)

The Abdus Salam

(CTP International Centre
for Theoretical Physics

N

2585-27

Joint ICTP-TWAS School on Coherent State Transforms, Time-
Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Numerical algorithms for sparse recovery

l. Loris

ULB, Brussels
Belgium

Strada Costiera, 11 - 34151 - Trieste - Italy « Tel. +39 0402240111 « Fax. +39 040224163 « sci_info@ictp.it « www.ictp.it
ICTP is govemned by UNESCO, IAEA, and ltaly, and it is a UNESCO Category 1 Institute

Numerical algorithms for sparse recovery (part 1)

Ignace Loris

Université Libre de Bruxelles

Coherent state transforms,
time-frequency and time-scale analysis, applications

Trieste, Italy, June 2-21, 2014

Ignace Loris (igloris@ulb.ac.be)

Theme: Sparse recovery

@ Whatis it?
“finding an answer without asking too many questions,
knowing the answer is simple”

@ In mathematical language:
Solving an under-determined linear system

Ku=y (v, K known)

for u,
@ when number of y; is much smaller than number of u;,
@ but knowing that many of the u; are zero (“sparsity”).

@ Example: recovering an object (image) from incomplete
measurements knowing that its wavelet transform is sparse

Ignace Loris (igloris@ulb.ac.be)

Mathematical framework

@ Solve linear relations between unknown u and measurement data y:
Ku=y

@ Here:
@ y = data vector (known)
@ K = linear operator(known)
@ u = model vector (unknown)

@ Problems: insufficient data, inconsistent (noisy) data, ill-conditioning
of K:
— No solution or no unique solution

@ Minimize a penalized least-squares functional:

rec

u'®® = argmin }|Ku — |3 + penalty

NB: minimizer of f(u) %l argmin, f(u)

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.
@ A trade-off between sparsity promotion and tractability (convexity)

uz
\'%: y

Uy
nonzero< 1

‘combinatorial’

@ See [6, 3]

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Up Uo

\'%: y Ku=y
U U4
nonzero< 1 V0ug] + /Tua] <1

¢ i ial’ ‘algebraic’
combinatorial ~__~ g

@ See [6, 3]

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Uy U Uy

\I%:y Ku=y /&y

U U4 U1
nonzero< 1 Vg + /uz| lug| + |uz| <1

‘combinatorial’ ‘algebraic’ ‘convex’
~__ 9 ~__

@ See [6, 3]

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.

@ A trade-off between sparsity promotion and tractability (convexity)
Uy U Uy

uz
\'%w K=y N:y /\ﬁw

U U U \JLM
nonzero< 1 VARIERVAI?Y lug] + Jup| <1 uf +u3 <r?

‘combinatorial’ ‘algebraic’ ‘convex’ ‘linear’
~__ 9 ~__

@ See [6, 3]

Ignace Loris (igloris@ulb.ac.be)

Penalization strategy

@ How to enforce sparsity on solutions of Ku = y?
@ Minimize a penalized least-squares functional:

u"® = argmin }||Ku — y|3 + penalty
u

with a judiciously chosen ‘sparsity promoting’ penalty.
@ A trade-off between sparsity promotion and tractability (convexity)

Uz us Uz Uz
\'%w K=y N:y /\ﬁw

U U U \JLM
nonzero< 1 VARIERVAI?Y lug] + Jup| <1 uf +u3 <r?

‘combinatorial’ ‘algebraic’ ‘convex’ ‘linear’
~__ 9 ~__

¢1-norm penalty ||u||4 def > lui| promotes sparsity and is tractable

@ See [6, 3]

Ignace Loris (igloris@ulb.ac.be)

Sparsity and ¢4 norm

Unit ¢4 ball in 2-D

S

Ignace Loris (igloris@ulb.ac.be)

Sparsity and ¢4 norm

Unit ¢4 ball in N-D

3

Ignace Loris (igloris@ulb.ac.be)

Sparsity and ¢4 norm

Unit ¢4 ball in N-D

3

~_

“looks like”
(when N is large)

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.

