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Wavelet analysis of 2-D images

@ Strategy for designing a continuous WT on manifold M :
o Identify operations to be applied to signals s € L*(M, dp)

o If these operations constitute a group G, find a unitary irreducible,
square integrable representation U of G in L?(M, du) and write

Motion analysis

with the Continuous Wavelet Transform be(0) = [U()H](C) = w(g~2C), g € G,C € M
o CWT of f € L>(M,du) w.r. to (admissible) wavelet 1 is defined as
J-P. Antoine W,t(g) = wilf) = [ DT dulc), g€ 6
M
Institut de Recherche en Mathématique et Physique @ Geometric transformations in the plane R? :

Université catholique de Louvain (i) translation by beR*: %X =X+b

B-1348 Louvain-la-Neuve, Belgique (i) dilation by a factor a > 0: ¥+ ¥ = aX

(iii) rotation by an angle 0 : X +— X' = ry(X)

Joint ICTP-TWAS School on Coherent State Transforms,

Time-Frequency and Time-Scale Analysis, Applications o = Cf’se —sinf .0 < 6 < 2, rotation matrix
sinf  cosf
June 2-21 2014 @ Action on finite energy signals
Trieste, Italy [U(b, a, a)s] (R) = s5.,4(%) = 2 s(a~' r_o(% - b))
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Wavelet analysis of 2-D images

@ Basic formulas for CWT :
5(57 a, 0) = <1//B,a,0‘5>

—at /Rz W(a L ro(% — b)) s(%) %

_ a/ BF D(ar—o(K)) 3(R) d2K
RrR2
A REMINDER ABOUT WAVELET ANALYSIS OF 2-D IMAGES o Admissibility of wavelet 1) :
~ o
cy = (27)? / w d’k < oo
r  [k[?
@ Necessary condition :
0 =0 — / W(%) d?% = 0.
R2
@ Possible additional requirements :
@ restrictions on the support of 1 and of 12;
@ vanishing moments, up to order N > 1 (N = 0 : admissibility) :
FPRxyP Pp(x) =0, X=(x,y), 0<a+B<N
= improved efficiency at detecting singularities in the signal : transform is
blind to smoothest part of the signal, i.e., polynomial of degree up to N

(less interesting, in general)
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Group-theoretical justification

Mathematical properties of CWT

e In 1-D : dilation + translation = affine transformation of the line
y=(ba)x=ax+b, a#0,beR, xeR

Composition rule : (b, a)(b’,a’) = (b+ ab’, aa’)
= {(b,a)} = Gug ~ R2 = affine group

@ In 2-D : dilations + translations + rotations
= similitude group of the plane : SIM(2) = R? x (R} x SO(2))

v = (b, a,0)X = argX + b,
@ Action on finite energy signals
[U(E, a, 6)5] () =ats(a T r_g(% — b))
and U = unitary irreducible representation of SIM(2) in L2(R?)

@ U is square integrable

- 2 -
1) admissible < /// ‘(U(b, a, 0)|yY) d’b d—i df < oo
SIM(2) a
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Mathematical properties of CWT

@ Reproduction property (reproducing kernel)

S(b,2',0") =, ///S|M() 5.0 V500) S(b,a0) dzb—de

@ WT is covariant under translations, ciilations and rotations :
the correspondence W, : s(X) — S(b, a, #) implies the following
ones
s(X—bo) + S(b— b, a,0)
ayls(a;'x) — S(a;lb,a;'ad)
s(ro, (%)) —  S(r_g,(b),a,60—0,)
o Note: translation covariance ( “shift invariance”) is lost in the

standard formulation of the discrete WT, based on multiresolution
= problems in pattern recognition, e.g.
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Choice of the analyzing wavelet

@ Energy conservation

—1/// 1S(6.a,6) 5 %2 d9:/ Is(2)[2 d2%
SIM(2) a R2

i.e., isometry from space of signals L?(R?) onto closed subspace of
L2(SIM(2)) = space of wavelet transforms

@ Reconstruction formula
Inversion of CWT by adjoint map :

o _ o - —~da
s(x) =c,* ///SIM(z) V5.,6(X) S(b,a,0) d?b 5

i.e., decomposition of the signal in terms of the analyzing wavelets
Y , g0 With coefficients S(b, a, 0)

