Towards Quantitative Endogenous Network Theory of Cancer Genesis and Progression: beyond cancer as disease of genome

Workshop on the Economy of a Cell:

Resource Allocation, Trade-Offs and Efficiency in Living Systems

Trieste, Italy; June 23-27, 2014

Ping Ao Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University http://systesmsbiology.sjtu.edu.cn/

Major and interconnected research projects

- a. *Carcinogenesis: endogenous molecular-cellular network dynamics* beyond "cancer as diseases of genome"
- b. Develop whole organism platform on kinetic modeling of large metabolic networks dealing with incomplete kinetic parameters
- c. Development of mathematical and computational methodologies on stochastic processes
- d. Towards new theoretical foundation of evolutionary biology

Kinetics of Global Metabolic Networks

• Simplified reaction reactions: generic rate equation

Generic Enzymatic Rate Equation under Living Conditions,

L.W. Lee, L. Yin, X.M. Zhu, and P. Ao, J. Biol. Syst. 15 : 495-514 (2007) .

Generic Enzymatic Rate Equation.

M.J. Xu, PH Lin, X.M. Zhu, P. Ao. Progress in Biochemistry and Biophysics . 38: 759-767 (2011)

• Finding viable kinetic parameters by robustness principle

Towards Kinetic Modeling of Metabolic Networks with Incomplete Parameters,

W. Zheng, X.M. Zhu, Y.C. Chen, P.H.Lin, P. Ao, Proceedings of the 2013 IEEE Conference on Systems Biology. 2013

• Applications

Towards Kinetic Modeling of Global Metabolic Networks: *Methylobacterium extorquens* AM1 Growth as Validation, P Ao, LW Lee, ME. Lidstrom, Lan Yin, and XM Zhu, Chinese Journal of Biotechnology **24** (2008) 980 - 994.

Systems Biology: endogenous molecular-cellular network cancer theory

Quantitative Implementation of Endogenous Molecular-Cellular Network Hypothesis in Hepatocellular carcinoma, G.W. Wang, X.M. Zhu, J.R. Gu, P. Ao. Interface Focus 4 (**2014**) 20130064.

From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis

G.W. Wang, X.-M. Zhu, L. Hood, P. Ao. Quantitative Biology 1 (2013) 32-49.

Towards Predictive Stochastic Dynamical Modeling of Cancer Genesis and Progression.

P. Ao, D. Galas, L. Hood, L. Yin, X.M. Zhu. Interdiscip Sci Comput Life Sci 2 (2010) 140–144 Global view of bionetwork dynamics: adaptive landscape.

P. Ao. J. Genet. Genomics 36 (2009) 63-73

Cancer as Robust Intrinsic State of Endogenous Molecular-Cellular Network Shaped by Evolution.

P. Ao, D. Galas, L. Hood, X.-M. Zhu, Medical Hypotheses 70 (2008) 678–684.

Orders of Magnitude Change in Phenotype Rate Caused by Mutations.

P. Ao, Cellular Oncology (2007) 29: 67-69.

This program aims to establish theoretical protocols and computational tools, which can provide a unified framework **to organize**, **to explain**, **and to predict** biological phenomena on cancer and related robust complex diseases.

"If this even becomes possible, drug development will be more a matter of dry bioinformatics than wet biology at the laboratory bench." (RA Weinberg, 2007)

Milestones in Cancer Research

(Nature, Milestones of timeline, 2006)

- 1889 Seed and soil hypothesis
- 1890 Cancer as a genetic disease
- 1909 Immune surveillance
- 1910 Viruses and cancer
- 1915 Hormones and cancer
- 1937 Cancer stem cells
- 1939 Angiogenesis
- 1950 Smoking and cancer
- 1953 Two-hit hypothesis
- 1960 Chromosome translocations
- 1971 Tumour suppressor genes
- 1972 Apoptosis and cancer
- 1975 Tumour microenvironment
- 1976 Clonal evolution & multistep tumourigenesis

- 1976 Cellular homologues of viral oncogenes
- 1978 Oncogenes encode proteins that regulate cell growth
- 1979 First human oncogene
- 1983 Oncogene co-operation Cancer epigenetics
- 1989 Cell cycle and DNA damage checkpoints
- 1990 Genetic basis for cancer predisposition

Mechanisms of genetic instability in cancer

- 1999 Cancer profiling
- 2001 Targeted cancer therapy

Cancer Complexity Slows Quest for Cure

EC Hayden, Nature, September 11, **455** (2008)148:

- Hopes that large studies of cancer genomics will justify their high cost by offering a fast track to cures have been dealt a blow by a series of papers.
- •
- "It is apparent from studies like ours that it is going to be even more difficult than expected to derive real cures," says Vogelstein.

Omic-related papers:1923-2000:~ 40,0002000-2005:~ 50,0002005-now:~ 100,000

Focusing on genes and mutations may be misplaced.

Beneath cancer's daunting complexity may lie a simplicity that gives grounds for hope.

Network Dynamics and Diseases

Developing endogenous network theory for complex diseases, such as cancer, based on molecular-cellular processes and evolution.

Ao, Cell. Oncology, 2007; Biol. Theory 2007; Ao, Hood, Galas, Zhu, Med. Hypotheses, 2008

• Three basic considerations:

Endogenous network shaped by evolution Stochastic nonlinear dynamics: adaptive landscape Enough experimental data to start with

Hypothesis:

A complex disease an intrinsic robust state in the functional landscape of the endogenous network not optimized for the interest of whole organism. P. Ao, D. Gala, L. Hood, X.-M. Zhu, Medical Hypotheses, **70** (2008) 678-684.

Figure 2. Membrane-to-Nucleus Signaling Pathways Involved in Cancer Proteins that have been implicated as oncoproteins or turnor suppressor proteins are in white letters on black fill.

Figure 2. The Emergent Integrated Circuit of the Cell

Progress in dissecting signating pathways has begun to by out a dirutity that will likely minic electronic integrated dirutits in complexity and finesse, where it analstors are replaced by proteins (e.g., kineses and phosphalases) and the electronic by phosphales and lipids, among others. In addition to the prototypical growth signating dirutil contineed around Ras and coupled to a spectrum of attractedilar cues, other component dirucits it ransmit antigrowth and differentiation signals or mediate commarks to the or die by apoptosis. As for the genetic reprogramming of this integrated dirucit in cancer cells, some of the genetic mess town to be functionally attracted are highlighted in red.

The Hallmarks of Cancer, D. Hanahan and R.A. Weinberg, Cell 100 (2000) 57–70.

Figure 9 Overview of cancer gene pathways. The major pathways regulating cell birth and cell death are depicted as ovals color-coded to match Figs. 1–8. The schematics in Figs. 1–8 emphasize the genes that have been shown to be genetically altered in human tumors, though many other genes participate in these pathways. Additionally, some of the same genes appear in more than one pathway and there is substantial 'cross-talk' between pathways. Selected mediators of this cross-talk are indicated in the loops that connect the pathways. More detailed information about these pathways can be found in several comprehensive reviews (refs. 11,12,15,31,103–116).

Cancer genes and the pathways they control, B. Vogelstein and K.W. Kinzler, Nature Medicine 10 (2004) 789-799.

Wright's Adaptive Landscape S. Wright, 1932

FIG. 7. Token representation of a portion of the multidimensional array of genotypes of a population with fitness contours. Field initially occupied indicated by heavy broken contour. Field occupied later indicated by crosshatched area (multiple subpopulations in F). Courses indicated in C, D, E and F by arrows. Effective population numbers, N (total), n (local); v (mutation), s (selection), m (migration) (from Wright, 1932, Fig. 4).