@ Corresponding optimization problem:

rec __

u"®® = argmin 7||Ku — y||3 + Al|Aull; (1)

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (1)

@ Analysis-style sparsity:
@ Find an (approximate) solution to Ku = y and
@ Require that certain linear combinations Au of unknown u are sparse:

u withmany (Au); =0

Here A (analysis operator) is explicitly known.

@ Corresponding optimization problem:

rec __

u"®® = argmin 7||Ku — y||3 + Al|Aull; (1)

@ Primary example of (1) is total variation (TV) penalty in imaging:
A = local gradient of an image:

lAuls = 37 \(Aew)? + (8yu)?

pixels

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:

u=3Sv withmany v;=0

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0

@ Synthesis-style sparsity (express u = Sv with v sparse):

V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0
@ Synthesis-style sparsity (express u = Sv with v sparse):

V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)

@ Example of (2): sparse combination of wavelets

Ignace Loris (igloris@ulb.ac.be)

Analysis sparsity vs. synthesis sparsity (2)

@ Synthesis-style sparsity:
Express unknown u as a sparse linear combination of a set of
known basis/frame/dictionary vectors:
u=3Sv withmany v;=0
@ Synthesis-style sparsity (express u = Sv with v sparse):
V' = argmin }||KSv — y[[Z + Allv|+ and u"° =SV (2)

@ Example of (2): sparse combination of wavelets

@ If AS = SA =1 then:
synthesis sparsity u'™° = analysis sparsity u"°

Ignace Loris (igloris@ulb.ac.be)

Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec

u"®® = argmin J||Ku — yI3 + Allu]| (3)

Ignace Loris (igloris@ulb.ac.be)

Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec

u"®® = argmin J||Ku — yI3 + Allu]| (3)

® Many (Au); = 0, then use penalty of type \||Aul|+:
u'® = argmin 3|[Ku — I3 + Al Aul| (4)

(A not necessarily invertible)

Ignace Loris (igloris@ulb.ac.be)

Cost functions for ‘sparse recovery’

@ Many u; = 0, then use penalty of type Aljul|+:

rec
u

= argmin }|[Ku — y[3 + A|u (3)
® Many (Au); = 0, then use penalty of type \||Aul|+:
u'®® = argmin 7||Ku — y||3 + Al|Aull; (4)
(A not necessarily invertible)

@ (3)is a special case of (4): A= 1 or change of variables if 3JA~"

Ignace Loris (igloris@ulb.ac.be)

@ Write iterative algorithms for finding the numerical solutions to the
following optimization problems

rec

u"®® = argmin }||Ku — yl|3 + Allu]| (5)

and
' — arg muin%HKU—}/H%Jr)\HAUW (6)

where K,y and A are given.

@ Problem (5) in part 1, problem (6) in part 2.

@ These objective functions are convex =- study the problem in the
framework of convex optimization

Ignace Loris (igloris@ulb.ac.be)

@ Write iterative algorithms for finding the numerical solutions to the
following optimization problems

rec

u"®® = argmin }||Ku — yl|3 + Allu]| (5)

and
' — arg muin%HKU—}/H%Jr)\HAUW (6)

where K,y and A are given.

@ Problem (5) in part 1, problem (6) in part 2.

@ These objective functions are convex =- study the problem in the
framework of convex optimization

@ NB: “course’=definitions, properties, proofs, exercises!

Ignace Loris (igloris@ulb.ac.be)

Preliminaries

@ Real d-dimensional space R?
@ Inner product of u,v € RY: (u,v) = "%, u;
@ Euclidean norm: |julj2 = /(u,u) = \/27:1 u?
® Some special products:

o Jutv|=ul+vI3+2(uv)

° 2(u,v) =|lu£v|3F||lullf F |vI3

2 112

o (wv) = 10+ VIE == vIE

® (u,Av) = (ATu,v), where A is a linear operator (matrix)

Ignace Loris (igloris@ulb.ac.be)

Convex sets and convex functions

A set C ¢ RY is said to be convex if

u,veC = A+(1-AveC (7)
for all A € [0,1]. Afunction f: RY — R = RU {+oc} is said to be convex if
fOUu+ (1= X)v) < AM(u)+ (1= Nf(v) (8)

for all points u, v € R? and for all A € [0, 1]. f

u %
NB: dom(f) = {u|f(u) < +oo}, f is ‘proper means dom(f) # ()

Why convex optimization?

