 + \text{penalty}$$

with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)

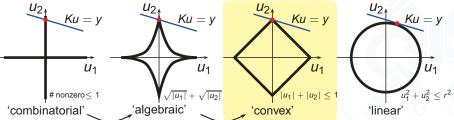


- How to enforce sparsity on solutions of Ku = y?
- Minimize a penalized least-squares functional:

$$u^{\mathrm{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mathrm{penalty}$$

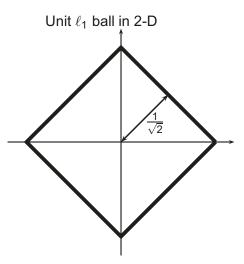
with a judiciously chosen 'sparsity promoting' penalty.

A trade-off between sparsity promotion and tractability (convexity)

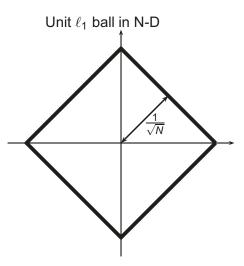


 ℓ_1 -norm penalty $||u||_1 \stackrel{\mathsf{def}}{=} \sum_i |u_i|$ promotes sparsity and is tractable

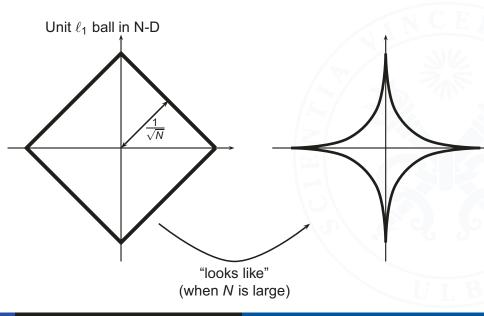
Sparsity and ℓ_1 norm



Sparsity and ℓ_1 norm



Sparsity and ℓ_1 norm



- Analysis-style sparsity:
 - Find an (approximate) solution to Ku = y and
 - Require that certain linear combinations Au of unknown u are sparse:

$$u$$
 with many $(Au)_i = 0$

Here A (analysis operator) is explicitly known.

Corresponding optimization problem:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \lambda ||Au||_{1}$$

Primary example of (1) is total variation (TV) penalty in imaging:
 A = local gradient of an image:

$$\|Au\|_1 = \sum_{ ext{pixels}} \sqrt{(\Delta_x u)^2 + (\Delta_y u)^2}$$

- Analysis-style sparsity:
 - Find an (approximate) solution to Ku = y and
 - Require that certain linear combinations Au of unknown u are sparse:

$$u$$
 with many $(Au)_i = 0$

Here A (analysis operator) is explicitly known.

Corresponding optimization problem:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (1)

Primary example of (1) is total variation (TV) penalty in imaging:
 A = local gradient of an image:

$$||Au||_1 = \sum_{\text{pixels}} \sqrt{(\Delta_X u)^2 + (\Delta_Y u)^2}$$

- Analysis-style sparsity:
 - Find an (approximate) solution to Ku = y and
 - Require that certain linear combinations Au of unknown u are sparse:

$$u$$
 with many $(Au)_i = 0$

Here A (analysis operator) is explicitly known.

Corresponding optimization problem:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (1)

Primary example of (1) is total variation (TV) penalty in imaging:
 A = local gradient of an image:

$$\|Au\|_1 = \sum_{ ext{pixels}} \sqrt{(\Delta_{\mathsf{X}} u)^2 + (\Delta_{\mathsf{y}} u)^2}$$

 Synthesis-style sparsity:
 Express unknown u as a sparse linear combination of a set of known basis/frame/dictionary vectors:

$$u = Sv$$
 with many $v_i = 0$

$$v^{
m rec} = rg \min_{v} rac{1}{2} \|KSv - y\|_2^2 + \lambda \|v\|_1$$
 and $u^{
m rec} = Sv^{
m rec}$ (2)

- Example of (2): sparse combination of wavelets
- If AS = SA = 1 then: synthesis sparsity $u^{rec} = analysis$ sparsity u^{rec}

 Synthesis-style sparsity:
 Express unknown u as a sparse linear combination of a set of known basis/frame/dictionary vectors:

$$u = Sv$$
 with many $v_i = 0$

$$v^{\text{rec}} = \arg\min_{v} \frac{1}{2} ||KSv - y||_{2}^{2} + \lambda ||v||_{1} \quad \text{and} \quad u^{\text{rec}} = Sv^{\text{rec}}$$
 (2)

- Example of (2): sparse combination of wavelets
- If AS = SA = 1 then: synthesis sparsity $u^{rec} = analysis$ sparsity u^{re}

 Synthesis-style sparsity:
 Express unknown u as a sparse linear combination of a set of known basis/frame/dictionary vectors:

$$u = Sv$$
 with many $v_i = 0$

$$v^{\text{rec}} = \arg\min_{v} \frac{1}{2} ||KSv - y||_2^2 + \lambda ||v||_1$$
 and $u^{\text{rec}} = Sv^{\text{rec}}$ (2)

- Example of (2): sparse combination of wavelets
- If AS = SA = 1 then: synthesis sparsity $u^{rec} = analysis$ sparsity u^{rec}

 Synthesis-style sparsity:
 Express unknown u as a sparse linear combination of a set of known basis/frame/dictionary vectors:

$$u = Sv$$
 with many $v_i = 0$

$$v^{\text{rec}} = \arg\min_{v} \frac{1}{2} ||KSv - y||_{2}^{2} + \lambda ||v||_{1} \quad \text{and} \quad u^{\text{rec}} = Sv^{\text{rec}}$$
 (2)

- Example of (2): sparse combination of wavelets
- If AS = SA = 1 then: synthesis sparsity $u^{rec} = analysis$ sparsity u^{rec}

Cost functions for 'sparse recovery'

• Many $u_i = 0$, then use penalty of type $\lambda ||u||_1$:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|u\|_{1}$$
 (3)

• Many $(Au)_i = 0$, then use penalty of type $\lambda ||Au||_1$:

$$u^{\mathrm{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_2^2 + \lambda \|Au\|_1$$

(A not necessarily invertible)

• (3) is a special case of (4): A = 1 or change of variables if $\exists A^{-1}$

Cost functions for 'sparse recovery'

• Many $u_i = 0$, then use penalty of type $\lambda ||u||_1$:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|u\|_{1}$$
 (3)

• Many $(Au)_i = 0$, then use penalty of type $\lambda ||Au||_1$:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (4)

(A not necessarily invertible)

• (3) is a special case of (4): A = 1 or change of variables if $\exists A^{-1}$

Cost functions for 'sparse recovery'

• Many $u_i = 0$, then use penalty of type $\lambda ||u||_1$:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|u\|_{1}$$
 (3)

• Many $(Au)_i = 0$, then use penalty of type $\lambda ||Au||_1$:

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (4)

(A not necessarily invertible)

• (3) is a special case of (4): A = 1 or change of variables if $\exists A^{-1}$

Goal

 Write iterative algorithms for finding the numerical solutions to the following optimization problems

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \lambda ||u||_{1}$$
 (5)

and

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (6)

where K, y and A are given.