Waddington's Developmental Landscape C. Waddington, 1940

Genetic Switch as multiple equilibria, M. Delbruck,1949; Phage lambda genetic switch, Zhu, Yin, Hood, Ao, 2004

Neural computing landscape,

J. Hopfield, 1982

FIG. 1. The flow field of a simple analog computer. The stable points of the flow, marked by x's, are possible answers. To initiate the computation, the initial location in state space must be given. A complex analog computer would have such a flow field in a very large number of dimensions.

Protein folding funnel landscape

Endogenous Network: major pathways

	Apoptosis
Myc-p53 pathway	Immune response
Ras-MAI	PK pathway
Hormones and recept	otors Invasion and metastasis
PTEN-Akt pathway	Growth factors and receptors
Cell cycle	Metabolism

The minimum set of pathways and modules of the endogenous network. Endogenous molecular and cellular agents first form pathways and modules. Pathways and modules cross talk to each other to form the endogenous network.

		Activated(up-regulated, transcribed) by	Inhibited (down-regulated, cleaved) by	Reference
I able I. Molecular	pRb(+)(phosphorylated)	Cyclin D/Cdk4,6, Cyclin		35,36
experiments to	Cydin D/Cdk4,6	E/Cdk2 Myc		36,38,43
mathematical				
madal	Cydin E/Cdk2	Myc, E2F	p21, p27	35,37-39
model.	Мус	pRb(+),E2F, Akt, MAPK	Ρ53, TGF- β	42,43
From Zhu, Maad Oalaa Aa	E2F	E2F, Myc	pRb(-), p21	43
From Zhu, Hood, Galas, Ao (2008) (in press)	p21	p53, TNF-α, Androgen R	Myc, Akt	39,40,43
	p27	PTEN, E-cadherin	Myc, Akt	65,105
	p53	Myc, PTEN	Akt	40,43
	Caspase 3	Cytochrome c, Caspase 8	XIAP	45,46,48,50,51
	Cytochrome c	Caspase 3, Bad, Bax	Bd-2, Bd-xL	45-49,54,56,57
	Caspase8	Fas, TNF-α		45,46,50,51
	XIAP	Akt,	Caspase 3	45-50
	Bd-2	VEGF, Integrin	Caspase 3, p53, TGF- β	45,46,53
	Bd-xL	EGF,IGF-1R	Caspase 3	45,46,53,61
	Bim		Akt, MAPK	45,46,53
	Bad		p21, Akt, MAPK	45,46,53
	Bax	M yc, p53, Bim		42,45,46,53,55,58
	Ras	VEGF, IL-6, Integrin, Androgen R		64,83

Endogenous Network:

interacting agents

Endogenous molecular and cellular network including the important regulations responsible for prostate cancer. The network was constructed from experimental data in literature, most of them of normal biological functions (From Zhu, Galas, Hood, Ao (in preparation)).

Cancer Is Fundamentally Stochastic

Effective stochastic differential equations:

 $d\mathbf{X}/dt = \mathbf{f}(\mathbf{X},t) - \mathbf{x}/\tau_0 + \zeta(\mathbf{X},t) \quad (S)$ $\mathbf{X} = (X_1, X_2, \dots, X_n)^{\tau}, \ \tau: \text{ transpose}$

 $\begin{array}{ll} f_A(x) = a \, x^m \, / \, (1 + a \, x^m \,) \,, & \text{sigmoidal (step-like) function} \\ f_I(x) = \, 1 - f_A(x) = \, 1 \, / \, (1 + a \, x^m \,\,) \\ & \text{for example, } m = 3, \, a = 10; \, f_A(0) = 0, \, f_A(1) \sim 1 \end{array}$

 $N_i = 0$: ith gene has no activity (no corresponding protein); $N_i = 1$: ith gene has full activity (largest number of protein allowed); $\tau_0=1$

Scaled (normalized) dynamical variables to minimize the demand on input.

Gaussian and white noise:

< ζ > = 0, < ζ (X,t) ζ^{τ} (X,t') > = 2 D (X) δ (t-t')

Following the indications from experimental data.

Robustness assumption: Major network properties are **not** fine tuned.

First 10 deterministic part of sde's

$$\begin{aligned} & dx(1)/dt &= (10(x^3(3) + x^3(11) + x^3(12))/(1 + 10(x^3(3) + x^3(11) + x^3(12))))\times \\ & (1/(1 + 10(x^3(13) + x^3(31)))) - x(1); \\ & dx(2)/dt &= (10(x^3(15) + 0.1)/(1 + 10(x^3(15) + 0.1))) \times \\ & (1/(1 + 10(x^3(3)))) - x(2); \\ & dx(3)/dt &= (10(x^3(1) + x^3(14))/(1 + 10(x^3(1) + x^3(14)))) \times \\ & (1/(1 + 10(x^3(2)))) - x(3); \\ & dx(4)/dt &= (10(x^3(6) + x^3(8))/(1 + 10(x^3(6) + x^3(8)))) \\ & - x(4); \\ & dx(5)/dt &= (10(x^3(5) + x^3(7))/(1 + 10(x^3(5) + x^3(7)))) \times \\ & (1/(1 + 10((1 - x(4)) ^3 + x^3(10)))) - x(5); \\ & dx(6)/dt &= (10x^3(7)/(1 + 10(x^3(7)))) - x(6); \\ & dx(7)/dt &= (10(x^3(4) + x^3(5) + x^3(15) + x^3(23))/(1 + \\ & 10(x^3(4) + x^3(5) + x^3(15) + x^3(23))/(1 + \\ & 10(x^3(4) + x^3(5) + x^3(15) + x^3(23))/(1 + \\ & 10(x^3(7) + x^3(16))/(1 + 10(x^3(7) + x^3(16)))) \times \\ & (1/(1 + 10(x^3(10)) + x^3(20))) - x(8); \\ & dx(10)/dt &= (10(x^3(9) + x^3(22) + 0.3x^3(33))/(1 + 10(x^3(9) + x^3(22)) + 0.3x^3(33))/(1 + 10(x^3(9) + x^3(22))) - x(10); \\ \end{aligned}$$

. . .

Functional Landscape

Main robust states of the network: stable minima in the functional landscape space

The protein profile suggests that II(E) and II(F) are very likely correlated with cancer.

Schematic endogenous functional landscape for prostate with 6 main stable functions. 37 dimensions

Stable state	e Function	Molecular signature
I(A)	Arresting	Cell cycle off.
		Apoptosis off. Immune off
l(B)	Proliferating	Cell cycle on.
		Apoptosis off. Immune off.
I(C)	Apoptosis	Cell cycle off.
		Apoptosis on. Immune off.
l(D)	Apoptosis	Cell cycle on.
		Apoptosis on. Immune off.
II(E)	Growth with high	metabolism Cell cycle on.
		Apoptosis off. Immune on.
ll(F)	Apoptotic with high	metabolism Cell cycle on.
		Apoptosis on. Immune on.

