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A REMINDER ABOUT WAVELET ANALYSIS OF 2-D IMAGES
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Wavelet analysis of 2-D images

Strategy for designing a continuous WT on manifold M :

Identify operations to be applied to signals s 2 L

2(M, dµ)

If these operations constitute a group G , find a unitary irreducible,
square integrable representation U of G in L

2(M, dµ) and write

 g (⇣) := [U(g) ](⇣) =  (g�1⇣), g 2 G , ⇣ 2 M
CWT of f 2 L

2(M, dµ) w.r. to (admissible) wavelet  is defined as

W f (g) := h g |f i =
Z

M
 (g�1⇣) f (⇣) dµ(⇣), g 2 G

Geometric transformations in the plane R

2 :

(i) translation by ~b 2 R

2 : ~x 7! ~
x

0 = ~
x + ~

b

(ii) dilation by a factor a > 0 : ~x 7! ~
x

0 = a

~
x

(iii) rotation by an angle ✓ : ~x 7! ~
x

0 = r✓(~x)

r✓ ⌘
✓

cos ✓ � sin ✓
sin ✓ cos ✓

◆
, 0 6 ✓ < 2⇡, rotation matrix

Action on finite energy signals
h
U(~b, a, ✓)s

i
(~x) ⌘ s~b,a,✓(~x) = a

�1
s(a�1

r�✓(~x � ~
b))
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Wavelet analysis of 2-D images

Basic formulas for CWT :

S(~b, a, ✓) = h ~b,a,✓|si

= a

�1

Z

R2

 (a�1
r�✓(~x � ~

b)) s(~x) d2~
x

= a

Z

R2

e

i~b·~k b (ar�✓(~k)) bs(~k) d2~
k

Admissibility of wavelet  :

c ⌘ (2⇡)2
Z

R2

| b (~k)|2

|~k|2
d

2~
k < 1

Necessary condition :

b (~0) = 0 ()
Z

R2

 (~x) d2~
x = 0.

Possible additional requirements :

restrictions on the support of  and of b 
vanishing moments, up to order N > 1 (N = 0 : admissibility) :Z

d

2~
x x

↵
y

�  (~x) = 0, ~
x = (x , y), 0 6 ↵+ � 6 N

) improved e�ciency at detecting singularities in the signal : transform is

blind to smoothest part of the signal, i.e., polynomial of degree up to N

(less interesting, in general)
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Group-theoretical justification

In 1-D : dilation + translation = a�ne transformation of the line

y = (b, a)x ⌘ ax + b, a 6= 0, b 2 R, x 2 R

Composition rule : (b, a)(b0, a0) = (b + ab

0, aa0)
) {(b, a)} ⌘ Ga↵ ' R

2
⇤ = a�ne group

In 2-D : dilations + translations + rotations
= similitude group of the plane : SIM(2) = R

2
o (R+

⇤ ⇥ SO(2))

~
y = (~b, a, ✓)~x ⌘ ar✓~x + ~

b,

Action on finite energy signals
h
U(~b, a, ✓)s

i
(~x) = a

�1
s(a�1

r�✓(~x � ~
b))

and U = unitary irreducible representation of SIM(2) in L

2(R2)

U is square integrable

 admissible ()
ZZZ

SIM(2)

���hU(~b, a, ✓) | i
���
2

d

2~
b

da

a

3
d✓ < 1
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Mathematical properties of CWT

Energy conservation

c

�1
 

ZZZ

SIM(2)

|S(~b, a, ✓)|2 d2~
b

da

a

3
d✓ =

Z

R2

|s(~x)|2 d2~
x

i.e., isometry from space of signals L2(R2) onto closed subspace of
L

2(SIM(2)) = space of wavelet transforms

Reconstruction formula
Inversion of CWT by adjoint map :

s(~x) = c

�1
 

ZZZ

SIM(2)

 ~b,a,✓(~x) S(
~
b, a, ✓) d2~

b

da

a

3
d✓

i.e., decomposition of the signal in terms of the analyzing wavelets
 ~b,a,✓, with coe�cients S(~b, a, ✓)
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Mathematical properties of CWT

Reproduction property (reproducing kernel)

S(~b0, a0, ✓0) = c

�1
 

ZZZ

SIM(2)

h ~b0,a0,✓0 | ~b,a,✓i S(~b, a, ✓) d
2~
b

da

a

3
d✓

WT is covariant under translations, dilations and rotations :
the correspondence W : s(~x) 7! S(~b, a, ✓) implies the following
ones

s(~x � ~
bo) 7! S(~b � ~

bo , a, ✓)

a

�1
o s(a�1

o ~
x) 7! S(a�1

o
~
b, a�1

o a✓)

s(r✓o (~x)) 7! S(r�✓o (
~
b), a, ✓ � ✓o)