- Problem (5) in part 1, problem (6) in part 2.
- These objective functions are convex ⇒ study the problem in the framework of convex optimization
- NB: "course"=definitions, properties, proofs, exercises!

Goal

 Write iterative algorithms for finding the numerical solutions to the following optimization problems

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|u\|_{1}$$
 (5)

and

$$u^{\text{rec}} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$
 (6)

where K, y and A are given.

- Problem (5) in part 1, problem (6) in part 2.
- These objective functions are convex ⇒ study the problem in the framework of convex optimization
- NB: "course"=definitions, properties, proofs, exercises!

Preliminaries

- Real d-dimensional space \mathbb{R}^d
- Inner product of $u, v \in \mathbb{R}^d$: $\langle u, v \rangle = \sum_{i=1}^d u_i v_i$
- Euclidean norm: $\|u\|_2 = \sqrt{\langle u,u\rangle} = \sqrt{\sum_{i=1}^d u_i^2}$
- Some special products:
 - $||u \pm v||_2^2 = ||u||_2^2 + ||v||_2^2 \pm 2\langle u, v \rangle$
 - $2\langle u, v \rangle = \pm \|u \pm v\|_2^2 \mp \|u\|_2^2 \mp \|v\|_2^2$
 - $\langle u, v \rangle = \frac{\|u + v\|_2^2 \|u v\|_2^2}{4}$
- $\langle u, Av \rangle = \langle A^T u, v \rangle$, where A is a linear operator (matrix)

Convex sets and convex functions

Definition

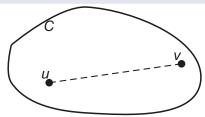
A set $C \subset \mathbb{R}^d$ is said to be convex if

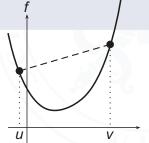
$$u, v \in C$$
 \Rightarrow $\lambda u + (1 - \lambda)v \in C$ (7)

for all $\lambda \in [0, 1]$. A function $f : \mathbb{R}^d \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ is said to be convex if

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v) \tag{8}$$

for all points $u, v \in \mathbb{R}^d$ and for all $\lambda \in [0, 1]$.





NB: $dom(f) = \{u | f(u) < +\infty\}, f \text{ is 'proper' means'} dom(f) \neq \emptyset$

Why convex optimization?

Property

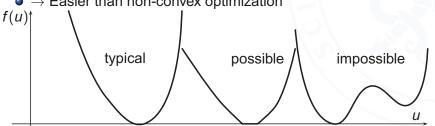
A local minimum of a convex function is necessarily a global minimum

Proof: Suppose u is a local minimum of the convex function f. If there is a point v where f(v) < f(u) then

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v) < \lambda f(u) + (1 - \lambda)f(u) = f(u)$$

for all $\lambda \in [0, 1[$. But $\lambda u + (1 - \lambda)v \xrightarrow{\lambda \to 1} u$ which contradicts the assumption.

● → Easier than non-convex optimization



Convex functions: Examples

- $f(u) = ||u||_2^2$ is a convex function
- Any norm on \mathbb{R}^d is a convex function, e.g.:

$$||u||_1 = \sum_i |u_i|, \qquad ||u||_2 = \left(\sum_i |u_i|^2\right)^{1/2} \quad \text{and} \quad ||u||_\infty = \max_i |u_i|$$
(9)

• ℓ_p -ball of radius R:

$$B_R^{(p)} = \{ u \mid ||u||_p \le R \}, \quad \text{for} \quad p = 1, 2, \infty.$$
 (10)

are convex sets

• The indicator functions of these convex sets:

$$i_{B_R^{(p)}}(u) = \begin{cases} 0 & \|u\|_p \le R \\ +\infty & \|u\|_p > R \end{cases}$$
 (11)

are also convex functions

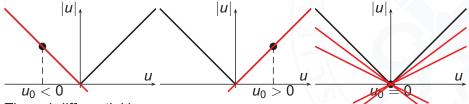
Subdifferential of a convex function

Definition

The subdifferential $\partial f(u_0)$ of f at the point $u_0 \in \mathbb{R}^d$ is the *set* of vectors $w \in \mathbb{R}^d$ such that

$$f(u) \ge f(u_0) + \langle w, u - u_0 \rangle \qquad \forall u \in \mathbb{R}^d.$$
 (12)

Example: $f : \mathbb{R} \to \mathbb{R} : f(u) = |u|$ is not differentiable in $u_0 = 0$.



The subdifferential is:

$$\partial f(u) = \begin{cases} -1 & u < 0 \\ [-1, 1] & u = 0 \\ 1 & u > 0 \end{cases}$$
 (13)

Subdifferential of a convex differentiable function

If f is differentiable at u, the subdifferential reduces to the usual gradient Example: $f(u) = \frac{1}{2} ||Ku - y||_2^2$

$$\partial f(u) = \nabla f(u) = K^{T}(Ku - y) \tag{14}$$

Indeed: need to show that $f(u) \ge f(u_0) + \langle \nabla f(u_0), u - u_0 \rangle$ $\forall u$

$$\begin{array}{ll} -f(u)+f(u_{0})+\langle \nabla f(u_{0}),u-u_{0}\rangle &=& -\frac{1}{2}\|Ku-y\|_{2}^{2}+\frac{1}{2}\|Ku_{0}-y\|_{2}^{2}\\ &&+\langle K^{T}(Ku_{0}-y),u-u_{0}\rangle\\ \\ &=& -\frac{1}{2}\|Ku\|_{2}^{2}+\frac{1}{2}\|Ku_{0}\|_{2}^{2}\\ &&-\langle K(u_{0}-u),y\rangle\\ &&+\langle K^{T}(Ku_{0}-\chi),u-u_{0}\rangle\\ \\ &=& -\frac{1}{2}\|Ku\|_{2}^{2}-\frac{1}{2}\|Ku_{0}\|_{2}^{2}-\langle Ku_{0},Ku\rangle\\ \\ &=& -\frac{1}{2}\|K(u_{0}-u)\|_{2}^{2}\\ \\ &\leq& 0 \qquad \forall v \end{array}$$

NB: We will assume functions are subdifferentiable.