Property
A local minimum of a convex function is necessarily a global minimum

Proof: Suppose u is a local minimum of the convex function f. If there is
a point v where f(v) < f(u) then
fOU+ (1 =A)v) < M(u)+ (1= Nf(v) < M(u)+ (1 = Nf(u) = f(u)

forall A € [0,1[. But A\u + (1 — A\)v 221 u which contradicts the

assumption. O
@ — Easier than non-convex optimization

f(u)

Ignace Loris (igloris@ulb.ac.be)

Convex functions: Examples

@ f(u) = ||u|3 is a convex function
@ Any norm on RY is a convex function, e.g.:

1/2
lulls = lul, lullz = (Z IU;|2> and [|ulloo = max u;|
i i

9
@ /(,-ball of radius R:
BY = {ul|ullp <R}, for p=1,20c0. (10)
are convex sets
@ The indicator functions of these convex sets:
C oo [0 Jullb<R
o (1) = { oo Jully > R (1

are also convex functions

Ignace Loris (igloris@ulb.ac.be)

Subdifferential of a convex function

The subdifferential 9f (ug) of f at the point ug € RY is the set of vectors
w € R such that

f(u) > f(ug) + (w,u —ug) YueRY. (12)
Example: f : R — R : f(u) = |u| is not differentiable in ug = 0.
ul ul ul
| |
| u Lu u
up <0 ™ 7 up>0 =
The subdifferential is:
-1 u<o0
of(uy=< [-1,1] u=0 (13)
1 u>0

Ignace Loris (igloris@ulb.ac.be)

Subdifferential of a convex differentiable function

If f is differentiable at u, the subdifferential reduces to the usual gradient
Example: f(u) = 1||Ku — y||3

Of(u) = Vf(u) = KT(Ku — y) (14)
Indeed: need to show that f(u) > f(up) + (VF(up), u — up) Yu

—f(u) + f(uo) + (VF(uo),u — to) = —3lIKu—yl3+ 3|Kuo — yl3
+(KT(Kuo — y),u — uo)

= —3lIKul3 + 3||Kuol13

+(KT(Kug —X), u — Uo)
—I||Kul|3 — $|Kuo||3 — (Kuo, Ku)
= —}IK(uo —u)|3

< 0 \a%

NB: We will assume functions are subdifferentiable.

ULB Ignace Loris (igloris@ulb.ac.be)

Characterization of the minimizer(s) of a convex

function

Notation: minimizer of f(u) % argminy f(u)

Property

U € arg mJn f(u) & 0 € of (). (15)

Proof:

Example: Suppose one wants to find a mini
is differentiable but g is not.

0 =argmin, f(u) +g(u) < 0€d(f(0)+g(d))
= 0e V@) +ag(d)
< Iweodg(t) st 0=VFiO)+w

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: definition

The projection onto the non-empty closed convex set C can be written as

-1 .
Po(u) =argmin o [u — V|3 +ic(v), (16)
. - . . /0 veC
where i¢ is the indicator function of C: ic(v) = { % VEC

Definition (Proximal operator)

The proximal operator of a convex function f : R? — R is defined as:

prox;(u) = argmin %Hu —v||3 +f(v). (17)

Remarks:
@ f is assumed to be lower semi-continuous and proper (£ +o0)
@ prox; is uniquely defined because ||u — v||3 is strictly convex
@ ‘standard tool for non-smooth, constrained, large-scale minimization
problems’ [9]

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: elementary examples

It is easy to check that (exercise):

fluy=(a,u)y+b = prox(u)=u-—a (18)
fw)=Glulz = prox(u) = 17— (19)
f(u) = plul (1 var.) = proxs(u) = 2_ 1sgn(u) m ;Z(ZO)

0 |f u <
S

~ Hu,
L (U) e
7/
Proximity operator of ulu| //
is “soft-thresholding”: 7
proxs(u) = S, (u) - |7

