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1. Other example of integral quantization:
with Pöschl-Teller coherent states
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[1] H. Bergeron, J.P. G., P. Siegl, and A. Youssef, Semi-classical behavior of
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[2] H. Bergeron, P. Siegl, and A. Youssef, New SUSYQM coherent states for
PöschlTeller potentials: a detailed mathematical analysis, J. Phys. A: Math.
Theor. 45 244028 (2012)
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Play it again with infinite wells?
• The amount of recent works on quantum dots and quantum wells in nanophysics [1] strongly

motivates construction of quantum states for infinite wells with localization properties com-
parable to those of Schrödinger states.

• Infinite wells are often modeled by Pöschl-Teller (also known as trigonometric Rosen-Morse)
confining potentials [2, 3] used e.g. in quantum optics [4, 5].

• The infinite square well is a limit case of this family referred to in what follows as T -
potentials.

• The question is to find a family of normalized states:

(a) phase-space labelled,
(b) yielding a resolution of the identity, and the latter holding with respect to the usual uni-

form measure,
(c) allowing a reasonable classical-quantum correspondence (CS quantization)
(d) and exhibiting semi-classical phase space properties with respect to T -Hamiltonian time

evolution.

References
[1] More than 3600 PRL titles include the phrase “quantum well”.

[2] G. Pöschl and E. Teller, Z. Physik 83(1933)143.

[3] N. Rosen and P. M. Morse, Phys. Rev. 42(1932)210.

[4] H. Yildirim and M. Tomak, Phys. Rev. B, 72(2005)115340.

[5] G. Wang, Q. Guo, L. Wu, and Xiangbo Yang, Phys. Rev. B, 75(2007)205337.
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Pöschl-Teller (T ) potentials

• T -potentials belong to the class of shape invarianta potentials inten-
sively studied within the framework of supersymmetric quantum mechanics
(SUSYQM)[1, 2, 3, 4, 5, 6, 7, 8].

• Various semi-classical states adapted to T -potentials have been proposed in
previous works [9, 10, 12, 13]. However, they do not verify simultaneously
(a), (b), (c), and (d).

• Moreover, correspondence between classical and quantum momenta re-
quires a thorough analysis since there exists well-known ambiguity in the
definition of a quantum momentum operator [14, 10]. This is due to the con-
finement of the system in an interval, unlike the harmonic oscillator case.

• The construction of coherent states for T -potentials presented here is based
on a general approach given by Bergeron and Valance [15].

• Classical-quantum correspondence based on these states (“CS quantiza-
tion”) show satisfying comparison with the Schrödinger CS in terms of
semi-classical time behavior.

afor which it is possible to construct a super-family whose members have the same functional form
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Stationary Schrödinger equation with T -potential

• Let us consider the motion of a particle confined in the interval [0, L] and
submitted to the repulsive symmetric T -potential

Vν(x) = E0

ν(ν + 1)

sin2 π
L
x
,

• ν ≥ 0: dimensionless parameter. Limit ν → 0 corresponds to the infinite
square well. Factor E0 = ~2π2(2mL2)−1 > 0 is chosen as the ground state
energy of the infinite square well.

• Quantum Hamiltonian acts in the Hilbert spaceH = L2([0, L], dx) as:

Hν = − ~2

2m

d2

dx2
+ Vν(x) .
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Solutions to the eigenenergy problem
• The eigenvalues En,ν and corresponding eigenstates | φn,ν > of Hν read as

En = E0(n+ ν + 1)2, n = 0, 1, 2...,

φn(x) = Zn sinν+1
(
π

L
x
)

Cν+1
n

(
cos

π

L
x
)

• Cν+1
n is a Gegenbauer polynomial and the normalization constant reads as:

Zn = Γ(ν + 1)
2ν+1/2

√
L

√
n!(n+ ν + 1)

Γ(n+ 2ν + 2)

• Eigenfunctions φn obey the Dirichlet boundary conditions φn(0) = φn(L) = 0. A detailed
mathematical discussion on the boundary conditions and self-adjoint extensions for the T -
Hamiltonian can be found in [F. Gesztesy and W. Kirsch, Journal für die reine und ange-
wandte Mathematik 1985(1985)28] and [10].

• In particular, the ground state eigenfunction φ0 is Z0 sinν+1 π
Lx and the eigenfunctions for the

infinite square well (ν = 0) reduce to
√

2
L sin

(n+1)π
L x.
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Supersymmetric quantum mechanics content

• Superpotential Wν(x):

Wν(x)
def
= −~φ

′
0(x)

φ0(x)
= −~π

L
(ν + 1) cot

π

L
x

• Lowering and raising operators:

Aν
def
= Wν(x) + ~

d

dx
and A†ν

def
= Wν(x)− ~

d

dx

Darboux factorisation of T -Hamiltonian Hν can be rewritten in terms of
these operators:

Hν =
1

2m
A†νAν + E0.

• Supersymmetric partner H(S)
ν :

H(S)
ν =

1

2m
AνA

†
ν + E0.

• It coincides with the original Hamiltonian with increased ν: H(S)
ν = Hν+1.
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T coherent states
• Classical phase space for the motion in a T -potential is defined as the infinite band in the

plane: K = {(q, p) | q ∈ [0, L] and p ∈ R} .

• Introduce operators Q : ψ(x) 7→ xψ(x) and P : ψ 7→ −i~ d

dx
ψ(x).

• T coherent states |ηq,p〉 are defined as normalized eigenvectors of Aν = Wν(Q) + iP with
eigenvalue Wν(q) + ip:

| ηq,p >= Nν(q)
∣∣∣ξ[ν]
W (q)+ip

〉
, (q, p) ∈ K ,

where ξz(x) = ezx/~ sinν+1
(
π
Lx
)

for x ∈ [0, L] .

• Normalization coefficient Nν(q):

Nν(q) =
2ν+1|Γ(ν + 2− i(ν + 1) cot πLq)|√

L
√

Γ(2ν + 3)
× exp

[
π

2
(ν + 1) cot

π

L
q
]
.

• Function x 7→ |ηq,p(x)| reaches its maximal value for x = q and 〈P〉p,q = p.

• Uncertainty relation ∆Wν(Q)∆P > ~
2〈W

′
ν(Q)〉 is minimized by these CS.
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T CS Quantization and expected values
• T CS’s resolve of identity with respect to the uniform measure on the phase space K:∫

K
| ηq,p >< ηq,p |

dq dp

2π~ = I .

• This renders possible CS quantization of “classical observables” f(q, p) through the corre-
spondence [Klauder,Berezin]

f(q, p)→ F =

∫
K
f(q, p) | ηq,p >< ηq,p |

dq dp

2π~ .

• Remind that this operator-valued integral is understood as the sesquilinear form,

Bf (ψ1, ψ2) =

∫
K

dq dp

2π~ f(q, p)〈ψ1 | ηq,p 〉〈 ηq,p |ψ2 〉.