		I(A)	I(B)	I(C)	I(D)	II(E)	ll(F)
Table II. Positions of	Cytochrome c	0.04	0.08	0.86	0.86	0.00	0.85
possible stable states in	XIAP	0.50	0.50	0.07	0.07	0.77	0.10
functional landscape	Caspase 3	0.00	0.00	0.86	0.86	0.09	0.87
	pRb(+)	0.00	0.93	0.00	0.93	0.89	0.89
From Zhu, Hood, Galas, Ao (2009)	E2F	0.00	0.93	0.00	0.93	0.86	0.86
(in preparation)	CyclinD/CDK4,6	0.02	0.86	0.02	0.86	0.59	0.59
	Мус	0.13	0.84	0.13	0.84	0.53	0.53
Rescaled activity (or	CyclinE/CDK2	0.00	0.92	0.00	0.92	0.84	0.84
evoression level) reduces the	p53	0.09	0.16	0.09	0.16	0.01	0.01
demand on the parameters	p21	0.05	0.01	0.05	0.01	0.11	0.11
demand on the parameters	Bad	0.26	0.26	0.26	0.26	0.06	0.06
Maximum activity: 1	Bax	0.08	0.29	0.08	0.29	0.07	0.07
Minimum activity: 0	Bcl-2	0.48	0.47	0.09	0.09	0.19	0.08
	Caspase 8	<u>0.04</u>	<u>0.04</u>	<u>0.04</u>	<u>0.04</u>	<u>0.48</u>	<u>0.48</u>
	Akt	0.02	<u>0.02</u>	0.02	0.02	0.63	<u>0.63</u>
	PTEN	<u>0.74</u>	<u>0.74</u>	<u>0.74</u>	<u>0.74</u>	<u>0.32</u>	0.32
	NF-κB	0.26	<u>0.26</u>	<u>0.26</u>	<u>0.26</u>	<u>0.55</u>	<u>0.55</u>
	HIF	0.00	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.72</u>	<u>0.72</u>
	EGF	<u>0.50</u>	<u>0.50</u>	<u>0.50</u>	<u>0.50</u>	<u>0.79</u>	<u>0.79</u>
	p27	0.83	0.12	0.83	0.12	0.16	0.16
	ікВ	<u>0.60</u>	<u>0.60</u>	<u>0.60</u>	<u>0.60</u>	<u>0.25</u>	<u>0.25</u>
	TNF-α	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	<u>0.44</u>	0.44
	MAPK	0.26	<u>0.26</u>	<u>0.26</u>	<u>0.26</u>	<u>0.51</u>	0.51
	Ras	<u>0.18</u>	<u>0.18</u>	<u>0.18</u>	<u>0.18</u>	<u>0.81</u>	<u>0.81</u>

Functional Landscape

(determined by nonlinear interactions within the endogenous network and its interactions to other levels)

healthy, tumor, and other robust biological states: three typical situations

The vertical scale illustrates the relative stability of robust states, healthy, tumor and others, in the multiple dimensional state space.

The landscape concept follows what reviewed by Zhu, Yin, Hood, Galas, Ao on modeling of lambda genetic switch. in *Introduction to Systems Biology*, 2000.

A brief discussion of history of landscape concept and its usage in biology can be found in P. Ao, *Laws in Darwinian evolutionary theory*, Physics of Life Reviews **2** (2005) 117-156.

Initial Experimental Validations

Prostate Cancer

Consistency among experimental data implies that there may indeed be a core network.

Consistency with theoretical predictions implies that such mathematical model may indeed be correct.

- Leukemia: CML
- Hepatocellular carcinoma (HCC)

Chronic Myeloid Leukemia

proteins, hormnes, etc	I(A): (noraml) gene	log(ratio), CP	log(ratio), AP	log(ratio), BC	I(B): (chronic phase)	I(B)-II(E) (accelerated phase)	II(A): (blast crisis)	r: right; w: wrong
Cytochrome c	0.04 Cytochrome o	0.007500298	-0.173573275	-0.2749898	0.08	0.01	0	r r r
Carrage 2	0.5				0.5	0.6	0.77	
Caspase 3	0				0	0.09	0.09	
pro(+)	0 RB1	-0.02340131	0.359629581	0.444844091	0.93	0.89	0.89	wrr
EZF	0 E2F5	-0.00806339	0.652361166	0.831233078	0.93	0.88	0.86	wrr
CyclinD/CDK4,6	0.02	0.003611066	0.303090059	0.559535536	0.86	0.68	0.59	rrr
Myc	0. 13 MYCL1	-0.02968787	-0.391017737	-0.64657657	0.84	0.6	0.53	www
CyclinE/CDK2	0 CDK2AP1	0.000311783	0.27653861	0.313775662	0.92	0.8	0.84	rrr
p53	0.09 TP53I11	-0.00029215	-0.201807578	-0.65126646	0.16	0.05	0.01	wrr
p21	0. 05 PAK4	0.007022029	-0.223846794	-0.1879491	0.01	0. 11	0.11	www
Bad	0.26				0.26	0.11	0.06	
Bax	0.08				0.29	0.1	0.07	
Bd-2	0. 48 BCL2	0.017421845	0.399760103	0.609259831	0.47	0.24	0.19	x ww
Caspase 8	0.04				<u>0.04</u>	0.34	0.48	
Akt	0.02 FLJ10111	0.014376216	-0.11855937	-0.19535138	0.02	0. 37	<u>0. 63</u>	T WW
PTEN	0.74 PINK1	-0.02884286	-0.170412126	-0.49640671	<u>0.74</u>	0.46	0.32	rrr
NF-KB	0.26				0.26	0.43	0.55	
HIF	<u>0</u>				<u>0</u>	0.34	0.72	
EGF	0.5 EGFR-RS	0.010144436	0.330470246	0.612509998	<u>0.5</u>	0.59	0.79	rrr
p27	0.83				0.12	0. 22	0.16	
iĸB	0.6 IKBKG	-0.00940305	-0.33163751	-0.34250343	<u>0.6</u>	0.42	0.25	rrr
TNF-a	0. 16 TNFSF4	-0.01035776	0.977510388	0.847869808	0.16	0.37	0.44	rrr
MAPK	0.26	0.009285026	0.270846089	0.433078557	0.26	0.49	0.51	rrr
Ras	0.18 NRAS	0.028317121	0.260572439	0.407931981	<u>0.18</u>	0.73	0.81	rrr
COX-2	0.26 COX11	0.020621697	0.55757579	0.583467024	0.26	0.66	<u>0.74</u>	rrr
VEGF	0. 19 VEGFB	0.017184631	0.118985275	0.272996986	<u>0.19</u>	0.83	0.93	rrr
IL-6	0.16				0.16	0.37	0.44	
IL-10	0.04				0.04	0.28	0.34	
Fas	0.04 FAIM	0.008222487	0.350064521	0.740909031	0.04	0.15	0.18	rrr
Bim	0.26				0.26	0. 11	<u>0.06</u>	
Bcl-xL	0.56				0.56	0.69	0.87	
Integrin	0.39				0.39	0.57	0.65	
Androgen R	0.13				0.13	0.36	0.54	
IGF-1R	0.02				0.02	0.31	0.61	
MKP	0. 56 DUSP10	0.037154577	0.284152541	0.645319979	0.56	0.7	0.74	
TGF-β	0.37 YR-29	0.019577459	0.366250242	0.62084987	0.37	0.65	0.73	.
E-Cadherin	0. 36 PCDHGC4	0.000148711	-0.220939937	-0.27218245	0.36	0.15	0.07	

Note 1: For biology in our cancer modeling, Ao, Galas, Hood, and Zhu, 2008, Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Medical Hypotheses, 70: 678-684. Note 2: Predictions are normalized values for each endogenous agent respectively. Should comparing them horizontally. Full activity 1; no activity 0.

Note 3: Predictions were from results obtained by Zhu, Hood, Galas, Ao for prostate cancer (submitted to J. Biol. Syst., 2008)

Note 4: June, 2008. Ping's attempt to understand Jerry Radich's 2006 PNAS chronic myeloid leukemia paper (Radich et al, PNAS 103 (2006) 2794-2799). Here, Data were from Table 4.