Note: translation covariance (“shift invariance”) is lost in the
standard formulation of the discrete WT, based on multiresolution
) problems in pattern recognition, e.g.
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Choice of the analyzing wavelet

(i) Isotropic wavelets

. Pointwise analysis

. Directions irrelevant
) rotation invariant wavelet

Examples :

2-D Mexican hat wavelet

 H(~x) = (2� |~x |2) exp(� 1
2 |~x |

2)

b H(~k) = |~k |2 exp(� 1
2 |~k |

2)

Di↵erence-of-Gaussians or DOG wavelet

 D(~x) =
1

2↵2 exp(� 1
2↵2 |~x |2)� exp(� 1

2 |~x |
2) (0 < ↵ < 1)
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Choice of the analyzing wavelet - 1

(ii) Directional wavelets

. Detection of directional features

. Directional filtering
) direction sensitive wavelet

Example :
directional wavelet , num supp b ⇢ convex cone, apex at 0

2-D Morlet wavelet

b M(~k) =
p
✏
⇣
exp(� 1

2 |A
�1(~k � ~

k0)|2)� h(~k)
⌘

where A = diag[✏�1/2, 1], ✏ > 1, is a 2⇥ 2 anisotropy matrix and the

correction term h(~k) is negligible in practice

The Morlet wavelet is directional, but has poor aperture selectivity
In addition, its angular selectivity increases with k~k0k, since the
support cone gets narrower, but at the same time the amplitude
decreases as exp(�|~k0|2)
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Choice of the analyzing wavelet - 2

Cauchy wavelet

Convex cone determined by the unit vectors ~e�↵, ~e↵

C := C(�↵,↵) = {~k 2 R

2 : �↵ 6 arg ~k 6 ↵, ↵ < ⇡/2},

) aperture of the cone C = 2↵

Dual cone

eC = C(�e↵, e↵) = {~k 2 R

2 : ~k·~k 0 > 0, 8 ~k 0 2 C(�↵,↵)}, e↵ = �↵+⇡/2
so that ~e�↵ · ~ee↵ = ~

e↵ · ~e�e↵ = 0,

Cauchy wavelet

b C
lm (~k) =

(
(~k · ~ee↵)l (~k · ~e�e↵)

m
e

�~k·~⌘, ~
k 2 C(�↵,↵)

0, otherwise

) Supp b C
lm = cone C(�↵,↵), l ,m 2 N

⇤, l ,m > 1, give the number

of vanishing moments of b on the edges of the cone
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Choice of the analyzing wavelet - 3

Properties of Cauchy wavelet

Contrary to Morlet, opening angle b C
lm is totally controllable,

independently of the amplitude

Good angular selectivity, but poor radial selectivity, since the
exponential term decays slowly as |~k| ! 1

Alternative : Gaussian-Conical (GC) wavelet

b GC

lm (~k) =

⇢
(~k · ~e�e↵)

l(~k · ~ee↵)me�
�
2 (kx��(�))

2

, ~k 2 C,
0, otherwise.

Central frequency (
p
l +m, 0)

� > 0 controls the scale localization of the Gaussian

Center correction term, �(�) =
p
l +m

��1
� , controls radial support

of  

J-P. Antoine Motion analysis with CWT 11/31

Choice of the analyzing wavelet - 4

A directional wavelet : The 2-D Morlet wavelet
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A very directional wavelet : The Gaussian conical wavelet (in spatial

frequency space)
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SPATIO-TEMPORAL WAVELETS

MOTION ANALYSIS
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Introduction

There exist many methods for motion estimation

Optical flow

Block matching

Phase di↵erence

. . .

Alternative : motion-tuned continuous wavelet transform
M. Duval-Destin (1991), R.Murenzi (1992), F. Mujica (1999)

Idea : adapt to (2D+T) space-time the general formalism of the
continuous wavelet transform on a manifold

(coherent state formalism)
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Extension to spatio-temporal wavelets - 1

Principle : build time dependent wavelet, separable in frequency space

b ST (~k,!) = b S(kx , ky )| {z }
2D wavelet

· b T (!)| {z }
1D wavelet

Act on it by space-time (2D+T) group, containing space and time translations,
space and time dilations, space rotations :

