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Linear regression problem

• “Input” (data) matrix: X = {xi j}
for i = 1, . . . ,n
and j = 1, . . . ,p

• “Output” (response): yi for each i ("supervised" setting)

• Assume linear dependence: yi =
∑

j xi jβj or

y = Xβ

where y = (y1, y2, . . . , yn)T



Example: Microarray data analysis



Example: Microarray data analysis

• Input: X = {xi j} = gene expression levels

for p genes j = 1, . . . ,p
and n patients or experiments i = 1, . . . ,n

• Output: yi is a discrete label in classification problems
(e.g. disease/healthy or type of illness)

or a continuous index in true regression problems
(e.g. survival time or gravity of illness)



Example: Forecasting time series

• Input: X T = {x j t} = time series panel
(e.g. macroeconomic or financial data)

n = number of samples in time
p = number of series × the number of lags used

• Output: yt = series to be forecast on the basis of X



Two distinct problems

• Prediction (“generalization”)
predict (forecast) the response y

• Identification (Variable Selection)
find the regression coefficient vector β = (β1, β2, . . . , βp)T

i.e. identify the relevant predictors

or SELECT them when many coefficients are zero
i.e. when β is SPARSE

Essential for interpretation!



Ordinary Least-Squares (OLS) Regression

• Noisy data: y = Xβ + z (z = zero-mean Gaussian noise)
• Reformulate problem as a classical multivariate linear

regression: minimize quadratic loss function

Λ(β) = ‖y − Xβ‖22 (‖y‖2 =

√∑
i

|yi |2 = L2-norm)

• Equivalently, solve variational (Euler) equation

X T Xβ = X T y

• If X T X is full-rank, minimizer is OLS solution

βols = (X T X )−1X T y



Problems with OLS

• Not feasible if X T X is not full-rank i.e. has eigenvalue zero
(in particular, whenever p > n). In many practical problems
p >> n (large p, small n paradigm)

• Then the minimizer is not unique (system largely
underdetermined), but you can restore uniqueness by
selecting the “minimum-norm least-squares solution”,
orthogonal to the null-space of X
(OK for prediction but not necessarily for identification!)

• Also X T X may have eigenvalues close to zero
(happens when both p and n get large)
−→ X T X has a large “condition number”
(= ratio between largest and smallest e.v.)
This is ill-conditioning, also referred to as
“curse of dimensionality”



A cure for the illness: Penalized regression

• To stabilize the solution (estimator), use extra constraints
on the solution or, alternatively, add a penalty term to the
least-squares loss
→ penalized least-squares

• This is a kind of “regularization”
( < inverse problem theory)

• Provides the necessary dimension reduction

• Increases bias to decrease variance

• We will consider three examples: ridge, lasso and
elastic-net regression



Ridge regression

(Hoerl and Kennard 1970 or Tikhonov’s regularization)
• Penalize with L2-norm of β:

βridge = argminβ
[
‖y − Xβ‖22 + λ‖β‖22

]
= (X T X + λ Id)−1X T y

(λ > 0 = “regularization parameter”)
• Special case: orthonormal regressors (X T X = Id)

βridge =
1

1 + λ
X T y

(all coefficients are shrunk uniformly towards zero)
• Quadratic penalties provide solutions (estimators) which

depend linearly on the response y but do not allow for
variable selection (typically all coefficients are different
from zero)



Lasso regression

name coined by Tibshirani 1996
but the idea is much older: Santosa and Symes 1986; Logan;
Donoho, etc.

• Penalize with L1-norm of β:

βlasso = argminβ
[
‖y − Xβ‖22 + τ‖β‖1

]
where ‖β‖1 =

∑p
j=1 |βj |

• Special case: orthonormal regressors (X T X = Id)

[βlasso]j = Sτ ([X T y ]j)

Sτ is the soft-thresholder defined by

Sτ (x) =


x + τ/2 if x ≤ −τ/2

0 if |x | < τ/2
x − τ/2 if x ≥ τ/2



Lasso regression: Soft-thresholding



Lasso regression

• Soft-thresholding is a nonlinear shrinkage: coefficients are
shrunk differently depending on their magnitude.