• The form Bf is assumed to be defined on a dense subspace of the Hilbert space. If f is real
and at least semi-bounded, the Friedrich’s extension of Bf univocally defines a self-adjoint
operator. However, if f is not semi-bounded, there is no natural choice of a self-adjoint
operator associated with Bf . In this case, we can consider directly the symmetric operator F
enabling us to obtain a self-adjoint extension (unique for particular operators)
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Some T CS quantized classical observables

Name f Af Operator action Properties

Position q F (Q) (*) multiplication bounded
self-adjoint

Superpotential Wν(q) Wν(Q) multiplication unbounded
self-adjoint

Potential
1

sin2 πq/L

(2ν + 3)(2ν + 2)−1

sin2 πQ/L
multiplication unbounded

self-adjoint

“Momentum” p P Pφn = −i~φ′n unbounded
symmetric

Hamiltonian
p2

2m
+

2ν − 1

2ν + 3

E0(ν + 1)2

sin2 πq/L
Hν Schrödinger semi-bounded

operator self-adjoint
(ν > 1/2)

(*)F (x) = sin2ν+2(πx/L)
∫ L

0
dq qN2

ν (q) exp(2Wν(q)x/L).
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“Lower” (or “covariant”) symbols of operators
They are the expectation values of operators in the T CS.

Name A f

Position Q N2
ν (q)

×
∫ L

0

dx x sin2ν+2 πx

L
e

2Wν (q)x
L

“Momentum” (*) P p

Superpotential Wν(Q) Wν(q)

Potential
1

sin2 πQ/L

2ν + 2

2ν + 1

1

sin2 πq/L

Kinetic energy
P2

2m

p2

2m
+

1

2ν + 1

E0(ν + 1)2

sin2 πq/L

(*) The operator P is the one given in table 1.
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Semi-classical behavior
For any normalized state φ ∈ H = L2([0, L], dx), the resolution of identity allow us to build a
probability distribution on the phase space K:

K 3 (q, p) 7→ 1

2π~ |〈 ηq,p |φ 〉|
2 = ρφ(q, p)

Phase space localization distribution for ν = 0 of the state ηq0,p0 with q0 = L/5, p0 = 4π~/L and
L = 20Å. The thick curve is the expected trajectory in the infinite square well, deduced from the
semi-classical hamiltonian . The particle is an electron, its mean energy is E = 1.6 eV. Increasing
values of the function are encoded by the colors from blue to red (this should be compared with
the Gaussian
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Time behavior

• Time behavior t 7→ ρφ(t)(q, p) for a state φ(t) evolving under the action of
the infinite square well Hamiltonian H0:

| φ(t) >= e−iH0t/~ | φ >=
∞∑
n=0

e−iE0(n+1)2t/~〈φn,0 |φ 〉 | φn,0 >

where, e.g., φn,0 ≡
√

2
L

sin (n+1)π

L
x.

• With φ = ηq0,p0 as an initial state, we have for a given ν

〈φ(t) |H0|φ(t) 〉 =
p2

0

2m
+

1

2ν + 1

E0(ν + 1)2

sin2 π
L
q0

.

• Since the lower symbols of Wν(Q) and P correspond to their classical
original functions Wν(q) and p, one can expect that the time average of the
probability law ρηq0,p0(t)(p, q) corresponds to some fuzzy extension in phase
space of the classical trajectory corresponding to the time-independent

Hamiltonian p2

2m
+

1

2ν + 1
E0(ν+1)2

sin2 πq/L
which is the lower symbol of the kinetic

energy.
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Time average distribution

The time average distribution ρ̄ is defined as ρ̄(q, p) = limT→∞
1
T

∫ T
0
ρηq0,p0(t)(q, p) dt,

Time average of the phase space representation of ηq0,p0(t) evolving under the Hamiltonian of the
infinite square well. The values of parameters and the thick curve are those of the first figure.
Increasing values of the function are encoded by the colors from blue to red.
The time average distribution ρ̄ allows us to compare the quantum behavior with the classical
trajectory, but its expression hides the complex details of the wave-packet dynamics CSPT time
evolution. The latter exhibits a splitting of the initial wave-packet into secondary ones during the
sharp reflection phase, each of them following the classical trajectory, before they amalgamate to
reconstitute a unique packet (revival time). This important point makes the difference with the
time behavior of the Schrödinger states for the harmonic oscillator.

http://gemma.ujf.cas.cz/~siegl/SUSYCS.html
http://gemma.ujf.cas.cz/~siegl/SUSYCS.html
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Conclusion(s)

• The presented family of CS’s for the Pöschl-Teller potentials sets a natural
bridge between the phase space and its quantum counterpart.

• These CS’s share with the Shrödinger ones some of their most striking prop-
erties, e.g. resolution of identity with uniform measure, saturation of uncer-
tainty inequalities.

• They also possess remarkable evolution stability features (not to be con-
fused with CS temporal stability in the sense of Klauder corresponding to
the time parametric evolution): their time evolution generated by Hν is lo-
calized on the classical phase space trajectory.

• The approach developed in this paper can be easily extended to higher di-
mensional bounded domains, provided that the latter be symmetric enough
(e.g. square, equilateral triangle, etc) to allow shape invariance integrability.
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2. Affine quantization

References
[1] H Bergeron, A Dapor, J-P G and P Małkiewicz, Wavelet Quantum Cos-

mology (2013); arXiv:1305.0653 [gr-qc]

[2] H Bergeron, A Dapor, J-P G and P Małkiewicz, Towards singularity-free
cosmology: coherent state quantization (2013)
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Affine or Wavelet Quantization

• Set X is the upper half-plane Π+ := {(q, p) | p ∈ R , q > 0} equipped
with measure dq dp. It is the phase space for the motion on the half-line.

• Equipped with the multiplication (q, p)(q0, p0) = (qq0, p0/q + p), q ∈
R∗+, p ∈ R, X is viewed as the affine group Aff+(R) of the real line.

• Aff+(R) has two non-equivalent UIR, U±. Both are square integrable ⇒
continuous wavelet analysis.

• U+ ≡ U carried on by Hilbert spaceH = L2(R∗+, dx):

U(q, p)ψ(x) = (eipx/
√
q)ψ(x/q) .

• unit-norm state ψ ∈ L2(R†+, dx) ∩ L2(R†+, dx/x) (“fiducial vector”) pro-
duces all wavelet⇔ CS defined as |q, p〉 = U(q, p)|ψ〉 and yielding the
crucial ∫

Π+

|q, p〉〈q, p| dq dp

2πc−1

= I , cγ :=

∫ ∞
0

dx|ψ(x)|2/x2+γ .
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Wavelet Quantization continued
• Covariant quantization from resolution of the identitya

f 7→ Af =

∫
Π+

f(q, p)|q, p〉〈q, p| dq dp

2πc−1

• Quantization is canonical (up to a multiplicative constant) for q and p:

Ap = P = −i∂/∂x , Aqβ = (cβ−1/c−1)Qβ , Qf(x) = xf(x) ,

• Quantization of kinetic energy:

Ap2 = P 2 +KQ−2 , K = K(ψ) =

∫ ∞
0

(ψ′(u))2 u du

c−1

Thus wavelet quantization forbids a quantum free particle moving on the positive line to reach
the origin.