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Properties

Property

Letf : RY — R be a convex function, then:

g(u)="~f(u—a) = proxg(u) = a+proxs(u —a). (22)

Proof: One finds that:
prox,(u) = argmin, 3[lu—v|3+g(v)

= argmin, 3|ju — V|3 +f(v —a)
= a-+argming 4llu —a— V|3 +f(7)
= a+proxs(u—a)

NB: Similar formula for prox,(uv) where g(u) = f(au):

1
proxg(u) = aproxazf(au)

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Properties

Property

Letfy: R% — R and f, : R% — R be convex functions of uy and u;
respectively. Let f : R%+% — R. One has:

f(ur,u2) = fi(uq) + fa(u2) = proxe(uq, uz) = (Proxg (uq), proxg (uz)).
(23)

Proof: Setting u = (uq, u2) and v = (v, v2) (both elements of R%1+%),
one has

1 9
argmv|n§||u—v|| +f(v)

1
= arg min (ur, Up) — (v1,v2)|[3 + f1(v1) + Fa(v2)

5l
1 , 1 ,
= argmin §||U1 =iz + fi(ve) + §||U2 — V2|3 + fa(v2)

= (proxy, (u1), proxy, (uz)) O

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Example

Example 1:
0 luil < p
F=ulule = prox(u) = { P s
ui —sgn(up il = p.
Proximity operator of Su(U) ,’/
wllulls is component- //
wise “soft-thresholding”: e
proxs(u) = S, (u) 0
iz u

Example 2: f(u) = > /U2, + u?,
(0,0) it \Ju? 4+ U, <p
(proxe(u)); = (U1 bia) 2 2 (25)
: (Ui, Ui2) — M\/ﬁ if Ui +ui >

using formula (21).

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Properties

Property

Letf: RY — R be a convex function. If t+ = prox,(t~ + A) then:
It =13 < It~ —tI3 — It — 7[5 +2(t" —t, A) + 2f(¢) — 2f(t*) (26)

for all t.
Proof: t* = prox:(t~ + A)
& tr=argmin %Ht ()R +£(t)
0ctt —t~ —A+af(th)
t~+ At cof(th)
f(t)y>f(tT)+ (" +A -t t—tT)
0<2(t™ —tT tT —t) +2(tT —t,A) + 2f(t) — 2f(tT)
It —t15 < |t~ —)5 — tT — 7|5 +2(t" —t, A) + 2f(t) — 2f(t")

S

Ignace Loris (igloris@ulb.ac.be)

Firmly non-expansive operators

Amap T : RY — RY is said to be firmly non-expansive if

|Tu—Tv|3<(Tu—Tv,u—v) Vu,veR? (27)
prox; is firmly non-expansive.
Proof: If ut = prox,(u), eq. (26) implies (t* = u™,t- =u,A=0,t =v™T):
u— v — [lu™ —ul5 + 2f(vF) — 2f(u™)
If v = prox,(v), eq. (26) implies (t" =v*,t- =v,A=0,t =u™):

IV —utZ < v —utlZ — vt - viE+2f(ut) - 2f(vY)

lu™ = vz <

2 2 2 2 2
=2ut —vhs < Ju—vTz—llut —ullz+[lv —uTl5 — (v —v]3
= —2uvT +2utu—2wut +2vTv

= 2t —vtu—v) O

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Continuity

Property
proxs(u) is Lipschitz continuous in u, with Lipschitz constant equal to 1:

Iprox(u) — prox(v)[l2 < [lu — v[2 Vu,v €R. (28)
Proof: prox; is firmly non-expansive:

Iprox(u) — prox;(v) |3 < (prox;(u) — proxy(v),u —v)

Thus:
Iproxg(u) — prox¢(v)|[3 < [[prox¢(u) — proxe(v)|l2 [lu — v||2
and hence:
[[prox(u) — prox¢(v)|l2 < [[u — vl 0

Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Continuity

Property

For fixed u, prox,s(u) is continuous with respect to o (o > 0).