For orthonormal regressors, [βlasso]j = 0 if |[X T y ]j | < τ/2

• Enforces sparsity of β, i.e. the presence in this vector of
many zero coefficients −→

• Variable selection is performed!



Bayesian framework

• OLS can be viewed as maximum (log-)likelihood estimator
for gaussian “noise”
→ penalized maximum likelihood

• Bayesian interpretation: MAP estimator and penalty
interpreted as a prior distribution for the regression
coefficients

• Ridge ∼ Gaussian prior

• Lasso ∼ Laplacian prior (double exponential)



Gauss versus Laplace



L2 ball



L1 ball



Lasso regression and sparsity



Lasso regression and sparsity



Lasso regression and sparsity



Lasso regression and sparsity



Generalization

• Weighted Lα-penalties (weighted ∼ non i.i.d. priors)
“bridge regression”

(Frank and Friedman 1993; Fu 1998)
Special cases: ridge (α = 2) and lasso (α = 1)

NB. nonconvex for α < 1

Only α = 1 allows for both sparsity and convexity



L1/2 ball



Lasso versus Model selection

• Limit case α = 0: model selection with L0-“norm” penalty

‖β‖0 = #{βj |βj 6= 0}

• α = 1 is a good proxy for α = 0
Advantage: convex optimization instead of combinatorial
algorithmic complexity!

• A lot of recent literature on the subject, e.g.

• "If the predictors are not highly correlated, then the lasso
performs very well in prediction almost all the time"
(probabilistic results) (Candès and Plan 2007)



Lasso regression: algorithmic aspects

• Quadratic programming (Tibshirani 1996; Chen, Donoho
and Saunders 1998; Boyd and collaborators)

• Recursive strategy: LARS/Homotopy method
(Efron, Hastie, Johnstone, Tibshirani 2004;
Osborne, Presnell, Turlach 2000)

Recursive way of solving the variational equations for
1,2, ..., k active (non-zero) variables
The regression coefficients are piecewise linear in τ
→ full path for the same computational cost
Modification to take into account linear constraints
(Brodie, Daubechies, De Mol, Giannone, Loris 2008)



Lasso regression: algorithmic aspects

• Iterative strategy: iterated soft-thresholding

β
(l+1)
lasso = Sτ/C

(
β
(l)
lasso +

1
C

[X T y − X T Xβ(l)lasso]

)
has been proved to converge to a minimizer of the lasso
cost function with arbitrary initial guess β(0)lasso ; provided
‖X T X‖ < C (compute norm e.g. by power method)
(Sτ/C performs soft-thresholding componentwise)
(Daubechies, Defrise, De Mol 2004)
NB. For τ = 0: Landweber scheme converging to OLS
(minimum-norm solution if β(0)lasso = 0)

• Many variations on this iterative scheme,
and recent developments on accelerators
see e.g. (Loris, Bertero, De Mol, Zanella and Zanni 2009)



Macroeconomic forecasting

(De Mol, Giannone, Reichlin 2008)

• For high-dimensional time series, the standard paradigm is
Principal Component Regression (Stock and Watson 2002
for static PC, Forni, Hallin, Lippi, Reichlin 2000 for dynamic
PC)

βpcr =
r∑

k=1

〈X T y , vk 〉
ξ2

k
vk

where vk are the eigenvectors of X T X with eigenvalues ξ2
k .

“Truncated SVD”, at r before the rank (→ dimension
reduction)

• Alternative: Penalized regression (ridge, lasso, etc.)



Macroeconomic forecasting: empirical results

• Macroeconomic data-set of 131 monthly time series for the
US economy from Jan59 to Dec03 (Stock and Watson
2005), transformed for stationarity and standardized

• Variable to forecast:

1 Industrial Production: yt+h = (log IPt+h − log IPt )× 100
2 Price inflation: yt+h = πt+h − πt

• Simulated out-of-sample exercise:
For each time T = Jan70, ...,Dec01, estimate β using the
most recent 10 years of data (rolling scheme),
with a forecast horizon of h = 12 months
(No lags of the regressors included here; similar results
when including lags)



Forecasting IP



Macroeconomic forecasting: theoretical results

• Consistency results in capturing the common part in an
approximate factor structure, asymptotically as the number
of series and time samples tend both to infinity