• Operator P 2 = −d2/dx2 alone in L2(R∗+, dx) is not essentially self-adjoint whereas the above
regularized operator, defined on the domain of smooth compactly supported functions, is for
K > 3/4b. Then quantum dynamics of the free motion is possible.

aProceeding in quantum theory with an “affine” quantization instead of the Weyl-Heisenberg quantiza-
tion was already present in Klauder’s work devoted the question of dealing with singularities in quantum
gravity (see An Affinity for Affine Quantum Gravity, Proc. Steklov Inst. of Math. 272, 169-176 (2011);
gr-qc/1003.261 for recent references). The procedure rests on the representation of the affine Lie algebra.
In this sense, it remains closer to the canonical one and it is not of the integral type.

bReed M. and Simon B., Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-
Adjointness Volume 2 Academic Press, New York, 1975



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Semi-classical aspects in phase space

• Quantum states and their dynamics have phase space representation through
wavelet symbols. For state |φ〉 :

Φ(q, p) = 〈q, p|φ〉/
√

2π

• Associated probability distribution on phase space:

ρφ(q, p) =
1

2πc−1

|〈q, p|φ〉|2

• With (energy) eigenstates of some quantum Hamiltonian H at our disposal,
we can compute the time evolution

ρφ(q, p, t) :=
1

2πc−1

|〈q, p|e−iH|φ〉|2

for any state φ.
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Wavelet Quantization for FLRW Quantum Cosmology

• FLRW models filled with barotropic fluid with equation of state p = wρ
and resolving Hamiltonian constraint leads to a model of singular universe
∼ particle moving on the half-line (0,∞) with Hamiltonian.

{q, p} = 1, h(q, p) = α(w)p2 + 6k̃qβ(w), q > 0 .

with k̃ = (
∫

dω)2/3k, α(w) = 3(1 − w)2/32 and β(w) = 2(3w +
1)/(3(1− w)). k = 0,−1 or 1 (in suitable unit of inverse area) depending
on whether the universe is flat, open or closed.

• Assume a closed universe with radiation content : w = 1/3 and k = +1.
Affine quantization with a fiducial vector like ψ(x) ∝ exp(−(α(ν)x +
β(ν)/x), whith parameter ν > 0, on R∗+ yields the quantum Hamiltonian

Ah = H =
1

24
P 2 +

a2
PK(ν)

24

1

Q2
+ 6

a2
P

σ2

c1

c−1

Q2 ,

aP is a Planck area.

• For K(ν) > 3/4 wavelet quantization removes quantum singularity and
well-defined quantum evolution exists, at the difference with canonical
quantization
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Phase space distribution of the ground state with a certain choice of ν. aP = 1.
This stationary quantum state of the universe is distributed around the equilib-
rium point qe (minimum of the potential curve involved in the Hamiltonian).
The existence of the semi-classical equilibrium point qe 6= 0 is a consequence
of the repulsive part of the potential.
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Phase space distribution ρq0,p0,t(q, p) for some selected values of time t. (Fluid
configuration variable is chosen as a clock of universe). The thick curve is the

phase trajectory obtained from the effective dynamics.
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A “semiclassical” Friedmann equation

• In general lower symbol f̌ (q, p) differs from its classical counterpart
f (q, p): it is a quantum-corrected effective observable.

• Thus, computing lower symbol of Hamiltonian leads to the semiclassical
Friedmann equation for scale factor a(t):(

ȧ

a

)2

+
kc2

a2
+ c2a2

P (1− w)2 ν

128

1

V 2
=

8πG

3c2
ρ

• Note that the repulsive potential depends explicitly on volume. This ex-
cludes non-compact universes from quantum modeling.

• Singularity resolution is confirmed: as the singular geometry is approached
(a → 0), the repulsive potential grows faster (∼ a−6) than the density of
fluid (∼ a−3(1+w)) and therefore at some point the two terms become equal
and the contraction is brought to a halt.

• The form of the repulsive potential does not depend on the state of fluid
filling the universe: the origin of singularity avoidance is quantum geo-
metrical.
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3. Covariant integral quantizations
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Covariant integral quantization with UIR of a group

• Let G be a Lie group with left Haar measure dµ(g), and let g 7→ U(g) be
a unitary irreducible representation (UIR) of G in a Hilbert space H.

• Let M be a bounded operator on H. Suppose that the operator

R :=

∫
G

M(g) dµ(g) , M(g) := U(g)MU †(g) , (1)

is defined in a weak sense. From the left invariance of dµ(g) we have
U(g0)RU

†(g0) =
∫
G dµ(g)M(g0g) = R and so R commutes with all

operators U(g), g ∈ G. Thus, from Schur’s Lemma, R = cMI with

cM =

∫
G

tr (ρ0 M(g)) dµ(g) , (2)

where the unit trace positive operator ρ0 is chosen in order to make the
integral convergent.

• Resolution of the identity follows:∫
G

M(g) dν(g) = I , dν(g) := dµ(g)/cM . (3)
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Covariant integral quantization: with square integrable UIR (e.g.
affine group)

• For square-integrable UIR U for which |η〉 is an admissible unit vector, i.e.
c(η) :=

∫
G dµ(g) |〈η|U(g)η〉|2 <∞.

• Resolution of the identity is obeyed by coherent states for G:

|ηg〉 = U(g)|η〉 or by |ηg〉〈ηg| = ρ(g) , ρ := |η〉〈η|

• This allows covariant integral quantization of complex-valued functions on
the group f 7→ Af =

∫
G ρ(g) f (g) dν(g) :

U(g)AfU
†(g) = AUr(g)f , (4)

With f ∈ L2(G, dµ(g)), (Ur(g)f )(g′) := f (g−1g′) is the regular repre-
sentation.

• Generalization of the Berezin or heat kernel transform on G: f̌ (g) :=∫
G tr(ρ(g) ρ(g′)) f (g′) dν(g′).
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Covariant quantization with UIR square integrable w.r.t. a subgroup
(e.g. Weyl Heisenberg group)

• In the absence of square-integrability over G, there exists a definition of
square-integrable covariant coherent states with respect to a left coset man-
ifold X = G/H , with H a closed subgroup of G, equipped with a quasi-
invariant measure ν.a

aS. T. Ali, J.-P. Antoine, and J.-P. G., Coherent States, Wavelets and their Generalizations (Graduate
Texts in Mathematics, Springer, New York, 2000). New edition in 2014
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4. Conclusion
Beyond the freedom (think to analogy with Signal Analysis where different
techniques are complementary) allowed by integral quantization, the advantages
of the method with regard to other quantization procedures in use are of four
types.

(i) The minimal amount of constraints imposed to the classical objects to be
quantized.