Proof: Let u, = prox,¢(u) and u,, = prox, (u). We need to prove that
[Ua — Uggll2 “=3° 0.

Eq. (26) with (t" = u,,t~ = u, A =0,t = u,,) implies:
|t — a3 < [1U — tagllz — llte — ull3 + 20F(Uay) — 20F(ua)
Eq. (26) with (t7 = uy,,t~ = u,A = 0,t = u,) implies:
|ty — Ual3 < 11t — Uall3 — [|Uay — ll3 + 200 (us) — 200f (Uay)

Together:
2||u — Uao|l3 < 2(ev = a0)(F(Uao) — F(Ua))

We treat the left and right limit (&« — «p) separately:

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Continuity

@ Case a > ag and a — ag: Choose ag < a < 2aq (With 2ag > ag).

Then f(uzq,) < f(Uo):
[Ua — UaoHS (o — aO)(f(uao) — f(ua))

a—aQ

<
< (Oé - aO) (f(uao) A f(u2ao)) — 0
NB: if g > 0 then uy,, U2y, € dom(f) # () and rhs is finite
® Case a < ap and a — ap: Choose ap/2 < o < a (With a9 /2 <).
Then f(ua) < f(Uay2)-
I = tegl3 < (o0 =) (F(ua) = Flg)
< (a0 — @) (f(Uag/2) = F(Uag)) — 0 _

We have used:

Property

Let u, = prox,¢(u) = argmin, ||lv — u||3 + af(v). If a > j then
lua — ull2 > ||ug — ull2 and f(u.) < f(ug). (Proof: exercise).

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal operator: Continuity

Property
prox,¢(u) is continuous with respect to (u, o) for u € RY and o > 0.

Proof:

[[prox,(u) — P"OXaof(Uo)Hz
= |lprox,¢(u) — prox,s(Uo) + Prox,¢(Uo) — Prox,.¢(to)|l2
< [[prox,¢(u) — prox,¢(uo)|l2 + [IProx,¢(Uo) — prox, ¢(uo)|l2
< |[Ju — o2 + [[prox,¢(Uo) — Prox,.s(to)|l2
<e€/2+¢€/2 if ||(u,a)— (uo,ap)] <6 O

NB: This means that if o, —3 o and u, "== u then:

prox,, ¢(Un) =3 prox¢(u) (29)

Olnf

Ignace Loris (igloris@ulb.ac.be)

Characterization of subdifferential

Property

Let g : R? — R be a convex function. One has:
w e og(u) & u = proxg(u + w) (30)

Proof: w € dg(u)

< 0e—w+0g(u)
s0ev—(u+w)+0og(v) at v=u
s0ed [Fllv—(u+w)3+g(v)] at v=u

u=arg minv%||v— (u+w)3+g(v)= proxg(u + w) O

Ignace Loris (igloris@ulb.ac.be)

Characterization of minimizers of f + g

Property

Letf : RY — R convex differentiable and g : RY — R convex functions.
The following are equivalent:

@ 0 is a minimizer of f(u) + g(u).
© There exist w € dg(i) such that w = —V£({)

© 0 that satisfies the equation: i = prox,q(0 — aVf({)) for a > 0.
Proof: (2) & 0 =prox,(t+w) st w=-VFf()
& U= proxg (0 — VI(u))

and minimizer of f(u) 4+ g(u) is same as minimizer of af(u) + ag(u). O

NB: The last equation is a fixed-point equation (Ansatz for writing an
iterative algorithm).

ULB Ignace Loris (igloris@ulb.ac.be)

Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)

@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0

Ignace Loris (igloris@ulb.ac.be)

Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))

Ignace Loris (igloris@ulb.ac.be)

Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))

or
Upy1 = proxang(un - Oéan(Un)).

Ignace Loris (igloris@ulb.ac.be)

Fixed-point iterations

@ 0 is minimizer of f(u) + g(u)
@ U satisfies U = prox,q (0 — aVf(u)) for some o > 0
@ |terative algorithm could be:

Uni1 = ProX,g(Un — aVF(up))

or
Upy1 = proxang(un - Oéan(Un)).