• Consistency is achieved along any path
→ suitable for large cross-section
(even when the number of series is larger that the number
of time samples)

(De Mol, Giannone, Reichlin 2008)



Portfolio optimization

• p securities with returns r j t at time t

• Expected returns : µj = E[r j t ]
Covariance matrix C = (Cj k ) of the returns:

Cj k = E[(r j t − µj)(r k t − µk )]

• A portfolio is defined by a p × 1 vector of weights βj
summing to one (unit of capital)

• Expected return of the portfolio:
∑

j βj µj = βTµ

Variance of the portfolio: βT Cβ



Sparse and stable Markowitz portfolios

(Brodie, Daubechies, De Mol, Giannone, Loris 2008)

• Markowitz portfolios: Find a portfolio β∗ which has minimal
variance for a given expected return ρ

• This is equivalent to the regression problem

β∗ = arg min
β

E

|ρ−∑
j

βj r j t |2


s. t.
∑

j

βj µj = ρ and
∑

j

βj = 1

• For empirical implementation, replace expectations with
sample averages and solve the following regression
problem



Sparse and stable Markowitz portfolios

β∗ = arg min
β

[
‖ρ1n − Xβ‖22 + τ‖β‖1

]
s. t.

∑
j

βj µ̂j = ρ and
∑

j

βj = 1

where 1n is a n × 1 vector of ones, µ̂j = 1
n
∑n

t=1 r j t and X is the
n × p matrix of the sample returns
• The L1-penalty ensures for sparsity and stability and

accounts for transaction and monitoring costs (6=
Markowitz)

• We devised a modification of LARS able to enforce the
linear constraints; varying τ allows to tune the number of
selected assets

• Special case: (sparse!) no-short portfolios (only positive
weights)



Empirical application

• We used as assets the Fama and French 48 industry
portfolios (FF48) and 100 portfolios formed on size and
book-to-market (FF100)

• We constructed our portfolios in June of each year from
1976 to 2006 using 5 years of historical (monthly) returns
and a target return equal to the historical return of the
equally-weighted portfolio

• Performance is evaluated by out-of-sample monthly mean
return m, standard deviation σ and Sharpe ratio S = m/σ

• Benchmark (tough!) is the equal-weight portfolio, known to
outperform many constructions (DeMiguel, Garlappi and
Uppal 2007)



Empirical results FF48



Empirical results FF100



Optimal Forecast Combination

(Conflitti, De Mol, Giannone, 2012)

• Increase forecast accuracy by linearly combining individual
forecasts (provided by different forecasters or models),
using positive weights summing to one

• Minimizing the variance leads to an equivalent of
Markowitz no-short portfolios

• Extension to the combination of density forecasts with a
Kullback-Leibler based cost function

• Empirical application to the combination of ECB Survey
Forecasts (ECB uses equal-weight combinations)



Feature Selection in Computer Vision

(Destrero, De Mol, Odone and Verri 2009)

• Huge dictionary {ϕj} of 64000 “rectangle features” used in
each image patch (19 x 19 pixels), i.e. scaled and
translated versions of

• Each row of the matrix X is filled with the scalar products
with these rectangle features



Object (Face) detection

• Training set of 2000 positive and 2000 negative examples
(binary classification response y = [−1,+1])

• Cascade of lasso-type regression by randomized blocks
(followed by a correlation analysis to eliminate
redundancy) allows to select 42 relevant features

• Using a cascade of SVM filters on these features, we
challenge a state-of-the-art Adaboost scheme
(Viola and Jones 2004)

• Extension to face authentication



Object (Face) detection

The 42 selected features



Object (Face) detection



Object (Face) detection



Nonparametric regression

• Nonlinear regression model : y = f (X )
where the regression function f is assumed to have a
sparse expansion on a given basis {ϕj} : f =

∑
j βj ϕj

• Solve

βlasso = argminβ

‖y −∑
j

βj ϕj‖22 + τ‖β‖1


• Vector β possibly infinite-dimensional (`1-penalty)
• cf. “basis pursuit denoising”

(Chen, Donoho and Saunders 2001)



Instability of Lasso for variable selection

• In learning theory (random design), the matrix X becomes
also random

• With a random matrix, lasso regression does not provide a
stable selection of variables when they are correlated −→
possible remedy: “elastic net”



Elastic Net

• “Elastic net”: combined penalties L1 + L2 to select
sparse groups of correlated variables (Zou and Hastie
2005, for fixed-design regression, with n and p fixed).

