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Major and interconnected research projects
a. Carcinogenesis: endogenous molecular-cellular network dynamics 

beyond “cancer as diseases of genome”
b. Develop whole organism platform on kinetic modeling of large metabolic networks

dealing with incomplete kinetic parameters 
c. Development of mathematical and computational methodologies on stochastic processes

d. Towards new theoretical foundation of evolutionary biology



Kinetics of Global Metabolic Networks
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Using bacterium AM1 to gain understanding on 
combustion parts manufacturing

Metabolism and genetics

• Simplified reaction reactions:  generic rate equation
Generic Enzymatic Rate Equation under Living Conditions, 

L.W. Lee, L. Yin, X.M. Zhu, and P. Ao,   J. Biol. Syst. 15 : 495-514 (2007) .
Generic Enzymatic Rate Equation. 

M.J. Xu, PH Lin, X.M. Zhu, P. Ao. Progress in Biochemistry and Biophysics . 38: 759-767（2011）

• Finding viable kinetic parameters by robustness principle
Towards Kinetic Modeling of Metabolic Networks with Incomplete Parameters,

W. Zheng, X.M. Zhu, Y.C. Chen,  P.H.Lin, P. Ao,  Proceedings of the 2013 IEEE Conference on Systems Biology. 2013

• Applications
Towards Kinetic Modeling of Global Metabolic Networks: Methylobacterium extorquens AM1 Growth as Validation, 

P Ao, LW Lee, ME. Lidstrom, Lan Yin, and XM Zhu, Chinese Journal of Biotechnology 24 (2008) 980 - 994.     



Systems Biology:   endogenous molecular-cellular network cancer theory 

Quantitative Implementation of Endogenous Molecular-Cellular Network Hypothesis in Hepatocellular carcinoma,
G.W. Wang, X.M. Zhu, J.R. Gu, P. Ao. Interface Focus 4 (2014) 20130064.

From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis
G.W. Wang, X.-M. Zhu, L. Hood, P. Ao. Quantitative Biology 1 (2013) 32-49. 

Towards Predictive Stochastic Dynamical Modeling of Cancer Genesis and Progression. 
P. Ao, D. Galas, L. Hood, L. Yin, X.M. Zhu. Interdiscip Sci Comput Life Sci  2 (2010) 140 144

Global view of bionetwork dynamics: adaptive landscape. 
P. Ao. J. Genet. Genomics 36 (2009) 63-73

Cancer as Robust Intrinsic State of Endogenous Molecular-Cellular Network Shaped by Evolution. 
P. Ao, D. Galas, L. Hood, X.-M. Zhu, Medical Hypotheses 70 (2008) 678 684.

Orders of Magnitude Change in Phenotype Rate Caused by Mutations. 
P. Ao, Cellular Oncology (2007) 29: 67-69.

This program aims to establish theoretical protocols and computational tools,
which can provide a unified framework to organize, to explain, and to predict
biological phenomena on cancer and related robust complex diseases.

If this even becomes possible, drug development will be more a matter  of dry 
bioinformatics than  wet biology at the laboratory bench. (RA Weinberg, 2007)



Milestones in Cancer Research
(Nature, Milestones of timeline, 2006)

1889  Seed and soil hypothesis
1890   Cancer as a genetic disease
1909   Immune surveillance 
1910   Viruses and cancer
1915   Hormones and cancer
1937   Cancer stem cells
1939   Angiogenesis
1950   Smoking and cancer
1953   Two-hit hypothesis 
1960   Chromosome translocations
1971   Tumour suppressor genes
1972 Apoptosis and cancer
1975  Tumour microenvironment
1976   Clonal evolution & multistep 

tumourigenesis

1976  Cellular homologues of viral 
oncogenes

1978   Oncogenes encode proteins 
that regulate cell growth

1979   First human oncogene
1983  Oncogene co-operation

Cancer epigenetics
1989   Cell cycle and DNA damage  

checkpoints
1990   Genetic basis for cancer 

predisposition
Mechanisms of genetic 

instability in cancer
1999   Cancer profiling 
2001   Targeted cancer therapy



Cancer Complexity Slows Quest for Cure
EC Hayden, Nature, September 11, 455 (2008)148:
• Hopes that large studies of cancer genomics will justify their 

high cost by offering a fast track to cures have been dealt a 
blow by a series of papers.

• …
• “It is apparent from studies like ours that it is going to be even 
more difficult than expected to derive real cures,” says 
Vogelstein.   

Omic-related papers:
1923-2000:    ̃ 40,000
2000-2005:    ̃ 50,000
2005-now:     ̃100,000

Focusing on genes and mutations may be misplaced. 
Beneath cancer’s daunting complexity may lie a simplicity that 
gives grounds for hope. 



Network Dynamics and Diseases
Developing endogenous network theory for complex diseases, such as cancer, based on molecular-cellular processes and evolution. 

Ao,  Cell. Oncology, 2007; Biol. Theory 2007; 
Ao,  Hood, Galas, Zhu, Med. Hypotheses, 2008

• Three basic considerations:
Endogenous network shaped by evolution
Stochastic nonlinear dynamics: adaptive landscape 
Enough experimental data to start with

• Hypothesis:
A complex disease an intrinsic robust state in the functional landscape of 

the endogenous network not optimized for the interest of whole organism. 
P. Ao, D. Gala, L. Hood, X.-M. Zhu, Medical Hypotheses, 70 (2008) 678-684.