G = SIM(2)⇥ G+
a↵

via a square integrable representation

Replace separate space and time dilations as , at by a global dilation a and a

speed tuning parameter c

The group G has a unitary irreducible representation in the space of signals
(image sequences) L2(R2 ⇥ R, d~x dt), with norm

ksk2 =

ZZ

R2⇥R
d~x dt |s(~x , t)|2 < 1

and Fourier transform

bs(~k,!) = (2⇡)�3/2
ZZ

R2⇥R
d~x dt e�i(~k·~x+!t)s(~x , t)
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Extension to spatio-temporal wavelets - 2

Principle : Speed detection and quantization is done in the Fourier space,
because the wavelet measures the inclination of the spectrum

Motion operators in Fourier space

Dilation : [ bDa b ](~k,!) = a3/2 b (a~k, a!)

Translation : [ bT~b,⌧ b ](~k,!) = e�i(~k·~b+!⌧) b (~k,!)
Rotation : [bR✓ b ](~k,!) = b (r�✓~k,!)
Speed tuning : [b⇤c b ](~k,!) = b (cq~k, c�p!)

Constraints : b⇤c must map the ~vo -plane, ~k · ~vo + ! = 0, into the c~vo -plane and

must be unitary ) p = 2/3 and q = 1/3

This correspond to the psycho-visual e↵ect :

Fast moving object : only large details can be detected

Slow moving object : small details can be detected

Next step : choose adequate wavelets for space and time components
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Principle of directional speed analysis with wavelets - 1

Inclination of a signal spectrum with speed

Static object bs lives in the plane ! = 0 of zero frequency

Object bs moving with constant speed ~v lives in the plane ~k · ~v + ! = 0

A high speed object must be
large to be “captured” and a
low speed object can be small
(psycho-visual e↵ect)
) wavelets must be speed-
tuned (distorted and elongated)
to “capture” a moving objet
) wavelets move on hyperbola-
like curve with increasing speed
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Principle of directional speed analysis with wavelets - 2

Speed analysis of an object moving at constant speed v

The slope of the spectrum of

the object increases for higher

speed (the slope decreases in di-

rect space (~x , t))

Capture is achieved when the

signal spectrum (red) inter-

sect the family of speed-tuned

wavelets (blue)

Example of exponential dis-

cretization of the speed param-

eter, chosen so as to avoid

overlapping between successive

wavelets along the hyperbola
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The 2D+T GCM wavelet - 1

Standard 2D+T wavelet : the Duval-Destin-Murenzi (DDM) wavelet

b DDM(~k,!) = b M(kx , ky )| {z }
2D Morlet wavelet

· b M(!)| {z }
1D Morlet

where the 1D Morlet wavelet is

b M(!) = exp(� 1
2
(! � !0)

2)� h(!)

with the correction term h(!) negligible in practice (for !0 & 5.5)

The 2D Morlet wavelet has poor selectivity properties
) replace it by a Gaussian-conical wavelet and get a GCM 2D+T wavelet

b GCM
lm (~k,!) =

8
><

>:

b GC
lm (kx , ky )| {z }

2D Gaussian-Conical

· b M(!)
| {z }
1D Morlet

, ~k 2 C(�↵,↵),

0, otherwise,

Explicitly

b GCM
lm (~k,!) =

(
(~k · ~e�e↵)

l (~k · ~ee↵)me�
�
2
(kx��(�))2

e

� 1
2
(!�!0)

2

, ~k 2 C(�↵,↵),
0, otherwise
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The 2D+T GCM wavelet - 2

The GCM wavelet (c = 1,↵ = ⇡/16) Lateral view in plane (kx ,!)

3D view of GCM in (kx , ky ,!) 3D sectional views in (kx , ky ,!)

c = 1 c = 2

The last panel shows the Gaussian behavior of the (vertical) Morlet part and the

(horizontal) conical part
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The 2D+T GCM wavelet - 3

The GCM wavelet tuned to di↵erent velocities c

c = 1

c = 0.4

c = 4

3D view Side view in (kx ,!) Top view in (kx , ky )
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Properties of the 2D+T GCM wavelet

Central frequency and speed capture initialization

In order to capture the initial speed, independently of the object
scale, it is useful to center the wavelet in the Fourier plane
i.e., translating the wave-vector ~k by its central frequency ~k0 and
canceling the term !0 in the Morlet part

~
k0 =

1

a

2

p
l +m

c

q
(cos ✓, sin ✓)

) Modified GCM is a simple filter (no oscillation), not a wavelet
anymore !