βen = argminβ
[
‖y − Xβ‖22 + τ‖β‖1 + λ‖β‖22

]
While the L1-penalty enforces sparsity, the additional
L2-penalty takes care of possible correlations between the
coefficients (enforces democracy in each group)

• NB. The groups are not known in advance
(6= joint sparsity measures - mixed norms - group Lasso)

• Extension to learning (random design) and consistency
results (De Mol, De Vito and Rosasco 2009)



L1 + L2 ball (NB. Corners; 6= Lα ball for α > 1)



Application to gene selection from microarray data

(De Mol, Mosci, Traskine and Verri 2009)

• Expression data for many genes and few examples
(patients)

• Aim: prediction AND identification of the guilty genes

• Heavy correlations (small networks)
→ L1 + L2 strategy

• Algorithm: damped iterated soft-thresholding

β
(l+1)
en =

1
1 + λ

C

Sτ/C

(
β
(l)
en +

1
C

[X T y − X T Xβ(l)en ]

)
(contraction for λ > 0)



Full papers: Regularization and Algorithms

• An Iterative Thresholding Algorithm for Linear Inverse Problems
with a Sparsity Constraint
Ingrid Daubechies, Michel Defrise and Christine De Mol
Comm. on Pure and Applied Math. 57 (2004): 1413-57
http://arxiv.org/abs/math/0307152

• Accelerating gradient projection methods for l1-constrained
signal recovery by steplength selection rules
Ignace Loris, Mario Bertero, Christine De Mol, Riccardo Zanella
and Luca Zanni
Applied Computational and Harmonic Analysis 27 (2009) : pp.
247-254;
http://arxiv.org/abs/0902.4424



Full papers: Economics

• Forecasting using a large number of predictors:
is Bayesian shrinkage a valid alternative to principal
components?
Christine De Mol, Domenico Giannone and Lucrezia Reichlin
Journal of Econometrics 146 (2008) : pp. 318-328
ECB Working paper 700

• Sparse and stable Markowitz portfolios
Joshua Brodie, Ingrid Daubechies, Christine De Mol, Domenico
Giannone and Ignace Loris
Proc. Natl Acad. Sci. USA 106 (2009): pp. 12267-12272;
http://arxiv.org/abs/0708.0046



Full papers: Computer Vision

• A sparsity-enforcing method for learning face features
Augusto Destrero, Christine De Mol, Francesca Odone and
Alessandro Verri
IEEE Transactions on Image Processing 18 (2009) : pp. 188-201

• A Regularized Framework for Feature Selection in Face
Detection and Authentication
Augusto Destrero, Christine De Mol, Francesca Odone and
Alessandro Verri
International Journal of Computer Vision 83 (2009): pp. 164-177



Full papers: Elastic net

• A Regularized Method for Selecting Nested Groups of Relevant
Genes from Microarray Data
Christine De Mol, Sofia Mosci, Magali Traskine and Alessandro
Verri
Journal of Computational Biology 16 (2009) : pp. 677-690;
http://arxiv.org/abs/0809.1777

• Elastic-Net Regularization in Learning Theory
Christine De Mol, Ernesto De Vito and Lorenzo Rosasco
Journal of Complexity 25 (2009) : pp. 201-230;
http://arxiv.org/abs/0807.3423



Appendix:
A Simple Iterative Algorithm for Lasso Regression



Contraction Mapping Principle

• Definitions:
(i) T is non-expansive if ‖T (β)− T (α)‖ ≤ ‖β − α‖
(ii) T is a contraction if ‖T (β)− T (α)‖ ≤ ρ‖β − α‖ with ρ < 1
(iii) β is a fixed point of T if β = T (β)

(T is a matrix or an operator in a Hilbert or Banach space –
possibly nonlinear)

• Properties (proof: exercise)

(i) Any contraction is continuous
(ii) The fixed point of a contraction is necessarily unique
(iii) The product of a contraction and of a non-expansive

operator is a contraction



Contraction Mapping Principle

• Contraction Mapping Principle

If T is a contraction, the sequence of iterates β(l+1) = T (β(l)),
l = 0,1,2, . . . , for any starting point β(0), is convergent (in
norm) and its limit is the unique fixed point of T .