Core endogenous network of liver tissue

minimal molecular-cellular agents, core signaling transduction and transcription pathways

Modularization

Core endogenous molecular-cellular network for liver

Validation 1: hallmarks of each stable state

Stable states

	Α	В	С	D	Ε
X1=cyclin D-CDK4	0.0000	0.8781	0.8709	0.0000	0.8781
X2=cyclin E-CDK2	0.0000	0.8781	0.8709	0.0000	0.8781
X3=Rb	1.0000	0.0688	0.0704	1.0000	0.0688
X4=E2F	0.0000	0.8923	0.8851	0.0000	0.8923
X5=P21	0.0000	0.0454	0.0533	0.0000	0.0454
X6=C/EBPa	0.9642	0.0076	0.0092	0.9642	0.0076
X7=Foxa2	0.9457	0.0000	0.0000	0.9457	0.0000
X8=HNF4a	0.9457	0.0000	0.0000	0.9457	0.0000
X9=Bcl-2	0.0000	0.4962	0.2049	0.0000	0.0878
X10=tBid	0.0000	0.0000	0.0076	0.8785	0.1095
X11=XIAP	0.0000	0.8669	0.8660	0.0000	0.0950
X12=Bax	0.0000	0.0464	0.0597	0.8715	0.0539
X13=Cytchrome c	0.0000	0.0004	0.0020	0.8687	0.0016
X14=Caspase 9	0.0000	0.0000	0.0000	0.9387	0.8828
X15=Caspase 8	0.0000	0.0000	0.1857	0.8975	0.8904
X16=Caspase 3	0.0000	0.0000	0.0181	0.9566	0.9331
X17=Ras	0.0000	0.8953	0.8902	0.0000	0.8953
X18=ERK	0.0000	0.8669	0.8648	0.0000	0.8669
X19=JNK	0.0000	0.0000	0.6173	0.0000	0.0000
X20=Akt	0.0000	0.8880	0.8857	0.0000	0.8880
X21=PIEN	0.0000	0.1075	0.1084	0.0000	0.1075
	0.0000	0.5008	0.4549	0.0000	0.5008
	0.0000	0.5331	0.4822	0.0000	0.5331
X24=P03	0.0000	0.4212	0.4517	0.0000	0.4212
X20=EGF	0.0000	0.3307	0.4850	0.0000	0.3307
X20=1 GF-Deld	1.0000	0.1075	0.1124	1.0000	0.1075
X27=E-caunerin	0.0000	0.2312	0.3244	0.0000	0.2312
X20-GGK 3	1 0000	0.3374	0.1258	1 0000	0.3374
X30=Integrin	0.0000	0.1250	0.1256	0.0000	0.1250
X31=HGF	0.0000	0.8804	0.8866	0.0000	0.8804
X32=TNFa	0.0000	0.0000	0.5443	0.0000	0.0000
X33=NF-kB	0.0000	0.0000	0.6148	0.0000	0.0000
X34=NF-kB(KC)	0.0000	0.0000	0.5236	0.0000	0.0000
X35=IL-1	0.0000	0.0000	0.7899	0.0000	0.0000
X36=IL-6	0.0000	0.0000	0.3713	0.0000	0.0000
X37=IL-10	0.0000	0.0000	0.3888	0.0000	0.0000
X38=Stat3	0.0000	0.8953	0.8961	0.0000	0.8953
X39=Cox-2	0.0000	0.8669	0.8877	0.0000	0.8669
X40=VEGF	0.0000	0.0026	0.9006	0.0000	0.9028
X41=MDM2	0.8889	0.3504	0.9333	0.8889	0.8889
X42=ikB	0.8889	0.0015	0.0855	0.8889	0.8889

M odel:

	Quiescence	Prolife	Proliferation		Death	
	А	(B, C)		(D, E)		
Cell cycle	Off	On	On	Off	On	
Glycolysis	Off	On	On	Off	On	
Liver specific function	On	Off	Off	On	Off	
Cell death	Off	Off	Off	On	On	
Cell adhesion	On	Off	Off	On	Off	
Immune response	Off	Off	On	Off	Off	
Angiogenesis	Off	Off	On	Off	On	

Physiological and clinical:

	Normal	Cancer
	Liver	
Cell cycle	Off	On
Glycolysis	Off	On
Liver specific function	On	Off
Cell death	Off	Off
Cell adhesion	On	Off
Immune response	Off	On
Angiogenesis	Off	On

Hanahan, D. and Robert A. Weinberg (2011). "Hallmarks of Cancer: The Next Generation."

Perfect match: stable state A as normal liver; C as HCC

Validation 2: Molecular-cellular agents test

Stable states (model)

	Normal	HepG2	HCC
cyclin D-CDK4	0.0000	0.8781	0.8709
cyclin E-CDK2	0.0000	0.8781	0.8709
Rb	1.0000	0.0688	0.0704
E2F	0.0000	0.8923	0.8851
P21	0.0000	0.0454	0.0533
C/EBPa	0.9642	0.0076	0.0092
Foxa2	0.9457	0.0000	0.0000
HNF4a	0.9457	0.0000	0.0000
Bcl-2	0.0000	0.4962	0.2049
Bid	0.0000	0.0000	0.0076
XIAP	0.0000	0.8669	0.8660
Bax	0.0000	0.0464	0.0597
Cytchrome c	0.0000	0.0004	0.0020
Caspase 9	0.0000	0.0000	0.0000
Caspase 8	0.0000	0.0000	0.1857
Caspase 3	0.0000	0.0000	0.0181
Ras	0.0000	0.8953	0.8902
ERK	0.0000	0.8669	0.8648
JNK	0.0000	0.0000	0.6173
Akt	0.0000	0.8880	0.8857
PTEN	0.0000	0.1075	0.1084
HIF	0.0000	0.5008	0.4549
Мус	0.0000	0.5331	0.4822
P53	0.0000	0.4212	0.4517
EGF	0.0000	0.5567	0.4850
TGF-beta	0.0000	0.1075	0.1124
E-cadherin	1.0000	0.2512	0.3244
b-catenin	0.0000	0.5374	0.3914
GSK3	1.0000	0.1250	0.1258
Integrin	0.0000	0.8669	0.8899
HGF	0.0000	0.8804	0.8866
INFa	0.0000	0.0000	0.5443
	0.0000	0.0000	0.6148
	0.0000	0.0000	0.5236
1L-1	0.0000	0.0000	0.7899
IL-6	0.0000	0.0000	0.3/13
TL-10 Stat2	0.0000	0.0000	0.3888
Sidis Cox 2	0.0000	0.8933	0.8901
VEGE	0.0000	0.8009	0.88//
	0.0000	0.9028	0.9000
	0.8889	0.3304	0.9333
IND	0.8889	0.0015	0.0855