(ii) Once a choice of (positive) operator-valued measure has been made, which
must be consistent with experiment, there is no ambiguity in the issue, con-
trarily to other method(s) in use (think in particular to the ordering problem).
To one classical object corresponds one and only one quantum object. Of
course different choices are requested to be physically equivalent

(iii) The method produces in essence a regularizing effect, at the exception of
certain choices, like the Weyl-Wigner integral quantization.

(iv) The method, through POVM choices, offers the possibility to keep a full
probabilistic content. As a matter of fact, the Weyl-Wigner integral quanti-
zation does not rest on a POVM.
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• But what is the real meaning of that freedom granted to us in the choice of
POVM or others?

• Such a freedom is governed by our degree of confidence in localizing a
pure classical state (q, p) in phase space. The latter is usually viewed as
an ideal continuous manifold where all points are physically accessible. As
everybody knows, such a view is physically untenable ...

• However, and this is the paradoxical paradigm of contemporary physics,
one needs such a leibnizian mathematical ideality (natura non saltum facit)
to build a more realistic, though more highly mathematical, representation
of the physical world.
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5. In complement, as a working example:
coherent states for motion on the circle



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5.1. Action & Angle in Classical Mechanics
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Action-angle variablesa

• Consider a conservative one-degree of freedom confined mechanical system with phase space
conjugate variables (q, p). For a given motion its Hamiltonian function is fixed to a certain
value E of the energy:

H(q, p) = E ⇒ p = p(q, E)

• Action variable
J =

∮
p(q, E) dq = J(E) ,

where the loop integral is understood as performed over a complete period of libration or
rotation.

• Conjugate angle variable from W = W (J, q) =
∫
p dq (Hamilton characteristic function)

which generates contact transformation (q, p) 7→ (J, γ) at constant Hamiltonian, where

γ =
∂W

∂J

with time evolution
γ =

t

τ(E)
+ γ0, , τ =

∂J

∂E
= τ(E) .

aL. Landau et E. Lifchitz, Mechanics, Pergamon, Chapter 7; H. Goldstein, Classical Mechanics, Addi-
son Wesley, Chapter 10
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Two extreme cases: free rotator and harmonic oscillator

• Free rotator: particle, massm, freely moving on circle, radius l. Canonical
coordinates (θ = 2πγ, pθ = ml2θ̇ = J/2π), energy E =

p2θ
2ml2

• Harmonic Oscillator: from E = p2

2m
+ 1

2
kq2,

J =
2π

ω
E , γ = ± φ

2π
+ γ0 , q = qmax sinφ .

• Prototype of all intermediate sytems: simple pendulum
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5.2. One typical intermediate case: simple pendulum
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Example 3: simple pendulum

• We now consider the “simple pendulum”, i.e. a point particle of mass
m moving on a vertical circle of radius l and submitted to the potential
V (θ) = −mg cos θ where θ is the position angle measured from the low-
est position. This problem is pedagogically interesting since it represents a
link between the two extreme situations exposed above, pure rotor (at g = 0
and harmonic oscillations for small θ).

• The natural canonical coordinates are (pθ, θ) where pθ = ml2θ̇ is the angu-
lar momentum with the dimension of an action. But (pθ, θ) should not be
confounded with the action-angle variables.

• The Hamiltonian reads

H =
p2
θ

2ml2
−mgl cos θ ,

and is conserved: H = E

• So the variable pθ is given in terms of E by pθ =
±
√

2ml2
√
E + mgl cos θ, the sign ambiguity ± resulting from the

possibility to have clockwise or anticlockwise angular velocity θ̇ on the
circle.
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Example 3: simple pendulum (continued)
• For the simple pendulum we have to distinguish between 3 regimes:

(i) rotation at large enough energy E > mgl,
(ii) bifurcation separatrix at E = mgl,

(iii) libration at small enough energy E < mgl.

• In view of shortening notations three characteristic frequencies (two of them are energy de-
pendent), an energy-dependent characteristic action, and an energy-dependent characteristic
ratio, are introduced:

(i) ωr = ωr(E)
def
=

√
2E

ml2
: modulus of angular velocity for E > 0 at θ = π/2,

(ii) ωl
def
=
√
g

l
, frequency of harmonic small oscillations,

(iii) ω0 = ω0(E)
def
=
√
ω2
r + 2ω2

l , a kind of quadratic average of the two previous ones,

(iv) ϑ0 = ϑ0(E)
def
= ml2ω0, which provides a characteristic (energy-dependent) scale for action

quantities involved in the model,

(v) k = k(E)
def
= 2

ωl
ω0

(also denoted by m by certain authorsa), the modulusb of the involved

elliptic integrals (see next slide)
aAbramowitz, M. and Stegun, I. A. (Eds.) Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 721-746, 1972.
bMagnus, W., Oberhettinger, F., and Soni, R. P., Formulas and Theorems for the Special Functions of

Mathematical Physics. Springer-Verlag, Berlin, Heidelberg and New York, 1966.
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Example 3: simple pendulum (continued)
• The Hamilton characteristic function is given by

W =

∫ θ

0

pθ dθ
′ +W0 = ±ϑ0

∫ θ

0

√
1− k2 sin2 θ

′

2
dθ′ = ±ϑ0Ee``

(
k,
θ

2

)
+W0 ,

where Ee``(k, ϕ) is the elliptic normal integral of the second kinda (normal Legendre form).

• For the action variable J =
∮
pθ dθ we have to distinguish between two cases.

(i) Rotation:

J = ±ϑ0

∫ 2π

0

√
1− k2 sin2 θ

2
dθ = ±2ϑ0

∫ π

0

√
1− k2 sin2 θ

2
dθ

= ±4ϑ0

∫ π
2

0

√
1− k2 sin2 t dt = ±4ϑ0 Ee``(k) ,

where Ee``(k) is the complete elliptic normal integral of the second kind.
(ii) Libration:

J = 4ϑ0

∫ 2 arcsin 1
k

0

√
1− k2 sin2 θ

2
dθ = 8ϑ0 Ee``(k, arcsin

1

k
) .

aMagnus, W., Oberhettinger, F., and Soni, R. P., Formulas and Theorems for the Special Functions of
Mathematical Physics. Springer-Verlag, Berlin, Heidelberg and New York, 1966.
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Example 3: simple pendulum (continued)
• The angle variable, conjugate to the action variable J , can be directly calculated from pθ =

ml2θ̇ = ±ϑ0

√
1− k2 sin2 θ

2 :

ω0 (t− t0) =

∫ θ

0

dθ′√
1− k2 sin2 θ′

2

= 2Fe``

(
k,
θ

2

)
≡ 2u

(
k,
θ

2

)
,

where Fe``(k, ϕ) is the elliptic normal integral of the first kind, and θ is given in terms of u
through the elliptic function sn(u, k) = sin

(
θ
2

)
= sin am(u, k).

• For the period τ = τ(E) and frequency ν = 1/τ = ν(E) of the motion we have to distinguish
between two cases.