Angular resolving power

For Morlet : for k0 � 1,ARP( M) = 2 cot�1(k0
p
✏)

For GCM : ARP = 2↵, opening angle of the cone

Frame bounds

Frame { n} : A||s||2 6
X

n

|h n, si|2 6 B||s||2, with A > 0,B < 1

Estimates for the frame bounds have been given by Murenzi for Morlet
2D, for DDM by Mujica, and these are valid for GCM as well (rather
complicated!)
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Analysis algorithm

We have to discretize the CWT :

Given a sequence of N frames, corresponding to the time variables
⌧i , i = 1, . . . ,N, compute its discretized CWT for discrete speeds
c = cj : W (~b, ⌧i , ✓; a, cj)

Compute the energy density of i th frame |W (cj , ⌧i )|2, taken as a
function of speed cj only

For a group of N0 frames among the N frames of the sequence,
compute the total energy

E

tot

(cj) =
X

i2N0

X

~bnm

|W (~bnm, cj , ⌧i )|2

{~bnm} = discretized version of the ~b-plane

Study the curve f (cj) := E

tot

(cj) : maximum vm when the speed of
the tuned wavelet cj matches the real speed vr of the object
(example of a traveling 2D Gaussian below)
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Experimentation - 1

Comparative aperture adjustments : Morlet vs. GCM

Morlet : for small k0, ✏, very large aperture; aperture decreases by
increasing k0, ✏, but as k0 increases, the Morlet wavelet moves away from
the Fourier center (0,0), along its radius

) very di�cult to adjust the spatial positioning of this wavelet w.r.t. a

change in aperture selectivity

Morlet GCM

GCM : the couple orientation/aperture is extremely simple to adjust; 5

orientations ⇡/12 6 ✓m 6 5⇡/12} with GCM tuned to aperture

⇡/256 6 ↵m 6 ⇡/16 ) GCM is superior to 2D+T Morlet for object

recognition and tracking by spectral signature
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Experimentation - 2

Velocity capture comparison

Test sequence of 128⇥ 128⇥ 32, describing the motion, at constant speed

vr = 3 pixels/fr, of a 2D Gaussian; the angles of the Gaussian and of its

trajectory are varied (along OX, at 45� and along OY)

Isotropic Gaussian : speed capture equally good with GCM and with

Morlet

Anisotropic Gaussian, large �y , small �x (spectrum narrow along kx )

) test the aperture selectivity of the wavelet, i.e. its accuracy in

directional speed capture

(Left) Spectrum of sequence “traveling Gaussian” (red) intersects
speed-tuned GCM wavelets hyperbola-like family (blue):

(Right) Total energy is maximum for c = vr = 3
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Experimentation - 3

Orientation accuracy in directional speed capture

Curve vm vs. ✓wav for �⇡/2 6 ✓ 6 +⇡/2, with GCM

) the correct speed is captured when the wavelet orientation (✓ = 0) exactly

corresponds to the spectrum orientation (along kx )

) contrary to Morlet, GCM has good angular selectivity and is e�cient at

detecting the correct speed of the sequence in a very narrow angular

aperture and not elsewhere
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Experimentation - 4

Aperture accuracy in speed capture

Speed capture with GCM at vr = 4 and for increasingly narrow conical

apertures : ⇡/8,⇡/16,⇡/64,⇡/256 (0.70�)

⇡/8 ⇡/16

⇡/64 ⇡/256 (0.70�)

) GCM captures the spectrum for extremely weak apertures without moving

in the Fourier space

) contrary to Morlet, GCM is very robust to scale initialization and object

size detection and tracking
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Experimentation - 5

Stability with respect to noise

Test sequence : rectangle of size 9⇥2 pixels in horizontal translation at a

speed of 3 pixels/fr, plus white Gaussian noise

Noise level : from an SNR of 50 dB up to 25 dB

) correct speed captured up to a noise level of 32 dB

(Top) Noisy sequence and intersection of the sequence spectrum (red) with the
hyperbola of GCM speed-tuned wavelets (blue)

(Bottom) Curve Energy = f (c)
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Conclusion

The GCM wavelet provides a highly directionally selective speed-tuned wavelet

Much more powerful tool than the 2D+T Morlet wavelet for spectral signature

recognition and tracking

Extreme e�ciency in directional speed selectivity down to angle apertures

of less than 1 degree (⇡/256)

Good capacity of radial stability and adjustment with respect to aperture

variation

Possible extension to curvelets and shearlets for motion analysis, but probably

much more complex

Future work : target tracking with GCM instead of DDM, speed

detection/quantization in video sequences, explicit or estimated frame bounds

for GCM, trajectory detection in direct space with GCM, . . .
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