Characterization of the minimizer(s) of a convex function

 $\overset{\mathsf{def.}}{\longleftrightarrow}$ Notation: minimizer of f(u) $arg min_u f(u)$

Property

$$\hat{u} \in \arg\min_{u} f(u) \qquad \Leftrightarrow \qquad 0 \in \partial f(\hat{u}).$$
 (15)

Proof:

$$\begin{array}{lll} \hat{u} \in \arg\min_{u} f(u) & \Leftrightarrow & f(u) \geq f(\hat{u}) & \forall u \\ & \Leftrightarrow & f(u) \geq f(\hat{u}) + \langle 0, u - \hat{u} \rangle & \forall u \\ & \Leftrightarrow & 0 \in \partial f(\hat{u}) & \Box \end{array}$$

Example: Suppose one wants to find a minimizer of f(u) + g(u), where f is differentiable but g is not.

$$\hat{u} = \arg\min_{u} f(u) + g(u) \quad \Leftrightarrow \quad 0 \in \partial \left(f(\hat{u}) + g(\hat{u}) \right) \ \Leftrightarrow \quad 0 \in \nabla f(\hat{u}) + \partial g(\hat{u}) \ \Leftrightarrow \quad \exists \hat{w} \in \partial g(\hat{u}) \quad \text{s.t.} \quad 0 = \nabla f(\hat{u}) + \hat{w}$$

Proximal operator: definition

The projection onto the non-empty closed convex set C can be written as

$$P_C(u) = \arg\min_{v} \frac{1}{2} \|u - v\|_2^2 + i_C(v), \tag{16}$$

where i_C is the indicator function of C: $i_C(v) = \begin{cases} 0 & v \in C \\ +\infty & v \notin C. \end{cases}$

Definition (Proximal operator)

The proximal operator of a convex function $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ is defined as:

$$\operatorname{prox}_{f}(u) = \arg\min_{v} \frac{1}{2} \|u - v\|_{2}^{2} + f(v). \tag{17}$$

Remarks:

- ullet f is assumed to be lower semi-continuous and proper $(\not\equiv +\infty)$
- prox_f is uniquely defined because $||u v||_2^2$ is strictly convex
- 'standard tool for non-smooth, constrained, large-scale minimization problems' [9]

Proximal operator: elementary examples

It is easy to check that (exercise):

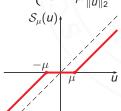
$$f(u) = \langle a, u \rangle + b \quad \Rightarrow \quad \operatorname{prox}_f(u) = u - a$$
 (18)

$$f(u) = \frac{\mu}{2} ||u||_2^2 \quad \Rightarrow \quad \text{prox}_f(u) = \frac{u}{1+\mu}$$
 (19)

$$f(u) = \mu |u|$$
 (1 var.) \Rightarrow $\operatorname{prox}_f(u) = \begin{cases} 0 & |u| \leq \mu \\ u - \mu \operatorname{sgn}(u) & |u| \geq \mu \end{cases}$ (20)

$$f(u) = \mu \|u\|_2$$
 \Rightarrow $\operatorname{prox}_f(u) = \begin{cases} 0 & \text{if } \|u\|_2 \le \mu \\ u - \mu \frac{u}{\|u\|_2} & \text{if } \|u\|_2 \ge \mu \end{cases}$

Proximity operator of $\mu|u|$ is "soft-thresholding": $\operatorname{prox}_f(u) = \mathcal{S}_{\mu}(u)$



Proximal operator: Properties

Property

Let $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ be a convex function, then:

$$g(u) = f(u - a)$$
 \Rightarrow $\operatorname{prox}_g(u) = a + \operatorname{prox}_f(u - a).$ (22)

Proof: One finds that:

$$\begin{array}{lll} \operatorname{prox}_g(u) & = & \arg\min_v \frac{1}{2} \|u - v\|_2^2 + g(v) \\ & = & \arg\min_v \frac{1}{2} \|u - v\|_2^2 + f(v - a) \\ & \stackrel{v = a + \tilde{v}}{=} & a + \arg\min_{\tilde{v}} \frac{1}{2} \|u - a - \tilde{v}\|_2^2 + f(\tilde{v}) \\ & = & a + \operatorname{prox}_f(u - a) \end{array}$$

NB: Similar formula for $prox_q(u)$ where $g(u) = f(\alpha u)$:

$$\operatorname{prox}_g(u) = \frac{1}{\alpha} \operatorname{prox}_{\alpha^2 f}(\alpha u)$$

Proximal operator: Properties

Property

Let $f_1: \mathbb{R}^{d_1} \to \overline{\mathbb{R}}$ and $f_2: \mathbb{R}^{d_2} \to \overline{\mathbb{R}}$ be convex functions of u_1 and u_2 respectively. Let $f: \mathbb{R}^{d_1+d_2} \to \overline{\mathbb{R}}$. One has:

$$f(u_1, u_2) = f_1(u_1) + f_2(u_2) \Rightarrow \operatorname{prox}_f(u_1, u_2) = (\operatorname{prox}_{f_1}(u_1), \operatorname{prox}_{f_2}(u_2)).$$
 (23)

Proof: Setting $u=(u_1,u_2)$ and $v=(v_1,v_2)$ (both elements of $\mathbb{R}^{d_1+d_2}$), one has

$$\arg\min_{v} \frac{1}{2} \|u - v\|^{2} + f(v)$$

$$= \arg\min_{v_{1}, v_{2}} \frac{1}{2} \|(u_{1}, u_{2}) - (v_{1}, v_{2})\|_{2}^{2} + f_{1}(v_{1}) + f_{2}(v_{2})$$

$$= \arg\min_{v_{1}, v_{2}} \frac{1}{2} \|u_{1} - v_{1}\|_{2}^{2} + f_{1}(v_{1}) + \frac{1}{2} \|u_{2} - v_{2}\|_{2}^{2} + f_{2}(v_{2})$$

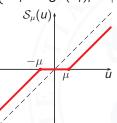
$$= (\operatorname{prox}_{f_{1}}(u_{1}), \operatorname{prox}_{f_{2}}(u_{2}))$$

Proximal operator: Example

Example 1:

$$f = \mu \|u\|_1 \qquad \Rightarrow \qquad \operatorname{prox}_f(u)_i = \left\{ \begin{array}{ll} 0 & |u_i| \leq \mu \\ u_i - \operatorname{sgn}(u_i)\mu & |u_i| \geq \mu. \end{array} \right. \tag{24}$$

Proximity operator of $\mu \|u\|_1$ is componentwise "soft-thresholding": $\operatorname{prox}_f(u) = \mathcal{S}_\mu(u)$



Example 2:
$$f(u) = \mu \sum_{i} \sqrt{u_{i,1}^2 + u_{i,2}^2}$$

$$(\operatorname{prox}_{f}(u))_{i} = \begin{cases} (0,0) & \text{if} \quad \sqrt{u_{i,1}^{2} + u_{i,2}^{2}} \leq \mu \\ (u_{i,1}, u_{i,2}) - \mu \frac{(u_{i,1}, u_{i,2})}{\sqrt{u_{i,1}^{2} + u_{i,2}^{2}}} & \text{if} \quad \sqrt{u_{i,1}^{2} + u_{i,2}^{2}} \geq \mu. \end{cases}$$
(25)

using formula (21).

Proximal operator: Properties

Property

Let $f: \mathbb{R}^d \to \bar{\mathbb{R}}$ be a convex function. If $t^+ = \operatorname{prox}_f(t^- + \Delta)$ then:

$$||t^{+} - t||_{2}^{2} \le ||t^{-} - t||_{2}^{2} - ||t^{+} - t^{-}||_{2}^{2} + 2\langle t^{+} - t, \Delta \rangle + 2f(t) - 2f(t^{+})$$
 (26)

for all t.