Proof: We have

‖β(l+1) − β(l)‖ ≤ ρ‖β(l) − β(l−1)‖ ≤ · · · ≤ ρl‖β(1) − β(0)‖

and by the triangle inequality, for any m > 1,

‖β(l+m) − β(l)‖ ≤ ‖β(l+m) − β(l+m−1)‖+ · · ·+ ‖β(l+1) − β(l)‖
≤ (ρl+m−1 + ρl+m−2 + · · ·+ ρl)‖β(1) − β(0)‖

≤ ρl

1− ρ
‖β(1) − β(0)‖



Contraction Mapping Principle

Since ρ < 1, this implies ‖β(l+m) − β(l)‖ → 0 for l →∞, i.e. β(l)

is a Cauchy sequence. In a complete space, this sequence has
a limit f , which is the fixed point of T .
Indeed,

‖T (β)− β‖ ≤ ‖T (β)− β(l+1)‖+ ‖β(l+1) − β‖
= ‖T (β)− T (β(l))‖+ ‖β(l+1) − β‖
≤ ρ‖β − β(l)‖+ ‖β(l+1) − β‖

Since these two terms tend to zero for l →∞, we have
T (β) = β, i.e. β is a fixed point.
The fixed point being unique, all sequences of iterates must
converge to this fixed point, whatever the starting point.



The iterative Landweber scheme

• The ridge regression solution (λ > 0)

βridge = arg minβ Φ(β) where Φ(β) = ‖Xβ − y‖2 + λ‖β‖22

can be computed e.g. via matrix inversion.

• Alternatively, the Euler equation (X T X + λId)β = X T y or else

(1 + λ) β = β + X T y − X T Xβ

suggests the following successive approximation scheme
(which can be useful for large matrices)

• Damped Landweber iteration

β(0) arbitrary; β(l+1) = T β(l) l = 0,1, . . .

with iteration map T = (1 + λ)−1L where Lβ ≡ β + X T (y −Xβ).



The iterative Landweber scheme

• Renormalize X so that ‖X‖ < 1, i.e. ‖X T X‖ = σ2
0 < 1

(a numerical estimation of this largest eigenvalue can be
obtained through the so-called ’power method’).

• Then L is non-expansive: ∀β, α

‖Lβ − Lα‖ ≤ ‖β − α‖

Proof: ‖Lβ − Lα‖ = ‖(Id − X T X )(β − α)‖ ≤ ‖β − α‖

• Hence T is a contraction (for λ > 0)
→ iteration converges to the unique fixed point of T
= unique minimizer of the strictly convex cost function Φ(β)
(since it satisfies the Euler equation)

• Advantage: extra positivity or other constraints can be easily
enforced (at each iteration)



The iterative Landweber scheme

• For λ = 0, the unregularized Landweber iteration is still a
contraction provided that the matrix X T X has full rank. Indeed,
in such a case

‖Lβ − Lα‖ = ‖(Id − X T X )(β − α)‖ ≤ ρ‖β − α‖

with ρ = ‖Id − X T X‖ = supk (1− σ2
k ) < 1 (since all singular

values lie between zero and one).

• The iteration converges to the generalized solution β†, i.e. to
the least-squares (OLS) solution of minimal norm (if not
unique).

• The contractive property of L holds no longer true in the
presence of a non trivial null-space or in general for a compact
operator in an infinite-dim. Hilbert space, but the convergence
result still holds.



The iterative Landweber scheme

The proof is more involved (exercise): use SVD and rewrite the
Landweber iteration as a linear filtering method, with spectral
filters w l

k = 1− (1− σ2
k )l .

• For ill-posed or ill-conditioned problems, the unregularized
Landweber iteration can be regularized by early stopping (the
number of iteration playing the role of the regularization
parameter). This prevents the instabilities due the the smallest
singular values and the noise to appear.