@ We will study convergence of:

{ Upg1 = Prox,,q (Un — anVf(up))
Upp1 = (1= An)n + Anlingq

with 0 < A\p < 1.

Ignace Loris (igloris@ulb.ac.be)

Lemma: %Vf is firmly non-expansive

Property

Iff : RY — R is convex with Lipschitz continuous gradient (L) then %Vf is
firmly non-expansive:

IVF(u) — VF(V)|3 < L(VF(u) = VF(v),u—v) VYuveR! (31)

Proof: see [7, Part 2, Chapter X, Th. 4.2.2]. Here we give a proof for
f(u) = 1||Ku — y||3. In this case Vf(u) = KT (Ku — y) and L = omax(K)?,
such that:

IVF(u) = VE()I3 = KT (Ku~y)—KT(Ku-y)l3
LK
LIK(u—v),K(u—v))
= LIKTK(u—v),u—v)
L(Vf(u) — Vf(v),u—v) O

[N

Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm

Theorem (proximal gradient algorithm [])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),

g: RY — R is convex, proper, lower semi-continuous,

and a minimizer of F (u) = f(u) + g(u) exists,

THEN the proximal gradient algorithm:

{ Up1 = Prox,,q (Un —anVi(up)) (32)
Uprr = (1= An)Up + Anlingq

with ug = arbitrary, e < ap < 2/L — e and e < A\, < 1 converges to a
minimizer of F(u).

Proof: Let & € argmin, f(u) + g(u), i.e. U = prox,q (0 — aVF(Q)).
One has:

lup1 = 8113 = (1= Xn)lltn — 8lZ + AnllTn 1 — 81Z = An(1 = An) [Un — 113
(33)

Ignace Loris (igloris@ulb.ac.be)

Recall property of proximal operators

If t+ = prox,(t~ + A) then:
[=5 < It~ —t3 — [t =75 +2(t" —t,A) +2g(t) — 2g(t™) (34)
for all t.
We will use this property on the (iteration) relation:
Unt1 = Prox,, g (Un — anVf(up))

with tt = U1, = up, t =0, A = —ayVF(up),
and on the fixed-point relation:

U = prox,,q (0 — ap V(1))

with t+ = 0,6~ = 0, t = {ips1, A = —a, V(D)

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: proof of convergence

It follows from Up1 = proxang(— apVif(up)) and eq. (26) with
tt = lpq,t™ = Up,t = 0,A = —ap,VF(up) that:

lnsr — 13 < un— 13— [[Gn1 — tnl3 + 20l — 0, —anVF(up))
+2ag(0) — 20ng (Tins)

It follows from & = prox,, 4 (0 — anVF(0)) and eq. (26) with
tt =0t = t Uit A = —a, VF(@1) that:

o =taT3 < |0 =73 — o= + 2(0 — fins1, —an V(@)
+2ang(Uns1) — 2ang(0)
Together:

Jins — a3 < un— @3 — ny1 — w3 gy 99
+20 (U — Uny1, VFE(Un) — VE(U))

The inner product can be bounded by:

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: proof of convergence

(O — Upyq, VE(up) — V()= (0 — up, Vi(up) — VE(D))
+(Un — Uny1, VE(up) — VI(T))

()P N
< THVf(Un) — V()3
+(up — Upyq, VE(uy) — VF(O))
. 1 N
= (VL(Up — lpy1) - W(Vf(un) — VI(a)),
1
—(Vf(up) — V(O
\fL((Un) (@)))
- 2 - 2 2
oy P18 a2 _ Lllun = Gnia +Ollz = llun = o = 7 -2
b} - 4 4
L -
< ZHUn — Un41 ||%

Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: proof of convergence

The latter inequality combined with expression (35) yields:
|Upg1 — 0”% < lun — UH% — |ltns1 — Un”% + 2Oén%HUn — Upy1 ||%
= lun = @13 = (1= 45| Tns1 — unll3
This can be inserted in expression (33) to yield:
N 33 N ~ A ~
[Uns1 — U||§(:)(1 — A)l[un = GlI5 + Anll8n1 — U521 = An)[|Un — Tng1]3

< (1= Aa)lltn — &3 + A [lln — 13 = (1 = 285) 1 —]3]
(1 = An)lltn = Gny1l3

= fun — G013 = A [(1 = 25 + 1= o)l 1 — unl3]
<y — 813 — e(eL/2 + 0)Ens1 — U3

as\p>e,1— X\, >0and 1— 2t > el /2.