Normal liver and HCC

Cyclin D-CDE4:6 CCND1 Up Up <th></th> <th>Gene symbol</th> <th>Model</th> <th>Experiments</th> <th>HCC1</th> <th>HCC2</th> <th>HCC3</th>		Gene symbol	Model	Experiments	HCC1	HCC2	HCC3
Cyclin E-CDE2 CCNE1 Up	Cyclin D-CDK4/6	CCND1	Up	Up	Up	Up	Up
Rb Kb1 Down Down Up Down Up Down Down E2F E2F4 Up Down Caspase CASPS Up Up Up Up Up Up	Cyclin E-CDK2	CONEL	Up	Up	Up	Up	Up
E2FE2F4UpUpUpUpUpUpUpP11CDBN1AUachangeDownUpUpUpUpCEBPACEBPADownDownDownDownDownDownDownFeaa2FOXA2DownDownDownDownDownDownDownBcl-2BCL2UpUpUpDownDownDownDownBcl-3BCL2UpUpUpUpUpUpUpSIAPSIAPUpUpUpUpUpUpBaxBAXUachangeDownUpUpUpUnCapase 9CASP9UachangeUpUpUpUpUpCapase 8CASP8UpUachangeUpUpUpDownRasKRA5UpUpUpUpUpDownUpUpDrase 8CASP8UpUpUpUpUpDownRasKRA5UpUpUpUpUpDownPTENMAPK1UpUpUpUpUpUpPTENPTENDownDownDownDownUpUpMkMAPK1UpUpUpUpUpUpPTENPTENDownDownDownDownUpUpMkMAPK2UpUpUpUpUpUpMkHIF1AUp <td>Rb</td> <td>Rb1</td> <td>Down</td> <td>Down</td> <td>Up</td> <td>Down</td> <td>Down</td>	Rb	Rb1	Down	Down	Up	Down	Down
P21CDENIAUschangeDownUpUpUpCEBPACEBPADownDownUpDownDownFeaa2FOXA2DownDownDownDownDownBcH74aHNF4ADownDownDownDownDownBcl-2BCL2UpUpUpDownDownDownBddBDUachangeDownDownDownDownDownSIAPXIAPUpUpUpUpUpUpBaxBAXUachangeDownUpUpUpCytchroms cCYCSUachangeUachangeUpUpCapase 9CASP9UnchangeUnchangeUpUpUpCapase 8CASP8UpUachangeUpUpUpCapase 8CASP3UachangeUpUpUpDownRasKRASUpUpUpUpUpUpCapase 3CASP3UachangeUpUpUpRasKRASUpUpUpUpUpRasKRASUpUpUpUpUpPTENMAPKI3UpUpUpUpUpMARKMAPKI3UpUpUpUpUpPTENPTENDownDownDownUnMycMYCUpUpUpUpUpUpPTENPTENDownDownDown	E2F	E2F4	Up	Up	Up	Up	Up
C/EBPsCEBPADownDownUpDownDownFoxA2FOXA2DownDownUpDownDownHNF4AHNF4ADownDownDownDownDownBcl-2BCL2UpUpUpDownDownMAPXLAPUpUpUpUpUpBaxBAXUnchangeDownUpUpCytchrome cCYCSUnchangeUnchangeUpCapsas 8CASP8UpUachangeUpUpCapsas 8CASP3UnchangeUpUpUpCapsas 3CASP3UnchangeUpUpUpCapsas 3CASP3UnchangeUpUpUpRasKRASUpUpUpUpDownJNKMAPK1UpUpUpUpUpUpJNKMAPK1UpUpUpUpUpMycMYCUpUpUpUpUpMycMYCUpUpUpUpUpMatAKT3UpUpUpUpUpMycMYCUpUpUpUpUpMatAKT3UpUpUpUpUpMATHTF1HTF1AUpUpUpUpMycMYCUpUpUpUpUpMycMYCUpUpUpUpUpMycMYC <td>P21</td> <td>CDKNIA</td> <td>Unchange</td> <td>Down</td> <td>Up</td> <td>Up</td> <td>Up</td>	P21	CDKNIA	Unchange	Down	Up	Up	Up
Foxa2FOXA2DownDownUpDownDownHNF4ADownDownDownDownDownDownBcl-2BCL2UpUpDownDownUnHBidBIDUachangeDownDownDownDownMLAPSILAPUpUpUpUpUpUpBaxBAXUachangeDownUpUpUpCapsae 9CASP9UachangeUachangeUpUpUpCapsae 9CASP9UachangeUachangeDownUpUpCapsae 6CASP3UachangeUachangeDownUpUpCapsae 3CASP3UachangeUpUpUpDownRasKRASUpUpUpUpDownUpJNKMAPK1UpUpUpUpUpUpAktAKT3UpUpUpUpUpUpJNKMAPK1UpUpUpUpUpUpJNKMAPK3UpUpUpUpUpUpJNKMAPK1UpUpUpUpUpUpJNKMAPK3UpUpUpUpUpUpJNKMAPK3UpUpUpUpUpUpJNKMAPK1UpUpUpUpUpUpJNKMAPK5UpUpUpUpUpJNK <td>C/EBPa</td> <td>CEBPA</td> <td>Down</td> <td>Down</td> <td>Up</td> <td>Down</td> <td>Down</td>	C/EBPa	CEBPA	Down	Down	Up	Down	Down
HNF4a HNF4A Down	Foxa2	FOXA2	Down	Down	Up	Down	Down
Bcl-2BCL2UpUpDownUnUpHidBIDUnchangeDownDownDownDownDownMLAPNIAPUpUpUpUpUpUpUpBaxBAXUnchangeDownUpUpUpUpCytchrome cCYCSUnchangeUnchangeUpUpUnCaupase 8CASP9UnchangeUnchangeUpUpUpCaupase 8CASP3UnchangeUpUpUpDownRasKRASUpUpUpUpDownUpRasKRASUpUpUpUpDownRasKRASUpUpUpUpUpJNKMAPK1UpUpUpUpUpJPENDownDownDownUpUpUpJPENPTENDownDownDownUpUpMycMYCUpUpUpUpUpMycMYCUpUpUpUpUpGGFEGFRUpUpUpUpUpForderinCTNNB1UpUpUpUpUpGSS-3betaCSS1BDownDownDownDownDownInsegrinITGB2UpUpUpUpUpUpInsegrinITGB2UpUpUpUpUpInsegrinITGB2UpUp <t< td=""><td>HDNF4a</td><td>HNF4A</td><td>Down</td><td>Down</td><td>Down</td><td>Down</td><td>Down</td></t<>	HDNF4a	HNF4A	Down	Down	Down	Down	Down
tBidBIDUnchangeDownDownDownDownXIAPXIAPUpUpUpUpUpUpUpBaxBAXUnchangeDownUpDownDownCytchrome cCYCSUnchangeUnchangeUpUpUnCaupase 9CASP9UnchangeUnchangeUpUpUpCaupase 3CASP3UpUnchangeDownUpUpCaupase 3CASP3UnchangeUpUpUpDownRatKRASUpUpUpUpDownDownRatMAPK1UpUpUpUpUpDownJNKMAPK3UnchangeUpUpUpUpAktAKT3UpUpUpUpUpPTENPTENDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpP33TP33UpDownDownDownDownEGFEGFRUpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownInsegrinITGB2UpUpUpUpUpUpINFUpUpUpUpUpUpInsegrinITGEUpUpUpUpNF4B1.RELAUpUpUpUpUpInferHIB.LIBR1Up </td <td>Bcl-2</td> <td>BCL2</td> <td>Up</td> <td>Up</td> <td>Down</td> <td>Un</td> <td>Up</td>	Bcl-2	BCL2	Up	Up	Down	Un	Up
NIAPUpUpUpUpUpUpUpBaxBAXUnchangeDownUpDownDownCytchrome cCYCSUnchangeUnchangeUpUaUnchangeCaspase 9CASP9UnchangeUpUpUnCaspase 5CASP5UpUnchangeUpUpUpCaspase 3CASP3UnchangeUnchangeUpUpUpRasKRASUpUpUpUpDownRasKRASUpUpUpUpUpDownJNKMAPK5UnchangeUpUpUpUpPTENMAPK5UnchangeUpUpUpUpPTENPTENDownDownDownUnUnMycMYCUpUpUpUpUpUpP33TP33UpDownDownDownUpUpFGFEGFRUpUpUpUpUpUpGSt3bataGSt3BDownDownDownDownDownβ-cataminCTNNB1UpUpUpUpUpUpTNFaTNFUpUpUpUpUpUpNF48NFKB1.RELAUpUpUpUpUpUpNF-48NFKB1.RELAUpUpUpUpUpUpNF-48NFKB1.RELAUpUpUpUpUpUp <td>tBid</td> <td>BID</td> <td>Unchange</td> <td>Down</td> <td>Down</td> <td>Down</td> <td>Down</td>	tBid	BID	Unchange	Down	Down	Down	Down