Lasso regression

• If the object is known a priori to be sparse (many zero entries
in the vector β), replace L2-penalty (Ridge sol. not sparse for
noisy data) by a penalty on the L1-norm of β:

‖β‖1 =

p∑
j=1

|βj |

i.e. increase penalty on |βj | < 1 and decrease penalty on larger
components to favor the restoration of objects with few but
large components.
• → solve penalized least-squares problem (τ > 0)

βridge = arg minβ Φ(β) where Φ(β) = ‖Xβ − y‖2 + τ‖β‖1

• Notice that Φ(β) is still convex – but not strictly if X has a non
trivial null-space.



Denoising by Soft-Thresholding

• Lemma: The minimizer x∗ of (x − y)2 + τ |x | is given by
x∗ = Sτ (y), where

Sτ (y) =

{
y − (τ/2) sign(y) if |y | ≥ τ/2

0 if |y | < τ/2 .

(Sτ : soft-thresholding = nonlinear shrinkage)
(Proof: exercise)
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Denoising by Soft-Thresholding

• For X = Id (and n = p), the minimizer β∗ is

β∗ = Sτy

(Sτy)i =

{
yi − (τ/2) sign(yi) if |yi | ≥ τ/2

0 if |yi | < τ/2 .

= componentwise soft-thresholded data vector.

•When implemented on wavelet coefficients, this is a simple
denoising scheme as proposed by Donoho and Johnstone.

•When X 6= Id , it couples all object components
→ complicated quadratic programming optimization problem.

• Alternatively, De Mol and Defrise (2002) proposed to use
optimization transfer (De Pierro, Lange, etc.)



Optimization via Surrogate Cost Functions

-
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Optimization via Surrogate Cost Functions

• Define

Φ
SUR

(β; γ) = ‖Xβ − y‖2 − ‖Xβ − Xγ‖2

+ ‖β − γ‖2 + τ‖β‖1

• Properties:
(i) Φ

SUR
(β; γ) strictly convex ∀γ, since ‖X‖ < 1

(ii) Φ
SUR

(β; γ) ≥ Φ(β)

(iii) Φ
SUR

(β;β) = Φ(β)

• Minimizer β∗ of Φ(β) is approached through iterative scheme
(l = 0,1, . . . ;β(0) arbitrary):

β(l+1) = arg minβ Φ
SUR

(β;β(l))

• This ensures a monotonic decrease of the cost function at
each iteration since

Φ(β(l+1)) ≤ Φ
SUR

(β(l+1);β(l)) ≤ Φ
SUR

(β(l);β(l)) = Φ(β(l))



ISTA: Iterative Soft-Thresholding Algorithm

• At each iteration, the minimization problem is decoupled for
each pixel value→ solved explicitly (exercise):

β(l+1) = T β(l) with T = SτL

i.e. Landweber scheme Lβ ≡ β + X T (y − Xβ) with
soft-thresholding at each iteration.
•When X has a zero null-space (i.e. when Xβ = 0⇒ β = 0),
L is a contraction.
Then, since Sτ is non-expansive, T is also a contraction.
→ convergence of the iteration to the unique fixed point of T .
This fixed point is the unique minimizer of Φ(β) (i.e. satisfies
the Euler equation; exercise).
• NB. Many faster algorithms have been proposed for sparse
recovery in the recent literature



Generalizations

• Convergence of the previous scheme to a minimizer of Φ(β)
holds under the following more general conditions (Daubechies,
Defrise & De Mol, Comm. Pure Appl. Math, 2004)

(i) X has a non-zero null-space
(ii) strong convergence holds in infinite-dim. setting (‖y‖ =

Hilbert L2-norm; X bounded operator in L2)
(iii) Penalty is ‖β‖αα =

∑p
j=1 wj |βj |α (weighted Lα-norm,

1 ≤ α ≤ 2) on the sequence of coefficients of β on a given
o.n. basis in L2

Examples: wavelet basis (Besov-norm penalty); Fourier
basis ; basis in pixel space

• Moreover, we have a true regularization method for the
(infinite-dim.) ill-posed problem (reducing to Tikhonov’s
regularization for α = 2 and λ = τ ).