Proof:
$$t^+ = \operatorname{prox}_f(t^- + \Delta)$$

$$\Leftrightarrow t^{+} = \arg\min_{t} \frac{1}{2} ||t - (t^{-} + \Delta)||_{2}^{2} + f(t)$$

$$\Leftrightarrow \quad 0 \in t^+ - t^- - \Delta + \partial f(t^+)$$

$$\Leftrightarrow t^- + \Delta - t^+ \in \partial f(t^+)$$

$$\Leftrightarrow$$
 $f(t) \geq f(t^+) + \langle t^- + \Delta - t^+, t - t^+ \rangle$

$$\Leftrightarrow \quad 0 \leq 2\langle t^- - t^+, t^+ - t \rangle + 2\langle t^+ - t, \Delta \rangle + 2f(t) - 2f(t^+)$$

$$\Leftrightarrow ||t^+ - t||_2^2 \le ||t^- - t||_2^2 - ||t^+ - t^-||_2^2 + 2\langle t^+ - t, \Delta \rangle + 2f(t) - 2f(t^+)$$

Firmly non-expansive operators

Definition

A map $T: \mathbb{R}^d \to \mathbb{R}^d$ is said to be firmly non-expansive if

$$\|Tu - Tv\|_2^2 \le \langle Tu - Tv, u - v \rangle \qquad \forall u, v \in \mathbb{R}^d$$
 (27)

Property

 $prox_f$ is firmly non-expansive.

Proof: If
$$u^+ = \text{prox}_f(u)$$
, eq. (26) implies $(t^+ = u^+, t^- = u, \Delta = 0, t = v^+)$:

$$||u^+ - v^+||_2^2 \le ||u - v^+||_2^2 - ||u^+ - u||_2^2 + 2f(v^+) - 2f(u^+)$$

If
$$v^+ = \text{prox}_f(v)$$
, eq. (26) implies $(t^+ = v^+, t^- = v, \Delta = 0, t = u^+)$:

$$\|v^+ - u^+\|_2^2 \le \|v - u^+\|_2^2 - \|v^+ - v\|_2^2 + 2f(u^+) - 2f(v^+)$$

$$\Rightarrow 2\|u^{+} - v^{+}\|_{2}^{2} \leq \|u - v^{+}\|_{2}^{2} - \|u^{+} - u\|_{2}^{2} + \|v - u^{+}\|_{2}^{2} - \|v^{+} - v\|_{2}^{2}$$

$$= -2uv^{+} + 2u^{+}u - 2vu^{+} + 2v^{+}v$$

$$= 2\langle u^+ - v^+, u - v \rangle$$

Property

 $prox_{\mathfrak{f}}(u)$ is Lipschitz continuous in u, with Lipschitz constant equal to 1:

$$\|\operatorname{prox}_f(u) - \operatorname{prox}_f(v)\|_2 \le \|u - v\|_2 \qquad \forall u, v \in \mathbb{R}^d.$$
 (28)

Proof: $prox_f$ is firmly non-expansive:

$$\|\operatorname{prox}_f(u) - \operatorname{prox}_f(v)\|_2^2 \le \langle \operatorname{prox}_f(u) - \operatorname{prox}_f(v), u - v \rangle$$

Thus:

$$\|\operatorname{prox}_f(u) - \operatorname{prox}_f(v)\|_2^2 \le \|\operatorname{prox}_f(u) - \operatorname{prox}_f(v)\|_2 \|u - v\|_2$$

and hence:

$$\|\operatorname{prox}_f(u) - \operatorname{prox}_f(v)\|_2 < \|u - v\|_2$$

Property

For fixed u, $\operatorname{prox}_{\alpha f}(u)$ is continuous with respect to α ($\alpha > 0$).

Proof: Let $u_{\alpha} = \operatorname{prox}_{\alpha f}(u)$ and $u_{\alpha_0} = \operatorname{prox}_{\alpha_0 f}(u)$. We need to prove that $\|u_{\alpha} - u_{\alpha_0}\|_2 \stackrel{\alpha \to \alpha_0}{\longrightarrow} 0$.

Eq. (26) with $(t^+=u_{\alpha},t^-=u,\Delta=0,t=u_{\alpha_0})$ implies:

$$\|u_{\alpha} - u_{\alpha_0}\|_2^2 \le \|u - u_{\alpha_0}\|_2 - \|u_{\alpha} - u\|_2^2 + 2\alpha f(u_{\alpha_0}) - 2\alpha f(u_{\alpha})$$

Eq. (26) with $(t^{+}=u_{\alpha_{0}},t^{-}=u,\Delta=0,t=u_{\alpha})$ implies:

$$||u_{\alpha_0} - u_{\alpha}||_2^2 \le ||u - u_{\alpha}||_2^2 - ||u_{\alpha_0} - u||_2^2 + 2\alpha_0 f(u_{\alpha}) - 2\alpha_0 f(u_{\alpha_0})$$

Together:

$$2\|u_{\alpha}-u_{\alpha_{0}}\|_{2}^{2} \leq 2(\alpha-\alpha_{0})(f(u_{\alpha_{0}})-f(u_{\alpha}))$$

We treat the left and right limit ($\alpha \to \alpha_0$) separately:

• Case $\alpha > \alpha_0$ and $\alpha \to \alpha_0$: Choose $\alpha_0 < \alpha \le 2\alpha_0$ (with $2\alpha_0 > \alpha_0$). Then $f(u_{2\alpha_0}) \le f(u_{\alpha})$:

$$||u_{\alpha} - u_{\alpha_{0}}||_{2}^{2} \leq (\alpha - \alpha_{0})(f(u_{\alpha_{0}}) - f(u_{\alpha})) \\ \leq (\alpha - \alpha_{0})(f(u_{\alpha_{0}}) - f(u_{2\alpha_{0}})) \stackrel{\alpha \to \alpha_{0}}{\longrightarrow} 0$$

NB: if $\alpha_0 > 0$ then $u_{\alpha_0}, u_{2\alpha_0} \in \text{dom}(f) \neq \emptyset$ and rhs is finite

• Case $\alpha < \alpha_0$ and $\alpha \to \alpha_0$: Choose $\alpha_0/2 \le \alpha < \alpha_0$ (with $\alpha_0/2 < \alpha_0$). Then $f(u_\alpha) \le f(u_{\alpha_0/2})$.

$$\|u_{\alpha} - u_{\alpha_{0}}\|_{2}^{2} \leq (\alpha_{0} - \alpha) (f(u_{\alpha}) - f(u_{\alpha_{0}}))$$

$$\leq (\alpha_{0} - \alpha) (f(u_{\alpha_{0}/2}) - f(u_{\alpha_{0}})) \stackrel{\alpha \to \alpha_{0}}{\longrightarrow} 0$$

We have used:

Property

Let
$$u_{\alpha} = \operatorname{prox}_{\alpha f}(u) = \arg \min_{v \in \mathbb{Z}} \|v - u\|_2^2 + \alpha f(v)$$
. If $\alpha \geq \beta$ then $\|u_{\alpha} - u\|_2 \geq \|u_{\beta} - u\|_2$ and $f(u_{\alpha}) \leq f(u_{\beta})$. (Proof: exercise).