BaxBAXUnchangeDownUpDownDownCytchroms cCYCSUnchangeUnchangeUpUnaUnaCaupase 9CASP9UnchangeUnchangeUpUpUpCaupase 3CASP3UnchangeUnchangeUpUpUpCaupase 3CASP3UnchangeUnchangeDownUpDownRasKRASUpUpUpUpDownDownPRKMAPK1UpUpUpUpUpDownJNKMAPKSUnchangeUpUpUpUpAktMAPKSUnchangeUpUpUpUpPTENPTENDownDownDownUpUpMycMYCUpUpUpUpUpUpP33TP33UpDownDownDownDownFGF-\$TGF2EGFRUpUpUpUpUpUpUpUpUpUpUpUpUpGSK3BDownDownDownDownDownDownβ-catsminCTNNB1UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpNF4BNFKB1.RELAUpUpUpUpUpUpNF4BNFKB1.RELAUpUpUpUpUpUpNF4BL16.L168RUpUpUpUp	XIAP	XIAP	Up	Up	Up	Up	Up
Cytchroms cCYCSUnchangsUnchangsUpUnUnCaupase 9CASP9UnchangeUnchangeUpUpUpUnCaupase 8CASP8UpUnchangeUnchangeUpUpUpUpCaupase 3CASP3UnchangeUnchangeDewnUpUpUpDownRatKRASUpUpUpUpUpDownDownRatKRASUpUpUpUpUpDownJNKMAPK1UpUpUpUpUpUpAktAKT3UpUpUpUpUpPTENDownDownDownDownUnHIFHIF1AUpUpUpUpUpMycMYCUpUpUpUpUpP33TP3UpDownDownDownDownEGFEGFRUpUpUpUpUpUpCasharinCDH1DownDownDownDownDown β -cataninCTNNB1UpUpUpUpUpUpGSS-3betaGSSBBDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpN*4BNFKB1.RELAUpUpUpUpUpInferIL6.LERUpUpUp </td <td>Bax</td> <td>BAX</td> <td>Unchange</td> <td>Down</td> <td>Up</td> <td>Down</td> <td>Down</td>	Bax	BAX	Unchange	Down	Up	Down	Down
Caupase 9CASP9UnchangeUnchangeUpUpUpCaupase 8CASP8UpUnchangeUpUpUpCaupase 3CASP3UnchangeUnchangeDownUpUpRatKRASUpUpUpUpUpDownRatKRASUpUpUpUpUpDownPRKMAPK1UpUpUpUpUpUpJNKMAPKSUnchangeUpDownDownUpAktAKT3UpUpUpUpUpUpPTENPTENDownDownDownDownUnMycMYCUpUpUpUpUpUpMycMYCUpUpUpUpUpUpFGFEGFRUpUpUpUpUpUpFcsharinCDH1DownDownDownDownDown β -cataninCTNNB1UpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpIntegrinITGB2UpUpUpUpUpIntegrinITGB2UpUpUpUpUpHGFHGF, METUpUpUpUpUpIntegr	Cytchrome c	CYCS	Unchange	Unchange	Up	Un	Un
Caspase 8CASP6UpUnchangeUnchangeUpUpUpCaspase 3CASP3UnchangeUuchangeDownUpDownRaiKRASUpUpUpUpUpDownERKMAPK1UpUpUpUpUpDownJNKMAPK1UpUpUpUpUpUpJNKMAPK1UpUpUpUpUpPTENMAPK3UnchangeUpUpUpUpPTENPTENDownDownDownUnchangeUpMycMYCUpUpUpUpUpUpP33TP33UpDownDownUpUpUpCGFEGFRUpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownβ-cataminCTNNB1UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpNFkB1,RELAUpUpUpUpUpUpUpIt-4It.B,It.BR1UpUpUpUpUpUpItesprinIt.GR.UpUpUpUpUpUpItesprinIt.GRUpUpUpUpUpUpIt.48NFKEI,RELAUpUp<	Caspase 9	CASP9	Unchange	Unchange	Up	Up	Un
Caspase 3CASP3UachangeUnchangeDownUpUpDownRasKRASUpUpUpUpUpUpDownERKMAPK1UpUpUpUpUpDownDownJNKMAPKSUachangeUpDownDownDownUpAktAKT3UpUpUpUpUpUpAktAKT3UpUpUpUpUpUpPTENPTENDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpP33TP13UpDownDownUpUpEGFEGFRUpUpUpUpUpTGF-βTGFB2UpUpUpUpUpGSK3BDownDownDownDownDownDownβ-catasinCTNNB1UpUpUpUpUpUpHGFHGF.METUpUpUpUpUpUpNF4BNFKB1,RELAUpUpUpUpUpUpNF4BNFKB1,RELAUpUpUpUpUpUpIntegrinIL0,LI0RUpUpUpUpUpUpNF4BNFKB1,RELAUpUpUpUpUpUpNF4BNFKB1,RELAUpUpUpUpUpIL-1L10,LI0RUpUpU	Caspase 8	CASP8	Up	Unchange	Up	Up	Up
RaiKRASUpUpUpUpUpUpDownERKMAPK1UpUpUpUpUpUpDownDownJNKMAPKSUnchangeUpDownDownDownUpUpUpAktAKT3UpUpUpUpUpUpUpPTENPTENDownDownDownDownUnUnHIFHIFIAUpUpUpUpUpUpP33TP33UpDownDownUpUpUpFGFEGFRUpUpUpUpUpUpTGF-βTGFB2UpUpUpUpUpUpEGSEGFRUpUpUpUpUpUpFc-adharinCDH1DownDownDownDownDownβ-catasinGSX3BDownDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpNF4BNFKB1,RELAUpUpDownUpUpUpNF-ABNFKB1,RELAUpUpUpUpUpUpIL-1IL1B,IL1BR1UpUpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpUpVEGFKDRUpUpUp	Caspase 3	CASP3	Unchange	Unchange	Down	Up	Down
ERKMAPK1UpUpUpUpUpUpDownJNKMAPK8UschangeUpDownDownUpAktAKT3UpUpUpUpUpUpPTENPTENDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpMycMYCUpUpUpUpUpUpP33TP53UpDownDownDownUpUpFGF-βEGFRUpUpUpUpUpUpFGF-βTGFB2UpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpNF4BNFKB1,RELAUpUpUpUpUpUpIn-1I.1B,IL1BR1UpUpUpUpUpUpI-10I.10, IL10RUpUpUpUpUpUpVEGFKDRUpUpUpUpUpUpVEGFKDRNFKBIADownUpUpUpUpVEGFKDRNFKBIADownUpUpUpUpVEGFKDRNDM2NDM2NDM2UpUpUpUp	Ras	KRAS	Up	Up	Up	Up	Down
JNKMAPKSUachangeUpDownDownUpAktAKT3UpUpUpUpUpUpPTENPTENDownDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpMycMYCUpUpUpUpUpUpP13TP53UpDownDownDownUpUpEGFEGFRUpUpUpUpUpUpFc-sdharinCDH1DownDownDownDownDownβ-catasinCTNNB1UpUpUpUpUpGSK-3bataGSK3BDownDownDownDownIntegrinITGB2UpUpUpUpUpHGFHGF, METUpUpUpUpUpNF-kBNFKB1,RELAUpUpDownUpUpNF-kBSTAT3UpUpUpUpUpI-10I.10, I.10RUpUpUpUpUpVEGFKDRUpUpUpUpUpUpVEGFKDRUpUpUpUpUpUpI-48NFKB1, RELAUpUpUpUpUpUpI-5I.6, I.6RUpUpUpUpUpUpI-6KDRUpUpUpUpUpUpI-6KDRUp </td <td>ERK</td> <td>MAPK1</td> <td>Up</td> <td>Up</td> <td>Up</td> <td>Up</td> <td>Down</td>	ERK	MAPK1	Up	Up	Up	Up	Down
AktAKT3UpUpUpUpUpUpPTENPTENDownDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpMycMYCUpUpUpUpUpUpP33TP53UpDownDownDownUpUpEGFEGFRUpUpUpUpUpUpTGF β TGFB2UpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDown β -catasinGSK3BDownDownDownDownDownGSK-3betaGSK3BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpNF-kBNFKB1,RELAUpUpDownUpUpIL-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpIL-6KDRUpUpUpUpUpUpVEGFKDRVDPUpUpUpUpUpVEGFKDRNDM2UpUpUpUpUpIL-6NFKBIADownUpUpUpUpIL-10IL10, IL10RUpUpUpUpUpIL-	JNK	MAPK8	Unchange	Up	Down	Down	Up