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: proof of convergence

One therefore has (with ¢ = €2L/2 > 0):
[Uny1 — QI3 < |[un — 015 = ¢ |lng1 — unll3 (36)

@ Eq. (36) implies: ||ups1 — U2 < ||up — |2, i.e. (un)n is bounded. As
(an)n and (A\p), are also bounded, there exists a common
converging subsequence:

un ZF Ut an X a >0, A SN (with0 < A < 1)
@ Eq. (36) also implies (N > M):
¢ S pmllnst = unll3 < opT llun — 813 — unsr — 83
= lum — 0I5 — lluw — 03 (37)
< |lum — |3 (= independent of N)

. . ~ j—
This means that [|Zp4.1 — Unll2 "= 0 and thus: i1 '— uf

Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: proof of convergence

@ Butas i, 11 = prox,, 4 (Un, — anVFf(up)), one finds (j — o) that:
)
u' = prox,, (uT - an(uT))
i.e. u is a minimizer of f + g.
@ Finally, choosing & = uf, inequality (37) implies that:
luy — |3 < [lum — u'(13 for N>M
As Un, jif ut, the rhs can be made as small as one likes. This
shows that the whole sequence (uy,), converges to u'.
One also has:
[ln1 —u'llz = |lprox,,q (Un — anVF(un)) — prox, 4 (u' — apVF(u')) |;

A

n—oo

Hence Uy, also converges to ut. O

ULB Ignace Loris (igloris@ulb.ac.be)

Proximal gradient algorithm: remarks

1) It is possible to introduce error terms at each step:

Theorem (proximal gradient algorithm [])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — R is convex, proper, lower semi-continuous,

and a minimizer of F(u) = f(u) + g(u) exists,

THEN the proximal gradient algorithm:

{ []n+1 = pI'OXang (Un - Oén(Vf(Un) + 5n)) + €n (38)
Unt1 = (1 —=2An)Un+ Anlinya

with ug = arbitrary, e < ap < 2/L — ¢, e < Xy <1, > ||dn]l2 < oo and
S, llenll2 < oo converges to a minimizer of F(u).

Proof: exercise. O
2) Theorem also holds in (infinite-dimensional) Hilbert space, see [4].

Ignace Loris (igloris@ulb.ac.be)

Special case: sparse recovery

Choose f(u) = }||Ku — y||3 and g(u) = pl|ulls, i.e.:

~ . 2
G =argmin 3 |[Ku — y|3 + plulls

@ Vi(u) = KT(Ku —y), with L = omax(K)? = || K]|?

_ ; _J0 uj| < pa
® PBeg = S 18- Sualily = { t; — pesgn(ui) || > o
@ The proximal gradient algorithm reduces to:

Unit = (1= An)Un + AnSans (un — KT (Kup — y)) (39)
@Eg \My=1anda,=awith0 < a<2/L:
Uit = Say (u,, — aKT (Kup — y)) (40)

So-called “iterative soft-thresholding algorithm” (ISTA) [5]

Ignace Loris (igloris@ulb.ac.be)

Iterative soft-thresholding algorithm (1)

@ lterative algorithm for finding minimizer of
F(u) = 51K — yl5 + ullull:

Un+1 = SOW« |:Un + O[KT(y - Kun)] SM(U) %
with §,, = component-wise soft-thresholding:
u—pu uzpu K .
Su(u) =4 0 ul < p - u
u—+p u<-—p 7
@ Properties: -

@ Simple
© Converges for o < 2/||K||?
© Soft-thresholding guarantees sparsity of u, at every iteration

o n2
Q F(u)) —F(0) < w vn >0
@ (Other algorithms exist as well)

9 [5, 4]