J-P. Antoine Motion analysis with CWT 6/31

(i) Isotropic wavelets

Pointwise analysis

. . . = rotation invariant wavelet
Directions irrelevant

Examples :
@ 2-D Mexican hat wavelet

Uu(X) = (2= |X?) exp(—3Ix1%)
(k) = |k|? exp(—1|K[?)
o Difference-of-Gaussians or DOG wavelet

Uo(X) = 50z exp(—52|X%) —exp(—3/x17)  (0<a<l)

J-P. Antoine Motion analysis with CWT 8/31



Choice of the analyzing wavelet - 1

Choice of the analyzing wavelet - 3

(ii) Directional wavelets

Detection of directional features

. . . = direction sensitive wavelet
Directional filtering

Example :
directional wavelet < num supp ¥ C convex cone, apex at 0

@ 2-D Morlet wavelet
Du(K) = Ve ((exp(=3|A7 (K = ko)) — h(K))

where A = diag[e /2,1],¢ > 1, is a 2 x 2 anisotropy matrix and the
correction term h(k) is negligible in practice

o The Morlet wavelet is directional, but has poor aperture selectivity

o In addition, its angular selectivity increases with ||ko||, since the
support cone gets narrower, but at the same time the amplitude
decreases as exp(—|ko|?)
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Choice of the analyzing wavelet - 2

@ Properties of Cauchy wavelet

e Contrary to Morlet, opening angle 12,,5 is totally controllable,
independently of the amplitude

e Good angular selectivity, but poor radial selectivity, since the
exponential term decays slowly as |k| — oo

@ Alternative : Gaussian-Conical (GC) wavelet

(k-& 5)(k-&)me=5l=x(0) ke,
0, otherwise.

Bt = {

o Central frequency (v// + m,0)
e o > 0 controls the scale localization of the Gaussian

o Center correction term, x(o) = /I + mZ=L, controls radial support

of ¥
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Choice of the analyzing wavelet - 4

@ Cauchy wavelet

o Convex cone determined by the unit vectors é_,, €,
C:=C(—a,0)={keR®: —a<argk <o, a < m/2},
= aperture of the cone C = 2«

o Dual cone

C=C(—a,a)={k eR*: k-k' >0, VK € C(—a, )}, & = —atm/2

sothaté -5 =é,-é_5 =0,

o Cauchy wavelet

—

"ZI'S(E) = { 0

= Supp @,ﬁ = cone C(—a, ), I,m € N*,I,m > 1, give the number
of vanishing moments of i) on the edges of the cone

c&5) (k-&5)m e KT Kecl(—a,a)
, otherwise

—
==
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@ A directional wavelet : The 2-D Morlet wavelet

in position space in spatial frequency space

@ A very directional wavelet : The Gaussian conical wavelet (in spatial
frequency space)

J-P. Antoine Motion analysis with CWT 12/31



Extension to spatio-temporal wavelets - 1

Principle : build time dependent wavelet, separable in frequency space

bsr(k,w) = s(ke, ky) - Dr(w)
N N\ e

2D wavelet 1D wavelet

SPATIO-TEMPORAL WAVELETS @ Act on it by space-time (2D+T) group, containing space and time translations,
space and time dilations, space rotations :

G =SIM(2) x Gy

MOTION ANALYSIS via a square integrable representation

@ Replace separate space and time dilations as, a; by a global dilation a and a
speed tuning parameter ¢

@ The group G has a unitary irreducible representation in the space of signals
(image sequences) L?(R? x R, dX dt), with norm

Is||? = // dx dt |s(%, t)? < oo
R2 xR

and Fourier transform

(R, w) = (2m) 3/ // d% dt e~ i(FFHet gz 1)
R2xR
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Introduction Extension to spatio-temporal wavelets - 2

Principle : Speed detection and quantization is done in the Fourier space,
. . . . because the wavelet measures the inclination of the spectrum
@ There exist many methods for motion estimation . . .
@ Motion operators in Fourier space
Optical flow

]
o Block matching Dilation : [D? §)(k,w) = a3/24(ak, aw)
o Phase difference Translation : [?5*" (K, w) = e*"(’?“;*“")ﬁ)\(l?,w)
° . Rotation : [RY §](k,w) = P(r_gk,w)
Speed tuning : A€ P)(k,w) = P(cTk, c=Pw)

@ Alternative : motion-tuned continuous wavelet transform
M. Duval-Destin (1991), R.Murenzi (1992), F. Mujica (1999)