PTENPTENDownDownDownDownDownUnHIFHIF1AUpUpUpUpUpUpUnMycMYCUpUpUpUpUpUpUpP33TP53UpDownDownDownUpUpUpEGFEGFRUpUpUpUpUpUpUpUpTGFβTGFB2UpUpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDownβ-cataninCTNNB1UpUpUpUpUpUpGSK-3betaGSK33BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpNF-kBNFKB1,RELAUpUpDownUpUpIL-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpIL-6KDRUpUpUpUpUpUpVEGFKDRKDRUpUpUpUpUpIL-8NDM2MDM2UpUpUpUpUpIL-9KDRKDRUpUpUpUpUpIL-9KDRKDRUpUpUpUpUpIL-9KDR	Akt	AKT3	Up	Up	Up	Up	Up
HIFHIF1AUpUpUpUpUpUpUpMycMYCUpUpUpUpUpUpUpP53TP53UpDownDownDownUpUpEGFEGFRUpUpUpUpUpUpUpTGF-βTGFB2UpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDownβ-cataninCTNNB1UpUpUpUpUpGSK-3betaGSK3BDownDownDownDownIntegrinITGB2UpUpUpUpUpHGFHGF, METUpUpUpUpUpNF-kBNFKB1,RELAUpUpDownUpUpIL-1IL1B,LIBR1UpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpIL-10KL3, REAUpUpUpUpUpIL-6KDRUpUpUpUpUpUpCox-2COX2UpUpUpUpUpUpVEGFKDRNFKBIADownUpUpUpUpiaBNFKBIADownUpUpUpUpUp	PTEN	PTEN	Down	Down	Down	Down	Un
Myc MYC Up Down Down Up Down Down Up Down Up	HIF	HIF1A	Up	Up	Up	Up	Un
P53TP53UpDownDownUpUpDownEGFEGFRUpUpUpUpUpUpUpTGF-βTGFB2UpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDownDown β -catashinCTNNB1UpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpHGFHGF, METUpUpUpUpUpNF-kBNFKB1,RELAUpUpDownUpUpNF-kB(KC)NFKB1,RELAUpUpDownUpUpIL-1IL18,IL1BR1UpUpUpUpUpUpIL-6IL6, I.68RUpUpUpUpUpUpStat3STAT3UpUpUpUpUpUpVEGFKDRUpUpUpUpUpUpkBNFKBIADownDownUpUpUpUp	Myc	MYC	Up	Up	Up	Up	Up
EGFEGFRUpUpUpUpUpUpUpTGF- β TGFB2UpUpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDownDown β -cataminCTNNB1UpUpUpUpUpUnGSK-3betaGSK3BDownDownDownDownDownIntegrinITGB2UpUpUpUpUpHGFHGF, METUpUpUpUpUpTNFaTNFUpUpUpDownUpNF4BNFKB1,RELAUpUpDownUpUpIn-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpStat3STAT3UpUpUpUpUpCox-2COX2UpUpUpUpUpVEGFKDRUpUpUpUpUpUpiABNFKBIADownDownUpUpUp	P53	TP53	Up	Down	Down	Up	Down
TGF-βTGFB2UpUpUpUpUpUpE-cadharinCDH1DownDownDownDownDownDown β -cataninCTNNB1UpUpUpUpUpUnUpGSK-3betaGSK3BDownDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpTNFaTNFUpUpUpDownUpNF4BNFKB1,RELAUpUpDownUpUpIn-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, IL6RUpUpUpUpUpStat3STAT3UpUpUpUpUpVEGFKDRUpUpUpUpUpUpMDM2MDM2UpUpUpUpUpUp	EGF	EGFR.	Up	Up	Up	Up	Up
E-cadharinCDH1DownDownDownDownDownβ-cataninCTNNB1UpUpUpUpUpUpGSK-3betaGSK3BDownDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpHGFHGF, METUpUpUpUpUpTNFaTNFUpUpUpDownUpNF4BNFKB1,RELAUpUpDownUpUpIn-1IL1B,IL1BR1UpUpUpUpUpIn-6IL6, IL6RUpUpUpUpUpStat3STAT3UpUpUpUpUpCox-2COX2UpUpUpUpUpVEGFKDRUpUpUpUpUpUpiABNFKEIADownDownUpUpUpUp	TGF-β	TGFB2	Up	Up	Up	Up	Up
β-catasinCTNNB1UpUpUpUpUpUnUpGSK-3betaGSK3BDownDownDownDownDownDownDownLategrinITGB2UpUpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpTNFaTNFUpUpUpDownUpNF4BNFKB1,RELAUpUpDownUpUpNF4B(KC)NFKB1,RELAUpUpUpUpUpIL-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, L6RUpUpUpUpUpStat3STAT3UpUpUpUpUpCox-2COX2UpUpUpUpUpVEGFKDRUpUpUpUpUpUpiABNFKBLADownDownUpUpUp	E-cadherin	CDH1	Down	Down	Down	Down	Down
GSK-3betaGSK3BDownDownDownDownDownDownIntegrinITGB2UpUpUpUpUpUpUpHGFHGF, METUpUpUpUpUpUpTNFaTNFUpUpUpDownUpNF4BNFKB1,RELAUpUpDownUpUpNF4B(KC)NFKB1,RELAUpUpDownUpUpIL-1IL1B,IL1BR1UpUpUpUpUpIL-6IL6, L6RUpUpUpUpUpStat3STAT3UpUpUpUpUpCox-2COX2UpUpUpUpUpVEGFKDRUpUpUpUpUpUpikBNFKBIADownDownUpUpUpUp	β-catenin	CTNNB1	Up	Up	Up	Un	Up
Integrin ITGB2 Up	GSK-3beta	GSK3B	Down	Down	Down	Down	Down
HGF HGF, MET Up Down Up Up NF4B NFKB1,RELA Up Up Up Down Up Up<	Integrin	ITGB2	Up	Up	Up	Up	Up
TNF Up Up Up Down Up NF4B NFKB1,RELA Up Up Down Up Up NF4B NFKB1,RELA Up Up Down Up Up NF4B NFKB1,RELA Up Up Down Up Up IL-1 IL1B,IL1BR1 Up Up Up Up Up Up IL-6 IL6, IL6R Up Up Up Up Up Up IL-6 IL10, IL10R Up Up Up Up Up Up Stat3 STAT3 Up Up Up Up Up Up Cox-2 COX2 Up Up Up Up Up VEGF KDR Up Up Up Up Up MDM2 MDM2 Up Up Up Up Up i&B NFKBLA Down Down Un Up <	HGF	HGF, MET	Up	Up	Up	Up	Up
NF-kB NFKB1.RELA Up Up Down Up Up NF-kB(KC) NFKB1.RELA Up Up Down Up Up IL-1 IL1B.LIBR1 Up Up Up Up Up Up IL-6 IL6, IL6R Up Up Up Up Up Up IL-6 IL6, IL6R Up Up Up Up Up Up IL-10 IL10, IL10R Up Up Up Up Up Up Stat3 STAT3 Up Up Up Up Up Up Cox-2 COX2 Up Up Up Up Up Up VEGF KDR Up Up Up Up Up Up MDM2 MDM2 Up Up Up Up Up	TNFa	TNF	Up	Up	Up	Down	Up
NF-kB(KC) NFKB1,RELA Up Up Down Up Up IL-1 IL1B,IL1BR1 Up Up Up Up Up IL-6 IL6, IL6R Up Up Up Up Up IL-6 IL6, IL6R Up Up Up Up Up IL-10 IL10, IL10R Up Up Up Up Up Stat3 STAT3 Up Up Up Up Up Cox-2 COX2 Up Up Up Up Up VEGF KDR Up Up Up Up Up MDM2 MDM2 Up Up Up Up Up ikB NFKBLA Down Down Un Up Un	NF-kB	NFKB1,RELA	Up	Up	Down	Up	Up
IL-1 IL1B,IL1BR1 Up	NF-kB(KC)	NFKB1,RELA	Up	Up	Down	Up	Up
IL-6 IL6, IL6R Up	п1	IL1B,IL1BR1	Up	Up	Up	Up	Up
IL-10 IL10, IL10R Up	п6	IL6, IL6R	Up	Up	Up	Up	Up
Stat3 STAT3 Up <	п10	IL10, IL10R	Up	Up	Up	Up	Up
Cox-2 COX2 Up Up Up Up Up Up VEGF KDR Up Up Up Up Down MDM2 MDM2 Up Up Up Up Up Up ikB NFKBIA Down Down Un Up Un Up	Stat3	STAT3	Up	Up	Up	Up	Up
VEGF KDR Up Up Up Up Down MDM2 MDM2 Up	Cox-2	CO32	Up	Up	Up	Up	Up
MDM2 MDM2 Up Up <th< td=""><td>VEGF</td><td>KDR</td><td>Up</td><td>Up</td><td>Un</td><td>Up</td><td>Down</td></th<>	VEGF	KDR	Up	Up	Un	Up	Down
ikB NFKBIA Down Down Un Up Un	MDM2	MDM2	Up	Up	Up	Up	Up
	ikB	NFKBLA	Down	Down	Un	Up	Un