(i) Rotation (E > mgl⇔ |J | > Jcrit
def
= 8ml3/2

√
g):

τ =
1

ω0

∫ 2π

0

dθ√
1− k2 sin2 θ

2

=
2

ω0

∫ π

0

dθ√
1− k2 sin2 θ

2

=
4

ω0

∫ π
2

0

dt√
1− k2 sin2 t

=
4

ω0
Ke``(k) ,

where Ke``(k) ≡ Fe``
(
k, π2
)

is the complete elliptic normal integral of the first kind.
(ii) Libration (0 6 E < mgl⇔ 0 6 J < Jcrit):

τ =
4

ω0

∫ 2 arcsin 1
k

0

dθ√
1− k2 sin2 θ

2

dθ =
8

ω0
Fe``(k, arcsin

1

k
) =

4

ωl
Ke``(k

−1) .

• The angle variable is then w − w0 = ν(E) (t− t0).
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At the origin of quantum mechanics: Bohr-Sommerfeld quantization

• Are permitted only confined motions (in 1d) which obey:

J =

∮
p(E) dq = nh , n ∈ N Bohr-Sommerfeld quantization rule,

where h is the Planck constant or “quantum of action”.

• This “old” condition is correct for quantization of the angular momentum
for the free rotor, pθ = J/(2π) = n~ and so the quantization of the free
rotor quantum energy E = n2~2/(2ml2), whereas it gives E = ~ωn for
the harmonic oscillator energy and so does not provide the observed ground
state one-half quantum.

• The motivation for the Bohr-Sommerfeld quantum condition was the corre-
spondence principle: the behavior of a quantum system reproduces classi-
cal physics in the limit of large quantum numbers. This principle has to be
complemented by the physical observation that the quantity to be quantized
must be adiabatic invariant (i.e. stays constant when changes occur slowly).
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The adiabatic rationale (...)

• The motivation for the Bohr-Sommerfeld quantum condition was the corre-
spondence principle: the behavior of a quantum system reproduces classi-
cal physics in the limit of large quantum numbers. This principle has to be
complemented by the physical observation that the quantity to be quantized
must be adiabatic invariant (i.e. stays constant when changes occur slowly).

• In classical mechanics, an adiabatic change is a slow deformation of the
Hamiltonian, where the fractional rate of change of the energy is much
slower than the orbital frequency. The area enclosed by the different mo-
tions in phase space are the adiabatic invariants, which is precisely the case
for the classical action. In quantum mechanics, an adiabatic change is one
that occurs at a rate much slower than the difference in frequency between
energy eigenstates. In this case, the energy states of the system do not make
transitions, so that the quantum number is an adiabatic invariant. The Bohr-
Sommerfeld rule consists in equating the quantum number of a system
with its classical adiabatic invariant. Hence, the quantum number is
the area in phase space of the classical orbit.
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5.3. Action-angle coherent states and related quantizations for the
motion on the circle (“quantum free rotator”)
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Action angle coherent states on the cylinder with Gaussian distribu-
tions

• Set X = {(J, γ) , J ∈ R , γ ∈ [0, 2π)}: cylindric phase space for the
motion on the circle.

• Measure dµ(x) = dJ dγ
2π

• Adopt the construction of a family of coherent states described in Lesson 1

• Choice of orthonormal set in L2(X, dJ dγ/2π):{
φn(x) =

(
ε

π

)1/4

e−
ε
2(J̃−n)2 eiαnγ , n ∈ Z

}
,

where αn = n or αn = n2 and ε controls the width of the Gaussian.

• Let H be a separable (complex) Hilbert space with orthonormal basis
{en , n ∈ Z},
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Action angle coherent states on the cylinder with Gaussian distribu-
tions (continued)

• The coherent states read, with J̃ = J/h, h is Planck constant,

|x〉 ≡ |J, γ〉 =
1√
N (J)

(
ε

π

)1/4∑
n∈Z

e−
ε
2(J̃−n)2 e−iαnγ|en〉 ,

• By construction they solve the identity inH:∫ ∞
−∞

dJ
1

2π

∫ 2π

0

dγN (J) |J, γ〉〈J, γ| = I .

• The normalization functionN (J) is given in two forms:

N (J) =

√
ε

π

∑
n∈Z

e−ε(J̃−n)2 =
Poisson

∑
n∈Z

e2πinJ̃ e−
π2

ε n
2

,

and satisfies limε→0N (J) = 1.
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Quantization with action-angle coherent states on the cylinder

• The corresponding integral quantization reads:

f (J, γ) 7→ Af =

∫ ∞
−∞

dJ
1

2π

∫ 2π

0

dγ f (J, γ)N (J) |J, γ〉〈J, γ|

=
∑
n,n′

(Af)nn′ |en〉〈en′| ,

(Af)nn′ =

(
ε

π

)1/2 ∫ ∞
−∞

dJ e−
ε
2(J̃−n)2+ ε

2(J̃−n′)2) 1

2π

∫ 2π

0

dγ ei(αn−αn′)γ f (J, γ) .

• This CS quantization with the simplest choice αn = n of the action J gives
the usual quantum angular momentum

J 7→ AJ with (AJ)nn′ = δnn′hn ≡ Jn

• and it gives for the energy of the free particle on the circle

E ∝ J2 7→ AE with (AE)nn′ ∝ δnn′(n
2 + const.)

as expected ...
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Overlap
• The overlap between two of them is given by:

〈J ′, γ′|J, γ〉 =
e−

ε(J̃−J̃′)2
4√

N (J)N (J ′)

(
ε

π

)1/2∑
n∈Z

e
−ε

(
J̃+J̃′

2
−n

)2

eiαn(γ′−γ) ,

• From the Poisson summation formula,∑
n∈Z

Φ(n) =
√

2π
∑
k∈Z

Φ̂(2πk) , Φ̂(k)
def
=

1√
2π

∫ +∞

−∞
dtΦ(t) e−ikt ,

one infers the alternative formula,

〈J ′, γ′|J, γ〉 =
e−

ε(J̃−J̃′)2
4√

N (J)N (J ′)
(2ε)1/2

∑
n∈Z

Φ̂(2πn) , Φ(t) = e
−ε

(
t− J̃+J̃

′
2

)2

ei(γ
′−γ)α(t) ,

with α(n) ≡ αn.

• One can also use the comparison series-integral
∑

n∈Z |Φ(n)| ≈
∫ +∞
−∞ |Φ(t)| dt which gives,

for ε not too large:

|〈J ′, γ′|J, γ〉| 6 e−
ε(J̃−J̃′)2

4√
N (J)N (J ′)

(
ε

π

)1/2∑
n∈Z

e
−ε

(
J̃+J̃′

2
−n

)2

≈ e−
ε(J̃−J̃′)2

4√
N (J)N (J ′)

.
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The alternative for the free rotator

• The choice αn ∝ n is the usual one and yields the exact correspondence
between the classical Poisson bracket {J, eiφ} = ieiφ and the commutator
[AJ , Aeiφ] = Aeiφ

• The choice αn ∝ n2 is appropriate for the quantization of the energy, since,
with it, it yields temporal evolution stability
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Overlap with the two simple choices: αn = 2πn/τ , αn = 2πn2/τ

• Two useful Fourier transforms:

f1(t) = e−ν(t−µ)2 eiλt
Fourier−→ f̂1(k) =

1√
2ν

− (k−‖ambda)2
4ν

e−iµ(k−λ) ,

f2(t) = e−ν(t−µ)2 eiλt
2 Fourier−→ f̂2(k) =

1√
2(ν − iλ)

e
− ν

4(ν2+λ2)
(k−2λµ)2

e
iλ (k+2µν2/λ)2

4(ν2+λ2) e−iµ
2ν2/λ .