Property

 $\operatorname{prox}_{\alpha f}(u)$ is continuous with respect to (u, α) for $u \in \mathbb{R}^d$ and $\alpha > 0$.

Proof:

$$\begin{split} \|\mathsf{prox}_{\alpha f}(u) - \mathsf{prox}_{\alpha_0 f}(u_0)\|_2 \\ &= \|\mathsf{prox}_{\alpha f}(u) - \mathsf{prox}_{\alpha f}(u_0) + \mathsf{prox}_{\alpha f}(u_0) - \mathsf{prox}_{\alpha_0 f}(u_0)\|_2 \\ &\leq \|\mathsf{prox}_{\alpha f}(u) - \mathsf{prox}_{\alpha f}(u_0)\|_2 + \|\mathsf{prox}_{\alpha f}(u_0) - \mathsf{prox}_{\alpha_0 f}(u_0)\|_2 \\ &\leq \|u - u_0\|_2 + \|\mathsf{prox}_{\alpha f}(u_0) - \mathsf{prox}_{\alpha_0 f}(u_0)\|_2 \\ &\leq \epsilon/2 + \epsilon/2 \quad \text{if} \quad \|(u, \alpha) - (u_0, \alpha_0)\| < \delta \end{split}$$

NB: This means that if $\alpha_n \stackrel{n \to \infty}{\longrightarrow} \alpha$ and $u_n \stackrel{n \to \infty}{\longrightarrow} u$ then:

$$\operatorname{prox}_{\alpha_n f}(u_n) \stackrel{n \to \infty}{\longrightarrow} \operatorname{prox}_{\alpha f}(u) \tag{29}$$

Characterization of subdifferential

Property

Let $g: \mathbb{R}^d \to \bar{\mathbb{R}}$ be a convex function. One has:

$$w \in \partial g(u) \qquad \Leftrightarrow \qquad u = \operatorname{prox}_g(u+w)$$
 (30)

Proof: $w \in \partial g(u)$

$$\begin{split} &\Leftrightarrow 0 \in -w + \partial g(u) \\ &\Leftrightarrow 0 \in v - (u+w) + \partial g(v) \quad \text{at} \quad v = u \\ &\Leftrightarrow 0 \in \partial_v \left[\frac{1}{2} \|v - (u+w)\|_2^2 + g(v) \right] \quad \text{at} \quad v = u \\ &u = \arg\min_v \frac{1}{2} \|v - (u+w)\|_2^2 + g(v) = \operatorname{prox}_g(u+w) \end{split}$$

Characterization of minimizers of f + g

Property

Let $f : \mathbb{R}^d \to \mathbb{R}$ convex differentiable and $g : \mathbb{R}^d \to \overline{\mathbb{R}}$ convex functions. The following are equivalent:

- ① \hat{u} is a minimizer of f(u) + g(u).
- **2** There exist $\hat{\mathbf{w}} \in \partial g(\hat{\mathbf{u}})$ such that $\hat{\mathbf{w}} = -\nabla f(\hat{\mathbf{u}})$
- ③ \hat{u} that satisfies the equation: $\hat{u} = \text{prox}_{\alpha g}(\hat{u} \alpha \nabla f(\hat{u}))$ for $\alpha > 0$.

Proof: (2)
$$\Leftrightarrow$$
 $\hat{u} = \operatorname{prox}_g(\hat{u} + \hat{w})$ s.t. $\hat{w} = -\nabla f(\hat{u})$

$$\Leftrightarrow \hat{u} = \operatorname{prox}_g(\hat{u} - \nabla f(\hat{u}))$$

and minimizer of f(u) + g(u) is same as minimizer of $\alpha f(u) + \alpha g(u)$. NB: The last equation is a fixed-point equation (Ansatz for writing an iterative algorithm).

- \hat{u} is minimizer of f(u) + g(u)
- \hat{u} satisfies $\hat{u} = \text{prox}_{\alpha g}(\hat{u} \alpha \nabla f(\hat{u}))$ for some $\alpha > 0$
- Iterative algorithm could be:

$$u_{n+1} = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n))$$

or

$$u_{n+1} = \operatorname{prox}_{\alpha_n g}(u_n - \alpha_n \nabla f(u_n)).$$

• We will study convergence of:

$$\begin{cases} \tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n \nabla f(u_n)) \\ u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{cases}$$

- \hat{u} is minimizer of f(u) + g(u)
- \hat{u} satisfies $\hat{u} = \text{prox}_{\alpha g}(\hat{u} \alpha \nabla f(\hat{u}))$ for some $\alpha > 0$
- Iterative algorithm could be:

$$u_{n+1} = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n))$$

or

$$u_{n+1} = \operatorname{prox}_{\alpha_n g}(u_n - \alpha_n \nabla f(u_n)).$$

• We will study convergence of:

$$\left(\begin{array}{ll} \tilde{u}_{n+1} & = & \operatorname{prox}_{\alpha_n g} \left(u_n - \alpha_n \nabla f(u_n) \right) \\ u_{n+1} & = & (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{array} \right)$$

- \hat{u} is minimizer of f(u) + g(u)
- \hat{u} satisfies $\hat{u} = \text{prox}_{\alpha g}(\hat{u} \alpha \nabla f(\hat{u}))$ for some $\alpha > 0$
- Iterative algorithm could be:

$$u_{n+1} = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n))$$

or

$$u_{n+1} = \operatorname{prox}_{\alpha_n g}(u_n - \alpha_n \nabla f(u_n)).$$

• We will study convergence of:

$$\begin{cases} \tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n \nabla f(u_n)) \\ u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{cases}$$

- \hat{u} is minimizer of f(u) + g(u)
- \hat{u} satisfies $\hat{u} = \text{prox}_{\alpha g}(\hat{u} \alpha \nabla f(\hat{u}))$ for some $\alpha > 0$
- Iterative algorithm could be:

$$u_{n+1} = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n))$$

or

$$u_{n+1} = \operatorname{prox}_{\alpha_n g}(u_n - \alpha_n \nabla f(u_n)).$$

• We will study convergence of:

$$\begin{cases} \tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n \nabla f(u_n)) \\ u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{cases}$$

Lemma: $\frac{1}{L}\nabla f$ is firmly non-expansive

Property

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex with Lipschitz continuous gradient (L) then $\frac{1}{L}\nabla f$ is firmly non-expansive:

$$\|\nabla f(u) - \nabla f(v)\|_2^2 \le L\langle \nabla f(u) - \nabla f(v), u - v \rangle \qquad \forall u, v \in \mathbb{R}^d$$
 (31)