@ Constraints : A must map the V,-plane, k- Vo +w = 0, into the cV,-plane and

must be unitary = p=2/3 and ¢ =1/3
@ Idea : adapt to (2D+T) space-time the general formalism of the Y p=2/ 7 /

continuous wavelet transform on a manifold This correspond to the psycho-visual effect :

(coherent state formalism) e Fast moving object : only large details can be detected
@ Slow moving object : small details can be detected

@ Next step : choose adequate wavelets for space and time components

J-P. Antoine Motion analysis with CWT 14/31 J-P. Antoine Motion analysis with CWT 16/31



Principle of directional speed analysis with wavelets - 1 The 2D+T GCM wavelet - 1

© Inclination of a signal spectrum with speed @ Standard 2D+T wavelet : the Duval-Destin-Murenzi (DDM) wavelet
@ Static object S lives in the plane w = 0 of zero frequency ~ o ~ ~
o Object s moving with constant speed V lives in the plane K-V+w=0 Yoom(k,w) = Yulks, ky) - hu(w)

2D Morlet wavelet 1D Morlet

(&) Signal spectrum
projection line

where the 1D Morlet wavelet is

< Y ~ 2
< Yu(w) = exp(f% w—wg)”) — h(w)
p— - with the correction term h(w) negligible in practice (for wo = 5.5)
Plane defined by
Peacion dong @ The 2D Morlet wavelet has poor selectivity properties

\omega axis.

| Z = replace it by a Gaussian-conical wavelet and get a GCM 2D+T wavelet

wlrcnc(km k}’) : ¢M(UJ): ke C(_a7 Oé),
. . —~ - —— ———
oA hlgh sPeed ObJeCt must be ) ¢I§1CM(k,W) = 2D Gaussian-Conical 1D Morlet
large to be ‘captured’ and a
low speed object can be small
(psycho-visual effect)
= wavelets must be speed-
tuned (distorted and elongated)
to “capture” a moving objet
= wavelets move on hyperbola-
like curve with increasing speed

0, otherwise,
@ Explicitly

(K-&.5) (K- &)me™ hx() e 3lemw0)’ e C(—a,a),

B (R ) =
i ( ) 0, otherwise
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Principle of directional speed analysis with wavelets - 2 The 2D+T GCM wavelet - 2
Speed analysis of an object moving at constant speed v

o ork, : 100

Fv=Bl
@ The slope of the spectrum of 3 .~-"'-:F\1\
the object increases for higher
speed (the slope decreases in di-

rect space (X, t))

E3 o0

The GCM wavelet (¢ =1, = 7/16) Lateral view in plane (kx,w)

80 00 120

k. ork,

@ Capture is achieved when the =
signal spectrum (red) inter- . ¢ b
sect the family of speed-tuned ¥ . "
wavelets (blue) w '

@ Example of exponential dis- kV e K
cretization of the speed param- 3D view of GCM in (ky, ky,w) 3D sectional views in (ky, ky, w)
eter, chosen so as to avoid c=1 c=2

overlapping between successive
wavelets along the hyperbola

The last panel shows the Gaussian behavior of the (vertical) Morlet part and the

(horizontal) conical part
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The 2D+T GCM wavelet - 3

Analysis algorithm

The GCM wavelet tuned to different velocities ¢

3D view Side view in (kx,w) Top view in (kx, ky)

J-P. Antoine Motion analysis with CWT  21/31

Properties of the 2D+T GCM wavelet

We have to discretize the CWT :

o Given a sequence of N frames, corresponding to the time variables
7i,i =1,..., N, compute its discretized CWT for discrete speeds
c=gG: Ww(bv 7, 0; a, Cj)

2 taken as a

o Compute the energy density of i*" frame [Wy (g, 77)
function of speed ¢; only

o For a group of Ny frames among the N frames of the sequence,
compute the total energy

Eior() =D > Wa(bam, 6, 7i)

i€No g,

{bnm} = discretized version of the b-plane

o Study the curve f(¢;) := Etot(¢) : maximum vy, when the speed of
the tuned wavelet ¢; matches the real speed v, of the object
(example of a traveling 2D Gaussian below)
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Experimentation - 1

@ Central frequency and speed capture initialization

o In order to capture the initial speed, independently of the object
scale, it is useful to center the wavelet in the Fourier plane

e i.e., translating the wave-vector k by its central frequency ko and
canceling the term wy in the Morlet part

E i\//-ﬁ-ﬁ)
c9

a2

(cos@,sin0)

0 =
= Modified GCM is a simple filter (no oscillation), not a wavelet
anymore !