• With αn = 2πn/τ the overlap is given by:

〈J ′, γ′|J, γ〉 =
e−

ε(J̃−J̃′)2
4√

N (J)N (J ′)

(
ε

π

)1/2∑
n∈Z

e
−ε

(
J̃+J̃′

2
−n

)2

eiαn(γ′−γ) ,
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Quantum angle, with αn = n

• The integral quantization of the discontinuous 2π-periodic angle function (γ)ג = γ for γ ∈
[0, 2π)

Aג = πI +
∑
n6=n′

i
e−

ε
4
(n−n′)2

n− n′
|en〉〈en′| ,

• Corresponding lower symbols at the limit ε→ 0

〈J0, γ0|Aג|J0, γ0〉 = π +
1

2

(
1 +
N (J0 − 1

2)

N (J0)

)∑
n6=0

i
e−

ε
2
n2+inγ0

n

∼
ε→0

π +
∑
n6=0

i
einγ0

n
,

where we recognize at the limit the Fourier series of .(γ0)ג

• For the commutator with the action,

〈J0, β0|[AJ , Aג]|J0, γ0〉 =
1

2

(
1 +
N (J0 − 1

2)

N (J0)

)(
−i+

∑
n∈Z

ie−
ε
2
n2+inγ0

)
∼
ε→0
−i+ i

∑
n

δ(γ0 − 2πn) .

• So we (almost) recover the canonical commutation rule except for the singularity at the origin
mod 2π.
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Spectrum of the angle operator Aג, here denoted Aθ obtained by CS quantiza-
tion of the angle of rotation on the circle
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Lower symbol of the angle operator obtained by CS quantization of the angle
of rotation on the circle
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Action angle coherent states on the cylinder with general probability
distributionsa

• For the probability distribution we can actually choose a non-negative, even, well localized
and normalized integrable function

R 3 J 7→ pσ(J) , pσ(J) = pσ(−J) ,

∫ +∞

−∞
dJ pσ(J) = 1 ,

where σ > 0 is some “width” parameter, and obeying 0 < N σ(J)
def
=
∑

n∈Z p
σ
n(J) <∞ for all

J ∈ R, where pσn(J)
def
= pσ0 (J − n). Ex.: pσ(J) = 1

2σχ[−σ,σ](J).

• The functions φn(x), for n ∈ Z, are now given by:

φn(x) =
√
pσn(J) einϕ , n ∈ Z .

• The correspondent family of coherent states on the circle reads as:

|J, ϕ〉 =
1√
N σ(J)

∑
n∈Z

√
pσn(J) e−inϕ|en〉 .

• They are normalized, resolve the unity and give the correct quantization for action J and
energy J2.

aAction-angle coherent states for quantum systems with cylindric phase space, I. Aremua, J.P.G, and
M. N. Hounkonnou, J. Phys. A: Math. Theor. 45 335302-1-16 (2012) arXiv:1111.4908v1 [quant-ph]
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Experimental evidence of action-angle: superconducting boxa

• Single superconducting island connected to a superconducting electron
reservoir by a tunnel junction with capacitance Cj. Electrons can be trans-
ferred from the reservoir to the island by voltage source V connected be-
tween the reservoir and the island via a gate capacitanceCg. Both the island
and the reservoir are taken to be good Bardeen-Cooper-Schrieffer (BCS) su-
perconductors in conditions such that all electrons in the island are paired.

ae.g. Quantum Coherence with a single Cooper Pair, V. Bouchiat et al, Phys. Scr. T76, 165-170 (1998)
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Experimental evidence of action-angle: superconducting box (contin-
ued)

• Total number of excess Cooper pairs n ∈ Z, with total charge q = −2en of
the island, is element of the spectrum of a quantum observable n̂ analogue
to AJ .

• In eigenbasis |n〉 of n̂, the quantum Hamiltonian reads as a quantum pen-
dulum one in rotation (not in libration):

Ĥ = Ĥel+ĤJos = EC

∑
n

(n−ng)2|n〉〈n|−EJ

2

∑
n

(|n〉〈n+1|+|n+1〉〈n|)

(EC: Coulomb energy, EJ : Josephson energy)

• ĤJos is∝ to Acosϕ.

• Experimental access to [AJ , Aφ]?
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5.4. A Bayesian probabilistic construction of action-angle coherent
states and related quantizations
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Conditional posterior probability distribution

• Suppose that measurement of a confined one-dimensional system yields the
sequence of values for the energy observable (up to a constant shift):

E0 < E1 < · · · < En < · · · .

• Let h be a constant characteristic action of the considered system (e.g. the
Planck constant). We define a corresponding sequence of probability distri-
butions J 7→ pn(J), i.e.

∫
R orR+ dJ̃ pn(J) = 1, with J̃ def

= J/h, supposing
a (prior) uniform distribution on the range of the action variable J , obeying
the two conditions:

0 < N (J)
def
=

∑
n∈Z orN

pn(J) <∞ , En + cst =

∫
R orR+

dJ̃ E(J) pn(J)

where R and Z (resp. R+ and N) stand for the rotation (resp. libration) type
of motion.

• The finiteness condition allows to consider the map n 7→ pn(J)/N (J) as
a probabilistic model referring to the discrete data, which might viewed in
the present context as a prior distribution.
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Action-angle coherent states

• Let H be a complex separable Hilbert space with orthonormal basis
{|en〉n ∈ Z orN}
• Let τ > 0 be a rescaled period of the angle variable andX = {(J, γ) , J ∈
R orR+, 0 6 γ < τ}a be the action-angle phase space for a rotation (resp.
libration) motion with measured energies the discrete sequenceE0 < E1 <
· · · < En < · · · .
• Let (pn(J))n∈ZorN be the sequence of probability distributions associated

with these energies. We suppose p−n(J) = pn(−J) in the rotation case.