Proof: see [7, Part 2, Chapter X, Th. 4.2.2]. Here we give a proof for $f(u) = \frac{1}{2} ||Ku - y||_2^2$. In this case $\nabla f(u) = K^T(Ku - y)$ and $L = \sigma_{\max}(K)^2$, such that:

$$\begin{split} \|\nabla f(u) - \nabla f(v)\|_{2}^{2} &= \|K^{T}(Ku - y) - K^{T}(Ku - y)\|_{2}^{2} \\ &= \|K^{T}(Ku - v)\|_{2}^{2} \\ &\leq L\|K(u - v)\|_{2}^{2} \\ &= L\langle K(u - v), K(u - v)\rangle \\ &= L\langle K^{T}K(u - v), u - v\rangle \\ &= L\langle \nabla f(u) - \nabla f(v), u - v\rangle \end{split}$$

Proximal gradient algorithm

Theorem (proximal gradient algorithm [4])

Let $\epsilon > 0$. IF $f : \mathbb{R}^d \to \mathbb{R}$ is convex with Lipschitz continuous gradient (L), $g : \mathbb{R}^d \to \mathbb{R}$ is convex, proper, lower semi-continuous, and a minimizer of F(u) = f(u) + g(u) exists, THEN the proximal gradient algorithm:

$$\begin{cases}
\tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n \nabla f(u_n)) \\
u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1}
\end{cases}$$
(32)

with $u_0 =$ arbitrary, $\epsilon \le \alpha_n \le 2/L - \epsilon$ and $\epsilon \le \lambda_n \le 1$ converges to a minimizer of F(u).

Proof: Let $\hat{u} \in \arg\min_{u} f(u) + g(u)$, i.e. $\hat{u} = \operatorname{prox}_{\alpha g} (\hat{u} - \alpha \nabla f(\hat{u}))$. One has:

$$||u_{n+1} - \hat{u}||_2^2 = (1 - \lambda_n)||u_n - \hat{u}||_2^2 + \lambda_n||\tilde{u}_{n+1} - \hat{u}||_2^2 - \lambda_n(1 - \lambda_n)||u_n - \tilde{u}_{n+1}||_2^2$$
(33)

Recall property of proximal operators

If $t^+ = \operatorname{prox}_g(t^- + \Delta)$ then:

$$||t^+ - t||_2^2 \le ||t^- - t||_2^2 - ||t^+ - t^-||_2^2 + 2\langle t^+ - t, \Delta \rangle + 2g(t) - 2g(t^+)$$
 (34)

for all t.

We will use this property on the (iteration) relation:

$$\tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} \left(u_n - \alpha_n \nabla f(u_n) \right)$$

with
$$t^+ = \tilde{u}_{n+1}, t^- = u_n, t = \hat{u}, \Delta = -\alpha_n \nabla f(u_n)$$
,

and on the fixed-point relation:

$$\hat{u} = \mathsf{prox}_{\alpha_n g} \left(\hat{u} - \alpha_n \nabla f(\hat{u}) \right)$$

with
$$t^+ = \hat{u}, t^- = \hat{u}, t = \tilde{u}_{n+1}, \Delta = -\alpha_n \nabla f(\hat{u})$$

It follows from $\tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n \nabla f(u_n))$ and eq. (26) with $t^+ = \tilde{u}_{n+1}, t^- = u_n, t = \hat{u}, \Delta = -\alpha_n \nabla f(u_n)$ that:

$$\|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} \leq \|u_{n} - \hat{u}\|_{2}^{2} - \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} + 2\langle \tilde{u}_{n+1} - \hat{u}, -\alpha_{n} \nabla f(u_{n}) \rangle + 2\alpha_{n} g(\hat{u}) - 2\alpha_{n} g(\tilde{u}_{n+1})$$

It follows from $\hat{u} = \text{prox}_{\alpha_n g} (\hat{u} - \alpha_n \nabla f(\hat{u}))$ and eq. (26) with $t^+ = \hat{u}, t^- = \hat{u}, t = \tilde{u}_{n+1}, \Delta = -\alpha_n \nabla f(\hat{u})$ that:

Together:

$$\|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} \leq \|u_{n} - \hat{u}\|_{2}^{2} - \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} + 2\alpha_{n}\langle \hat{u} - \tilde{u}_{n+1}, \nabla f(u_{n}) - \nabla f(\hat{u})\rangle$$
(35)

The inner product can be bounded by:

$$\langle \hat{u} - \tilde{u}_{n+1}, \nabla f(u_n) - \nabla f(\hat{u}) \rangle = \langle \hat{u} - u_n, \nabla f(u_n) - \nabla f(\hat{u}) \rangle \\
+ \langle u_n - \tilde{u}_{n+1}, \nabla f(u_n) - \nabla f(\hat{u}) \rangle \\
\leq \frac{-1}{L} \|\nabla f(u_n) - \nabla f(\hat{u})\|_2^2 \\
+ \langle u_n - \tilde{u}_{n+1}, \nabla f(u_n) - \nabla f(\hat{u}) \rangle \\
= \langle \sqrt{L}(u_n - \tilde{u}_{n+1}) - \frac{1}{\sqrt{L}} (\nabla f(u_n) - \nabla f(\hat{u})), \\
\frac{1}{\sqrt{L}} (\nabla f(u_n) - \nabla f(\hat{u})) \rangle \\
\leq \frac{L \|u_n - \tilde{u}_{n+1} + 0\|_2^2 - \|u_n - \tilde{u}_{n+1} - \frac{2}{\sqrt{L}} \dots \|_2^2}{4} \\
\leq \frac{L}{4} \|u_n - \tilde{u}_{n+1}\|_2^2$$

The latter inequality combined with expression (35) yields:

$$\begin{aligned} \|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} & \leq \|u_{n} - \hat{u}\|_{2}^{2} - \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} + 2\alpha_{n} \frac{L}{4} \|u_{n} - \tilde{u}_{n+1}\|_{2}^{2} \\ & = \|u_{n} - \hat{u}\|_{2}^{2} - (1 - \frac{\alpha_{n}L}{2}) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} \end{aligned}$$

This can be inserted in expression (33) to yield:

$$\begin{aligned} \|u_{n+1} - \hat{u}\|_{2}^{2 \stackrel{(33)}{=}} (1 - \lambda_{n}) \|u_{n} - \hat{u}\|_{2}^{2} + \lambda_{n} \|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} - \lambda_{n} (1 - \lambda_{n}) \|u_{n} - \tilde{u}_{n+1}\|_{2}^{2} \\ & \leq (1 - \lambda_{n}) \|u_{n} - \hat{u}\|_{2}^{2} + \lambda_{n} \left[\|u_{n} - \hat{u}\|_{2}^{2} - (1 - \frac{\alpha_{n}L}{2}) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} \right] \\ & - \lambda_{n} (1 - \lambda_{n}) \|u_{n} - \tilde{u}_{n+1}\|_{2}^{2} \\ & = \|u_{n} - \hat{u}\|_{2}^{2} - \lambda_{n} \left[(1 - \frac{\alpha_{n}L}{2} + 1 - \lambda_{n}) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} \right] \\ & \leq \|u_{n} - \hat{u}\|_{2}^{2} - \epsilon (\epsilon L/2 + 0) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} \end{aligned}$$

as $\lambda_n \geq \epsilon, 1 - \lambda_n \geq 0$ and $1 - \frac{\alpha_n L}{2} \geq \epsilon L/2$.