86% 72% 76% 71%

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33006,2012; 3-paired HCC tissue samples and adjacent normal liver tissues

Hepatocellular carcinoma and normal state

HCC state

Oncogenes (Ras, Myc)

Regression probability? Defined factors?

Normal liver state

Spontaneous regression of hepatocellular carcinoma and review of literature.

Journal of Gastroenterology and Hepatology, 2000 15:1079-1086

Can we induce HCC state to normal-like liver state by defined factors? How?

Predications: maintenance of stable states at molecular level

Positive feedback loops provide a general strategy for the establishment and maintenance of stable states

Induce HCC to normal liver by defined factors

Induce HCC to normal by inhibiting **Ras**, Akt, NF- κ B, and activating HNF4 α

Inhibit cell proliferation and inflammation, induce differentiation

Dynamics of HCC progression and regression

Progression

Regression

Summary for a set of testable predictions

HCC progression and regression are asymmetric HCC may be induced to normal-liker liver by defined factors

More cancer problems addressable

- What are the essential features that a mathematical model for cancer must possess? (Hanahan and Weinberg, 2000; Varmus, 2006; Feinberg, Ohlsson, Henikoff, 2006; Sporn, 2006;)
- Does the basic mathematical model already contain them?
- How are they explained?

(dormancy; "double" hit *vs* multi-steps; androgen withdraw; double edge/context dependence/multiple roles; as unhealed wound; as aberrant developmental process; as survival of stressed unicellular organisms;)

- Are there any obvious contradictions/difficulties to explain well established observations?
- What are the major controversial features in current cancer theories?
 (single cell progenitor vs stem cell; more benign tumors at advanced age; spontaneous appearing and disappearing of lesions; drug resistance; exercise (simulating annealing?); sleeping/ circadian (elevated temperature?);
- How can those issues be addressed within the basic mathematical model?
- What are the most pronounced predictions which can be tested experimentally to demonstrate its distinct character and/or predictable power?

Very plausible prediction with the existence of functional landscape: Cancer-like cells (or neoplasia?) with NO genetic defect can arise. The only difference may be in protein and/or epigenetic profile. An entry point:

- What are the most wanted features from a medical point of view to prove its utility?
- Are there any insights/suggestions on prevention, diagnostics, and cure/care?
- Is the basic mathematical model scalable/extendable?
- Are there requirements for interrogating technologies?
 (high throughput and high sensitivity; DNA, protein, function/physiology; real time; single cell; bioinformatics;)

Mathematical Question: existence of potential function

• Biology:

"... the idea that there is such a quantity (adaptive landscape—P.A.) remains one of the most widely held popular misconceptions about evolution".

S.H. Rice, in Evolutionary Theory: mathematical and conceptual foundations (2004)

Chemistry:

"The search for a generalized thermodynamic potential in the nonlinear range has attracted a great deal of attention, but these efforts finally failed."

G. Nicolis in New Physics, pp332 (1989)

Physics:

"Statistical physicists have tried to find such a variational formulation for many years because, if it existed in a useful form, it might be a powerful tool for the solution of many kinds of problems. My guess ... is that no such general principle exists."

J. Langer in *Critical Problems in Physics*, pp26 (1997)

and, check recent issues of Physics Today, Physical Review Letters, ...

Mathematics:

gradient *vs* vector systems, unsolved (Holmes, 2006)

dissipative, $\nabla \bullet f \neq 0$; asymmetric, $\nabla \times f \neq 0$ (absence of detailed balance); nonlinear;

stochastic with multiplicative noise

- Economy (econophysics), finance, engineering, ...
- We have found a general solution (similar results have been obtained by several other groups):

C. Kwon, P. Ao, and D.J. Thouless. Proc. Nat'l Acad. Sci. (USA) **102** (2005) 13029-13033. R.S. Yuan, and P. Ao. J. Stat. Mech. (2012) P07010.

Biological Question: Quantitative Evidence

- Answer from stability puzzle of phage lambda genetic switch X.-M. Zhu, L. Yin, L. Hood, and P. Ao, Journal of Bioinformatics and Computational Biology 2: 885-817 (2004).
- We obtained two major predictions: cooperation energy and extrinsic noise
- Genetic and environmental factors are quantitatively described. (There are lots of recent and related experimental works to support them.)

Phage	Lysogenization frequency	Relative CI level in lysogenic state	Relative Cro level in anti- immune state	Fraction switched to lytic state
	Theoretical (experimental)	Theoretical (experimental)	Theoretical	Theoretical (experimental)
λ ⁺ λ <i>O_R</i> 121 λ <i>O_R</i> 323 λ <i>O_R</i> 3'23'	90%(63%)70%(57%)10%(33%)80%(60%)	100%(100%)20%(25-30%)70%(60-75%)50%(50-60%)	100% 100% 70% 140%	5×10-7 (4×10-7) 3×10-6 (3×10-6) 2×10-5 (2×10-5) 5×10-7 (5×10-7)

Acknowledgements

Co-workers:

- Xiaomei Zhu, GenMath, Seattle, USA
- Lan Yin, Beijing Univ., Beijing, P.R. China
- Prof. Chen Zhu's lab, leukemia
- Prof. Gu Jianren's lab, liver cancer
- Lee Hood, Inst. Systems Biology, Seattle
- David Galas, Inst. Systems Biology, Seattle
- David Thouless, Physics, Univ. Washington
- Hong Qian, Applied Math, Univ. Washington
- Chulan Kwon, Myongji Univ., S. Korea

Funding:

- Institute for Systems Biology
- USA NIH
- China: 985, 973

Thank You!