• One then constructs the family of states in H for the considered motion as
the following continuous map from X intoH:

X 3 (J, γ) 7→ |J, γ〉 =
1√
N (J)

∑
n

√
pn(J) e−iαn γ |en〉 ∈ H ,

where the choice of the real sequence n 7→ αn is left to us in order to
comply with some if not all criteria previously listed.

aActually we keep the freedom of making γ vary from −∞ to +∞ as we do for any angle variable.
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Fundamental properties of action-angle coherent states
In both cases the coherent states |J, γ〉

(i) are unit vector : 〈J, γ|J, γ〉 = 1

(ii) resolve the unity operator in H with respect a measure “in the Bohr sense” µB(dJ dγ) on the
phase space X :∫

X

µB(dJ dγ)N (J) |J, γ〉〈J, γ| def
=

∫ +∞

−∞
dJ̃ N (J) lim

T→∞

1

T

∫ T
2

−T
2

dγ|J, γ〉〈J, γ| = 1H .

(iii) allow a “coherent state quantization” of classical observables f(J, γ) which is “energy” com-
patible with our construction of the posterior distribution J 7→ pn(J):

f(J, γ) 7→
∫
X

µB(dJ dγ)N (J) f(J, γ) |J, γ〉〈J, γ| def
= Af .

(iv) since it is trivially verified that in both cases the quantum Hamiltonian is exactly what
we expect:

AE(J) =
∑
n

(En + cst)|en〉〈en| .
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Quantization of action and angle coordinates

• The quantization of any function h(J) of the action variable only yields the
diagonal operator:

h(J) 7→ Ah =
∑
n

〈h〉n|en〉〈en| ,

where

〈h〉n =

∫ +∞

−∞
dJ̃ h(J) pn(J) for Xr ,

〈h〉n =

∫ +∞

0

dJ̃ h(J) pn(J) for Xl .

• Remind that we have already defined Jn = 〈J〉n (for Xr) and Jn+1 = 〈J〉n
(for Xl).
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Quantization of action and angle coordinates (continued I)

• The quantization of any τ periodic function g(γ) of the angle variable only
yields the operator:

g(γ) 7→ Ag =
∑
n,n′

[Ag]nn′|en〉〈en′| ,

where the matrix elements[Ag]nn′ are formally given by:

[Ag]nn′ =

∫ +∞

−∞
dJ̃
√
pn(J) pn′(J) lim

T→∞

1

T

∫ T
2

−T
2

dγ e−i(αn−αn′)γ g(γ)

for Xr ,

[Ag]nn′ =

∫ +∞

0

dJ̃
√
pn(J) pn′(J) lim

T→∞

1

T

∫ T
2

−T
2

dγ e−i(αn−αn′)γ g(γ)

for Xl .

• In particular the CS quantization procedure provides, for a given choice of
the sequence (αn) a self-adjoint angle operator corresponding to the an-
gle function A(γ) defined on the real line as the τ -periodic extension of
A(γ) = γ on the interval [0, τ ).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Quantization of functions of angle (continued II)
• The explicit form of the matrix elements is given by specifying the parameter T as T = 2Mτ

with M ∈ N and letting M → ∞. From the general formula for any integrable τ -periodic
function integrable on a period interval,

1

2Mτ

∫ Mτ

−Mτ

dγ g(γ) e−iλγ =

[
1

τ

∫ τ

0

dγ g(γ) e−iλγ
]
×

(
1

2M

M−1∑
m=−M

e−imλτ

)

=

[
1

τ

∫ τ

0

dγ g(γ) e−iλγ
]
× 1

M

(
cos((M − 1)λτ/2)

sin((Mλτ/2)

sin(λτ/2)
+ eiMλτ

)
,

we have at the limit:

lim
M→∞

1

2Mτ

∫ Mτ

−Mτ

dγ g(γ) e−iλγ =

{
0 if λ /∈ (2π/τ)Z ,
ck(g; τ) if λ = 2πk/τ , k ∈ Z ,

where ck(g; τ) = 1
τ

∫ τ
0
dγ g(γ) e−i2πkγ/τ is the kth Fourier coefficient of g(γ).

• The matrix elements[Ag]nn′ are then given by:

[Ag]nn′ = 0 if αn − αn′ /∈ (2π/τ)Z or = $nn′ ck(g; τ) if αn − αn′ = 2πk/τ , k ∈ Z ,

where $nn′ =
∫ +∞
−∞ dJ̃

√
pn(J) pn′(J) (resp.

∫ +∞
0

dJ̃
√
pn(J) pn′(J)) measures the correlation

between the two distributions J 7→ pn(J), J 7→ pn′(J).

• Note the diagonal values are all equal to the average of g(γ) over one period. Also the
infinite matrix can be sparse, even just diagonal, depending on the choice of the αn’s. In
the latter case, the quantization transforms classical observables into a commutative algebra
of operators.
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Localization probability distributions
• The action-angle phase space representation of a particular coherent state |Ji, γi〉, as a function

of (J, γ), is precisely given by the “normalized” overlap

Ψ|Ji,γi〉(J, γ)
def
=
√
N (J) 〈J, γ|Ji, γi〉 =

1√
N (Ji)

∑
n

√
pn(J) pn(Ji) e

iαn(γ−γi) ,

• Hence, the map Xr (resp. Xl) 3 (J, γ) 7→ ρphase
|Ji,γi〉(J, γ) ≡ |Ψ|Ji,γi〉(J, γ)|2 = N (J) |〈J, γ|Ji, γi〉|2

represents a localization probability distribution, namely a generalized version of the Husimi
distribution, on the phase space provided with the pseudo-measure µB. Indeed, the resolution
of the identity gives immediately∫

Xr (resp. Xl)
µB(dJ dγ) ρphase

|Ji,γi〉(J, γ) = 1 .

• If we choose instead a specific realization of the Hilbert space H, like that one generated
by eigenfunctions of the quantum Hamiltonian AH in “q” or “configuration” representation,
|en〉 7→ ψn(q), the corresponding representation of the state |Ji, γi〉 reads as

ψ|Ji,γi〉(q) =
1√
N (Ji)

∑
n

√
pn(Ji) e

−iαn γi ψn(q) ,

with corresponding probability density of localization on the range of the q-variable given by
ρcirc
|Ji,γi〉(q) ≡ |ψ|Ji,γi〉(q)|

2
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Time evolution

• Let us now examine the time evolution of the coherent states |J, γ〉 . Since
the CS quantized version AH of the classical Hamiltonian H is diagonal in
the basis {|en〉 , n ∈ Z (resp. N) }, the time evolution of the CS in both
representations is given respectively by

e−iÃHtΨ|Ji,γi〉(J, γ) =
√
N (J) 〈J, γ|e−iÃHt|Ji, γi〉

=
1√
N (Ji)

∑
n

√
pn(Ji)pn(J) ei(αn(γ−γi)−Ẽn t) ,

e−iÃHtψ|Ji,γi〉(q) =
1√
N (Ji)

∑
n

√
pn(Ji) e

−i(αnγi+Ẽn t) ψn(q) .

Here we have put ÃH = AH/κ and Ẽn = En/κ for dimensional purposes.

• From these expressions stems the need to show various snapshots
of the time evolution of the corresponding probability densities
|
√
N (J) 〈J, γ|e−iÃHt|Ji, γi〉|2 and |e−iÃHtψ|Ji,γi〉(q)|2.