Ignace Loris (igloris@ulb.ac.be)

lterative soft-thresholding algorithm (2)

’Un—1

@ ISTA can be slow |

@ Improvement (FISTA): ’.’u,7
lun +)\nX

Upp1 = T(Un +)\n(un — Un_—])) i:l. ugii/‘(un y Un_1)
with same T
— T n-—1
T(u) =Sau [u+aK (y —Ku)| and X\, = s

NB: up + An(Un — up—1) is not a convex combination of u, and u,_4
@ Advantages:
@ Simple
© Works for o < 1/||K||?
o _ Aluo — 1|l
© F(un) - F(o) < A
© Optimal (in some sense)
® See[1, 8]

vn >0

Ignace Loris (igloris@ulb.ac.be)

Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u

Ignace Loris (igloris@ulb.ac.be)

Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u

® prox, 4 = Pc (projection)
@ The proximal gradient algorithm reduces to:

up = arbitrary, e < ap <2/L —¢,e < \y <1

Ignace Loris (igloris@ulb.ac.be)

Special case: Gradient projection algorithm

® g(u) = I¢(u) (indicator function of a closed convex set C) for
constrained optimization problem

U =argminf(u) = argminf(u) + g(u)
ueC u

® prox, 4 = Pc (projection)
@ The proximal gradient algorithm reduces to:

up = arbitrary, e < ap <2/L —¢,e < \y <1
@ Other step-length selection schemes are possible. E.g. one can
show that Vo, > 0 in iteration (41) there exists A, such that:

f(un) — f(Uny1) > —oXn [(VF(Un), up — Upsq)] >0 0<o<)

(“Armijo step-length selection rule”).
In this way, «, can be chosen freely to accelerate convergence,
while A\, is chosen to guarantee convergence [2, 11, 10]

Ignace Loris (igloris@ulb.ac.be)

Second part

@ Discuss iterative algorithm for the problem
f(u) + g(Au) (42)

where f is convex with Lipschitz continuous gradient, g is convex
and A is a linear map,

@ using only knowledge of Vf, A and prox,,

@ but without knowledge of prox, 4.y !

Ignace Loris (igloris@ulb.ac.be)

Acknowledgements

@ Thanks to organizers.

@ Thanks to collaborators
@ Hoan-Phung Bui,
@ Federica Porta,
@ Caroline Verhoeven.

Ignace Loris (igloris@ulb.ac.be)

Bibliography |

1

[2]

131

[4]

[5]

[6]

7

[8]

Amir Beck and Marc Teboulle.
A fast iterative shrinkage-threshold algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2:183-202, 2009.

Dimitri P. Bertsekas.
Nonlinear programming.
Athena Scientific, second edition, 1999.

Alfred M. Bruckstein, David L. Donoho, and Michael Elad.
From sparse solutions of systems of equations to sparse modeling of signals and images.
SIAM Review, 51(1):34-81, 2009.

Patrick L. Combettes and Valerie R. Wajs.
Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4(4):1168-1200, January 2005.

|. Daubechies, M. Defrise, and C. De Mol.
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.
Communications On Pure And Applied Mathematics, 57(11):1413—-1457, November 2004.

D. L. Donoho.
For most large underdetermined systems of linear equations the minimal £1-norm solution is also the sparsest solution.
Comm. Pure Appl. Math., 59:797-829, 2006.

J. B. Hiriart-Urruty and C. Lemarechal.
Convex analysis and minimization algorithms.
Springer, 1993.

Yu E. Nesterov.

A method for solving a convex programming problem with convergence rate O(1 /k2).
Soviet Math. Dokl., 27:372-376, 1983.

Ignace Loris

Bibliography |l

[9]

[10]

[11]

Neal Parikh and Stephen Boyd.
Proximal algorithms.
Foundations and Trends in Optimization, 1:123-231, 2014.

Federica Porta and Ignace Loris.
On some steplength approaches for proximal algorithms.
2014.

P. Tseng and S. Yun.
A coordinate gradient descent method for nonsmooth separable minimization.

Math. Program. Ser. B, 117:387-423, 2009.

Ignace Loris