@ Angular resolving power

o For Morlet : for ko > 1, ARP(¢") = 2 cot ™ (kov/€)
o For GCM : ARP = 2q, opening angle of the cone

@ Frame bounds
Frame {¢n} :  Alls||> <> |(¢n,s)|> < B]|s]|*, with A>0,B < oo
Estimates for the frame bounds have been given by Murenzi for Morlet

2D, for DDM by Mujica, and these are valid for GCM as well (rather
complicated!)
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Comparative aperture adjustments : Morlet vs. GCM

@ Morlet : for small ko, €, very large aperture; aperture decreases by
increasing ko, €, but as ko increases, the Morlet wavelet moves away from
the Fourier center (0,0), along its radius
= very difficult to adjust the spatial positioning of this wavelet w.r.t. a
change in aperture selectivity

|,

Morlet GCM

e GCM : the couple orientation/aperture is extremely simple to adjust; 5
orientations /12 < 0, < 57/12} with GCM tuned to aperture
7/256 < am < w/16 = GCM is superior to 2D+T Morlet for object
recognition and tracking by spectral signature

J-P. Antoine Motion analysis with CWT 24/31



Experimentation - 2

Velocity capture comparison

o Test sequence of 128 x 128 x 32, describing the motion, at constant speed
vy = 3 pixels/fr, of a 2D Gaussian; the angles of the Gaussian and of its
trajectory are varied (along OX, at 45° and along OY)

o Isotropic Gaussian : speed capture equally good with GCM and with
Morlet

@ Anisotropic Gaussian, large oy, small ox (spectrum narrow along k)
=> test the aperture selectivity of the wavelet, i.e. its accuracy in
directional speed capture

o (Left) Spectrum of sequence “traveling Gaussian” (red) intersects
speed-tuned GCM wavelets hyperbola-like family (blue):

(Right) Total energy is maximum for c = v, = 3

i

/

\ f : / .
N : X
i, : i g
s , :
M T e w ow w1 i 3 g
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Experimentation - 3

Experimentation - 4

Orientation accuracy in directional speed capture

Curve v vs. Oyay for —/2 < 0 < 4m/2, with GCM

41 GCM2DT:v =fp)fory=3 o =r/16

= the correct speed is captured when the wavelet orientation (6 = 0) exactly
corresponds to the spectrum orientation (along k)

=> contrary to Morlet, GCM has good angular selectivity and is efficient at
detecting the correct speed of the sequence in a very narrow angular
aperture and not elsewhere

J-P. Antoine Motion analysis with CWT  26/31

Aperture accuracy in speed capture
Speed capture with GCM at v, = 4 and for increasingly narrow conical
apertures : /8, /16, /64, /256 (0.70°)

/8 w/16
3 3
/64 /256 (0.70°)

= GCM captures the spectrum for extremely weak apertures without moving
in the Fourier space

=> contrary to Morlet, GCM is very robust to scale initialization and object
size detection and tracking
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Experimentation - 5

Stability with respect to noise
o Test sequence : rectangle of size 9x2 pixels in horizontal translation at a
speed of 3 pixels/fr, plus white Gaussian noise
o Noise level : from an SNR of 50 dB up to 25 dB
=> correct speed captured up to a noise level of 32 dB

(Top) Noisy sequence and intersection of the sequence spectrum (red) with the
hyperbola of GCM speed-tuned wavelets (blue)
(Bottom) Curve Energy = f(c)

J-P. Antoine Motion analysis with CWT  28/31



Conclusion

References

The GCM wavelet provides a highly directionally selective speed-tuned wavelet

Much more powerful tool than the 2D+T Morlet wavelet for spectral signature
recognition and tracking

o Extreme efficiency in directional speed selectivity down to angle apertures
of less than 1 degree (7/256)

@ Good capacity of radial stability and adjustment with respect to aperture
variation

Possible extension to curvelets and shearlets for motion analysis, but probably
much more complex

Future work : target tracking with GCM instead of DDM, speed
detection/quantization in video sequences, explicit or estimated frame bounds
for GCM, trajectory detection in direct space with GCM, ...
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