• Note that time evolution stability is granted with the choice αn = α−n =
En.
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The quest for explicit probabilities: the two limit cases
• The central question raised by our construction is the determination of the discretely indexed

probability distribution J 7→ pn(J). We have two limit situations, the free rotor and the har-
monic oscillator, for which the energies are respectively En ∝ n2+const. and En ∝ n+const.

• In the first case, and with the notations for the classical free rotor, a familiar solution is the
normal law centered at each integer, with dimensionless width parameter σ or ε:

pn(J) =
(

1

2πσ2

)1/2

e−
1

2σ2κ2
(J−κn)2 ≡

(
ε

π

)1/2

e−ε (J̃−n)2 , n ∈ Z .

This gives Jn = κn and En =
κ2n2

8π2ml2
+

σ2κ2

8π2ml2
, the constant shift being the average value of

the classical energy with respect the distribution p0(J).

• In the second case, and with the notations for the classical oscillator, another familiar solution
is the discretely indexed gamma distribution:

pn(J) = e−J̃
J̃n

n!
, n ∈ N .

This gives Jn = κ(n + 1) and En =
ω κ

2π
(n + 1), the constant shift being the average value of

the classical energy with respect to the distribution p0(J).
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The quest for explicit probabilities: the general case
• The central question is, given the classical relation E = E(J) between action variable and

energy, and given the observational or computed sequence (En), to find solution(s) pn(J) (at
least with a satisfying approximation), for each n ∈ Z or ∈ N, to the 2 equations

En =

∫
R orR+

dJ̃ E(J) pn(J) ,

1 =

∫
R orR+

dJ̃ pn(J) ,

which moreover fulfill the nonzero and finiteness conditions:

0 < N (J)
def
=
∑
n

pn(J) <∞ .

Recall that the relation E = E(J) is the inverse function of J(E) =
∮
p(E, q) dq.

• For the rotation case, the departure point could be a normal-like law, possibly modified along
a perturbation scheme with expansion parameter the strength of the potential energy U .

• In the libration case, the departure could be a Poisson-like law, possibly modified along a
perturbation scheme with expansion parameter the strength of the potential energy U
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An example of solution given by K.R. Parthasarathy:
linear convex combinations of uniform distributions

• Let H(t) be continuous, > 0, with Range H = [0,∞). Let µ be any positive number.

• Consider for H−1([α, β]) for α < β < µ and H−1([γ, δ]) for µ < γ < δ.

• Define

pa(t) =
1H−1([α,β])

µL (H−1([α, β]))
and pb(t) =

1H−1([γ,δ])

µL (H−1([γ, δ]))
.

where µL(X) is Lebesgue measure of X and 1X is the indicator function of X.

• Define
∫
RH(t) pa(t) dt = a,

∫
RH(t) pb(t) dt = b. Then a < µ < b.

• Let µ = λa+ (1− λ)b and define pµ(t) = λ pa(t) + (1− λ) pb(t). Then∫
R
H(t) pµ(t) dt = µ ∀µ ∈ RangeH ,µ > 0 ,

i.e. µ ∈ (0,∞).

• Consequence: for a sequence {µn} ⊂ (0,∞), then∫
R
H(t) pµn(t) dt = µn .
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An example of solution given by K.R. Parthasarathy (continued)
• Furthermore, the non-zero and finiteness conditions have to be fulfilled. For that, supposing

that H(t) is strictly increasing and unbounded (this is the case for the energy function E(J)
for J > 0), one can choose intertwining sequences {αn} and {βn}, such as

µn−1 6 αn+1 6 βn , µ−1
def
= 0 ,

while the sequences {γn} and {δn} remain free apart from the constraints

µn < γn < δn < µn+Nl ,

for a fixed Nl > 1.

• It is then clear that N (J) =
∑

n pn(J)

? never vanishes, since pan(t)
def
=

1H−1([αn,βn])

µL (H−1([αn, βn]))
overlaps on a non-empty interval with

pan+1 ,
? and is finite, since a finite set of pn’s overlap on non-empty intervals.
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Approximations for the simple pendulum: the rotation case

• Starting from the computed Mathieu eigenvalues En, a very empirical ap-
proach consists in starting from the sequence of computed action variables
J cl
n

def
= J(En) and to impose in the rotation case, the normal law

pn(J) =

(
1

2πσ2
nκ

2

)1/2

e
− 1

2σ2nκ
2 (J−Jcl

n )2

, n ∈ Z ,

by “adjusting” σn in order to suitably approximate the En’s with the com-
puted quantities

Eapp
n

def
=

∫ +∞

−∞
E(J) pn(J) dJ̃ .

• Note that the consistency condition on the quantization of the action variable
is automatically fulfilled:∫ +∞

−∞
J pn(J) dJ̃ = Jn = J cl

n .
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Approximations for the simple pendulum: the libration case
• Like in the preceding case, starting from the computed Mathieu eigenvalues En, a very

empirical approach consists in starting from the sequence of computed action variables
Jcl
n

def
= J(En) and to impose in the libration case (the most delicate one!), the Poisson-like

distribution

pn(J) =
wn(J)

E(J)

J̃n

J̃cl
n !
, n ∈ N , J̃cl

n !
def
= J̃cl

1 J̃
cl
2 · · · J̃cl

n , J̃cl
0 !

def
= 1 , E(J)

def
=

∞∑
n=0

J̃n

J̃cl
n !
,

by “adjusting” the weights wn(J) (which should not differ appreciably from 1) in order to,
not only suitably approximate the En’s with the computed quantities

Eapp
n

def
=

∫ +∞

0

E(J) pn(J) dJ̃ ,

but also comply with the probability normalization∫ +∞

0

pn(J) dJ̃ = 1 ,

and, hopefully, the approximate consistency condition

Jn+1 =

∫ +∞

0

J pn(J) dJ̃ =

∫ +∞

0

J
wn(J)

wn+1(J)
pn+1(J) dJ ≈ Jcl

n+1 .
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Concluding points
• Integrable systems provide a variety of such families of action-angle coherent states

• The question is the “good” choice of probability distributions ni 7→ pni(Ji)

• The question is the physical (in terms of physical measurement) equivalence of such frames
from quantization point of view

• Extension to non confined systems and subsequent continuous spectra is possible (see below)
a

a Coherent states and related quantizations for unbounded motions, V. G. Bagrov, JPG, D. Gitman,
and A. Levine, J. Phys. A: Math. Theor. (2012), arXiv:1201.0955v2 [quant-ph]


	ICTP_TWAS_Lesson4JPG.pdf
	 Other example of integral quantization: with Pöschl-Teller coherent states 
	Affine quantization
	Covariant integral quantizations
	Conclusion
	In complement, as a working example: coherent states for motion on the circle
	Action & Angle in Classical Mechanics
	One typical intermediate case: simple pendulum
	Action-angle coherent states and related quantizations for the motion on the circle (``quantum free rotator'')
	A Bayesian probabilistic construction of action-angle coherent states and related quantizations