One therefore has (with $c = \epsilon^2 L/2 > 0$):

$$||u_{n+1} - \hat{u}||_2^2 \le ||u_n - \hat{u}||_2^2 - c ||\tilde{u}_{n+1} - u_n||_2^2$$
 (36)

• Eq. (36) implies: $||u_{n+1} - \hat{u}||_2 \le ||u_n - \hat{u}||_2$, i.e. $(u_n)_n$ is bounded. As $(\alpha_n)_n$ and $(\lambda_n)_n$ are also bounded, there exists a common converging subsequence:

$$u_{n_j} \stackrel{j \to \infty}{\longrightarrow} u^{\dagger}, \quad \alpha_{n_j} \stackrel{j \to \infty}{\longrightarrow} \alpha > 0, \quad \lambda_{n_j} \stackrel{j \to \infty}{\longrightarrow} \lambda \quad \text{(with } 0 < \lambda \le 1\text{)}$$

Eq. (36) also implies (N > M):

$$c \sum_{n=M}^{N-1} \|\tilde{u}_{n+1} - u_n\|_2^2 \leq \sum_{n=M}^{N-1} \|u_n - \hat{u}\|_2^2 - \|u_{n+1} - \hat{u}\|_2^2$$

$$= \|u_M - \hat{u}\|_2^2 - \|u_N - \hat{u}\|_2^2 \qquad (37)$$

$$\leq \|u_M - \hat{u}\|_2^2 \text{ (= independent of } N)}$$

This means that $\|\tilde{u}_{n+1} - u_n\|_2 \stackrel{n \to \infty}{\longrightarrow} 0$ and thus: $\tilde{u}_{n_i+1} \stackrel{j \to \infty}{\longrightarrow} u^{\dagger}$

• But as $\tilde{u}_{n_j+1} = \operatorname{prox}_{\alpha_{n_i}g} (u_{n_j} - \alpha_{n_j} \nabla f(u_{n_j}))$, one finds $(j \to \infty)$ that:

$$u^\dagger = \operatorname{prox}_{lpha g} \left(u^\dagger - lpha
abla f(u^\dagger)
ight)$$

i.e. u^{\dagger} is a minimizer of f + g.

• Finally, choosing $\hat{u} = u^{\dagger}$, inequality (37) implies that:

$$||u_N - u^{\dagger}||_2^2 \le ||u_M - u^{\dagger}||_2^2$$
 for $N > M$

As $u_{n_j} \stackrel{J \to \infty}{\longrightarrow} u^{\dagger}$, the rhs can be made as small as one likes. This shows that the whole sequence $(u_n)_n$ converges to u^{\dagger} .

One also has:

$$\|\tilde{u}_{n+1} - u^{\dagger}\|_{2} = \|\operatorname{prox}_{\alpha_{n}g}(u_{n} - \alpha_{n}\nabla f(u_{n})) - \operatorname{prox}_{\alpha_{n}g}(u^{\dagger} - \alpha_{n}\nabla f(u^{\dagger}))\|_{2}$$

$$\leq \|u_{n} - \alpha_{n}\nabla f(u_{n}) - u^{\dagger} + \alpha_{n}\nabla f(u^{\dagger})\|_{2}$$

$$\leq (1 + \alpha_{n}L)\|u_{n} - u^{\dagger}\|_{2} \xrightarrow{n \to \infty} 0$$

Hence \tilde{u}_n also converges to u^{\dagger} .

Proximal gradient algorithm: remarks

1) It is possible to introduce error terms at each step:

Theorem (proximal gradient algorithm [4])

Let $\epsilon > 0$. IF $f : \mathbb{R}^d \to \mathbb{R}$ is convex with Lipschitz continuous gradient (L), $g : \mathbb{R}^d \to \overline{\mathbb{R}}$ is convex, proper, lower semi-continuous, and a minimizer of F(u) = f(u) + g(u) exists, THEN the proximal gradient algorithm:

$$\begin{cases}
\tilde{u}_{n+1} = \operatorname{prox}_{\alpha_n g} (u_n - \alpha_n (\nabla f(u_n) + \delta_n)) + \epsilon_n \\
u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1}
\end{cases}$$
(38)

with $u_0=$ arbitrary, $\epsilon \leq \alpha_n \leq 2/L-\epsilon$, $\epsilon \leq \lambda_n \leq 1$, $\sum_n \|\delta_n\|_2 < \infty$ and $\sum_n \|\epsilon_n\|_2 < \infty$ converges to a minimizer of F(u).

Proof: exercise.

2) Theorem also holds in (infinite-dimensional) Hilbert space, see [4].

Special case: sparse recovery

Choose
$$f(u) = \frac{1}{2} ||Ku - y||_2^2$$
 and $g(u) = \mu ||u||_1$, i.e.:

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \mu ||u||_{1}$$

- $\nabla f(u) = K^T(Ku y)$, with $L = \sigma_{\text{max}}(K)^2 = ||K||^2$
- $\operatorname{prox}_{\alpha g} = S_{\mu \alpha}$, i.e. $S_{\mu \alpha}(u)_i = \left\{ egin{array}{ll} 0 & |u_i| \leq \mu \alpha \\ u_i \mu \alpha \operatorname{sgn}(u_i) & |u_i| \geq \mu \alpha. \end{array} \right.$
- The proximal gradient algorithm reduces to:

$$u_{n+1} = (1 - \lambda_n)u_n + \lambda_n S_{\alpha_n \mu} \left(u_n - \alpha_n K^T (K u_n - y) \right)$$
 (39)

• E.g. $\lambda_n = 1$ and $\alpha_n = \alpha$ with $0 < \alpha < 2/L$:

$$u_{n+1} = S_{\alpha\mu} \left(u_n - \alpha K^T (K u_n - y) \right)$$
 (40)

So-called "iterative soft-thresholding algorithm" (ISTA) [5]

Iterative soft-thresholding algorithm (1)

Iterative algorithm for finding minimizer of

$$F(u) \equiv \frac{1}{2} ||Ku - y||_2^2 + \mu ||u||_1$$
:

$$u_{n+1} = S_{\alpha\mu} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

with $\mathcal{S}_{\mu}=$ component-wise soft-thresholding:

$$S_{\mu}(u) = \begin{cases} u - \mu & u \ge \mu \\ 0 & |u| \le \mu \\ u + \mu & u \le -\mu \end{cases}$$

 $S_{\mu}(u)$

- Properties:
 - Simple
 - 2 Converges for $\alpha < 2/\|K\|^2$
 - \odot Soft-thresholding guarantees sparsity of u_n at every iteration

$$F(u_n) - F(\hat{u}) \leq \frac{\|u_0 - \hat{u}\|_2^2}{2n}$$

- (Other algorithms exist as well)
- [5, 4]

 $\forall n > 0$

Iterative soft-thresholding algorithm (2)

- ISTA can be slow
- Improvement (FISTA):

$$u_{n+1} = T(u_n + \lambda_n(u_n - u_{n-1}))$$

 \hat{u}_{n-1} u_{n+1} u_{n+1} u_{n-1}

with same

$$T(u) \equiv S_{\alpha\mu} \left[u + \alpha K^T (y - Ku) \right]$$
 and $\lambda_n = \frac{n-1}{n+2}$.

NB: $u_n + \lambda_n(u_n - u_{n-1})$ is **not** a convex combination of u_n and u_{n-1}

- Advantages:
 - Simple
 - 2 Works for $\alpha < 1/\|K\|^2$

$$F(u_n) - F(\hat{u}) \leq \frac{4\|u_0 - \hat{u}\|_2^2}{(n+1)^2}$$

- Optimal (in some sense)
- See [1, 8]

 $\forall n > 0$

Special case: Gradient projection algorithm

 g(u) = I_C(u) (indicator function of a closed convex set C) for constrained optimization problem

$$\hat{u} = \arg\min_{u \in C} f(u) = \arg\min_{u} f(u) + g(u)$$

- $\operatorname{prox}_{\alpha_n q} = P_C$ (projection)
- The proximal gradient algorithm reduces to:

$$u_{n+1} = (1 - \lambda_n)u_n + \lambda_n P_C \left(u_n - \alpha_n \nabla f(u_n) \right) \tag{41}$$

$$u_0 = \text{arbitrary}, \ \epsilon \leq \alpha_n \leq 2/L - \epsilon, \ \epsilon \leq \lambda_n \leq 1$$

• Other step-length selection schemes are possible. E.g. one can show that $\forall \alpha_n > 0$ in iteration (41) there exists λ_n such that:

$$f(u_n) - f(u_{n+1}) \ge -\sigma \lambda_n \left[\langle \nabla f(u_n), u_n - \tilde{u}_{n+1} \rangle \right] > 0 \qquad (0 < \sigma < 1)$$

("Armijo step-length selection rule").

In this way, α_n can be chosen freely to accelerate convergence, while λ_n is chosen to guarantee convergence [2, 11, 10]

Special case: Gradient projection algorithm

 g(u) = I_C(u) (indicator function of a closed convex set C) for constrained optimization problem

$$\hat{u} = \arg\min_{u \in C} f(u) = \arg\min_{u} f(u) + g(u)$$

- $prox_{\alpha_n q} = P_C$ (projection)
- The proximal gradient algorithm reduces to:

$$u_{n+1} = (1 - \lambda_n)u_n + \lambda_n P_C \left(u_n - \alpha_n \nabla f(u_n)\right) \tag{41}$$

$$u_0 = \text{arbitrary}, \ \epsilon \leq \alpha_n \leq 2/L - \epsilon, \ \epsilon \leq \lambda_n \leq 1$$

• Other step-length selection schemes are possible. E.g. one can show that $\forall \alpha_n > 0$ in iteration (41) there exists λ_n such that:

$$f(u_n) - f(u_{n+1}) \ge -\sigma \lambda_n \left[\langle \nabla f(u_n), u_n - \tilde{u}_{n+1} \rangle \right] > 0 \qquad (0 < \sigma < 1)$$

("Armijo step-length selection rule")

In this way, α_n can be chosen freely to accelerate convergence, while λ_n is chosen to guarantee convergence [2, 11, 10]

Special case: Gradient projection algorithm

 g(u) = I_C(u) (indicator function of a closed convex set C) for constrained optimization problem

$$\hat{u} = \arg\min_{u \in C} f(u) = \arg\min_{u} f(u) + g(u)$$

- $prox_{\alpha_n q} = P_C$ (projection)
- The proximal gradient algorithm reduces to:

$$u_{n+1} = (1 - \lambda_n)u_n + \lambda_n P_C \left(u_n - \alpha_n \nabla f(u_n) \right) \tag{41}$$

$$u_0 = \text{arbitrary}, \ \epsilon \leq \alpha_n \leq 2/L - \epsilon, \ \epsilon \leq \lambda_n \leq 1$$

• Other step-length selection schemes are possible. E.g. one can show that $\forall \alpha_n > 0$ in iteration (41) there exists λ_n such that:

$$f(u_n) - f(u_{n+1}) \ge -\sigma \lambda_n \left[\langle \nabla f(u_n), u_n - \tilde{u}_{n+1} \rangle \right] > 0 \qquad (0 < \sigma < 1)$$

("Armijo step-length selection rule").

In this way, α_n can be chosen freely to accelerate convergence, while λ_n is chosen to guarantee convergence [2, 11, 10]

Second part

Discuss iterative algorithm for the problem

$$f(u) + g(Au) \tag{42}$$

where f is convex with Lipschitz continuous gradient, g is convex and A is a linear map,

- using only knowledge of ∇f , A and prox_g ,
- but without knowledge of $prox_{g(A \cdot)}$!

Acknowledgements

- Thanks to organizers.
- Thanks to collaborators
 - Hoan-Phung Bui,
 - Federica Porta,
 - Caroline Verhoeven.

Bibliography I

[1] Amir Beck and Marc Teboulle.

A fast iterative shrinkage-threshold algorithm for linear inverse problems.

SIAM Journal on Imaging Sciences, 2:183–202, 2009.

[2] Dimitri P. Bertsekas.

Nonlinear programming.

Athena Scientific, second edition, 1999.

[3] Alfred M. Bruckstein, David L. Donoho, and Michael Elad.

From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review. 51(1):34–81, 2009.

SIAIN Neview, 51(1).54-61, 2009

[4] Patrick L. Combettes and Valerie R. Wajs.

Signal recovery by proximal forward-backward splitting.

Multiscale Model. Simul., 4(4):1168–1200, January 2005.

[5] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications On Pure And Applied Mathematics, 57(11):1413–1457, November 2004.

[6] D. L. Donoho.

For most large underdetermined systems of linear equations the minimal ℓ_1 -norm solution is also the sparsest solution. Comm. Pure Appl. Math., 59:797–829, 2006.

Comm. Pure Appl. Matn., 59:797–829, 2000

[7] J. B. Hiriart-Urruty and C. Lemarechal.

Convex analysis and minimization algorithms.

Springer, 1993.

[8] Yu E. Nesterov.

A method for solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$.

Soviet Math. Dokl., 27:372-376, 1983.

Bibliography II

 [9] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1:123–231, 2014.

[10] Federica Porta and Ignace Loris. On some steplength approaches for proximal algorithms. 2014.

[11] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. Ser. B, 117:387–423, 2009.