The Hallmarks of Cancer, D. Hanahan and 
R.A. Weinberg, Cell 100 (2000) 57 70.

Oncoprotein networks, 
T. Hunter, Cell 88 
(1997) 333-346.

Cancer genes and the pathways 
they control, B. Vogelstein and 
K.W. Kinzler, Nature Medicine 
10 (2004) 789-799.



S. Wright, 1932

Genetic Switch as multiple equilibria, 
M. Delbruck,1949;

Phage lambda genetic switch, 
Zhu, Yin, Hood, Ao, 2004

Developmental Landscape
C. Waddington, 1940 

Neural computing landscape, 

J. Hopfield, 1982

Protein folding funnel landscape
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Endogenous Network: 
major pathways

Apoptosis

Immune response

Metabolism

Growth factors and receptors

Ras-MAPK pathway

PTEN-Akt pathway

Cell cycle

Myc-p53 pathway

Hormones and receptors Invasion and metastasis 

The minimum set of pathways and modules of the endogenous network. 
Endogenous molecular and cellular agents first form pathways and modules.
Pathways and modules cross talk to each other to form the endogenous 
network. 



Table I.  Molecular 
interactions from 
experiments to 
establish the 
mathematical  
model.

From Zhu, Hood, Galas, Ao 
(2008) (in press)

Activated(up-regulated,
transcribed) by

Inhibited (down-regulated,
cleaved) by

Reference

pRb (+)(phosphorylated) Cyclin D/Cdk4,6, Cyclin
E/Cdk2

35,36

Cyclin D/Cdk4,6 Myc 36,38,43

Cyclin E/Cdk2 Myc, E2F p21, p27 35,37-39

Myc pRb(+),E2F, Akt, MAPK P53, TGF- 42,43

E2F E2F,Myc pRb(-), p21 43

p21 p53, TNF- , Androgen R Myc, Akt 39,40,43

p27 PTEN, E-cadherin Myc, Akt 65,105

p53 Myc, PTEN Akt 40,43

Caspase3 Cytochrome c, Caspase8 XIAP 45,46,48,50,51

Cytochrome c Caspase3, Bad,Bax Bcl-2, Bcl-xL 45-49,54,56,57

Caspase8 Fas, TNF- 45,46,50,51

XIAP Akt, Caspase3 45-50

Bcl-2 VEGF, Integrin Caspase3, p53, TGF- 45,46,53

Bcl-xL EGF, IGF-1R Caspase3 45,46,53,61

Bim Akt, MAPK 45,46,53

Bad p21, Akt, MAPK 45,46,53

Bax Myc, p53, Bim 42,45,46,53,55,58

Ras VEGF, IL-6, Integrin,
Androgen R

64,83



Endogenous Network:
interacting agents

Endogenous molecular and cellular network including the important regulations 
responsible for prostate cancer. The network was constructed from 
experimental data in literature, most of them of normal biological functions 
(From Zhu, Galas, Hood, Ao  (in preparation)).
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Cancer Is Fundamentally Stochastic
Effective stochastic differential equations:

dX/dt = f(X,t) ‒ x/τ0+ (X,t)     (S)
X = (X1, X2, … , Xn) , :  transpose

fA(x) =  a xm / (1 + a xm ) ,   sigmoidal (step-like) function
fI(x) =  1- fA(x) =  1  / (1 + a xm )  

for example,  m = 3,   a = 10;     fA(0) =0, fA(1) ̃  1

Ni = 0:  ith gene has no activity (no corresponding protein);  
Ni = 1:  ith gene has full activity (largest number of protein allowed);  τ0=1

Scaled (normalized) dynamical variables to minimize the demand on input.

Gaussian and white noise: 
< > = 0,  < (X,t) (X,t’) > = 2 D (X) (t-t’)

Following the indications from experimental data.       

Robustness assumption: Major network properties are not fine tuned.



dx(1)/dt = (10(x3(3) + x3 (11) + x3 (12))/(1 + 10(x3(3) +
x3(11) + x3(12))))
(1/(1 + 10(x3(13) + x3(31)  )))- x(1) ;

dx(2)/dt  = (10(x3(15) + 0.1 )/(1 + 10(x3(15) + 0.1 ))) 
(1/(1 + 10(x3(3) ))) - x(2);

dx(3)/dt  = (10(x3(1) + x3(14) )/(1 + 10(x3(1) + x3(14) ))) 
(1/(1 + 10(x3(2) ))) - x(3);

dx(4)/dt  = (10(x3(6) + x3(8) )/(1 + 10(x3(6) + x3(8) )))  
x(4);

dx(5)/dt  = (10(x3 (5) + x3(7) )/(1 + 10(x3(5) + x3(7) ))) 
(1/(1 + 10((1-x(4)) 3 + x3(10) ))) - x(5);

dx(6)/dt  = (10x3(7)/(1 + 10(x3(7) ))) - x(6) ;

dx(7)/dt  = (10(x3(4) + x3(5) + x3(15) + x3(23) )/(1 +  
10(x3(4) + x3(5) + x3(15)  + x3(23) ))) 

(1/(1 + 10(0.5x3 (9) + 0.2x3 (36)))) - x(7);
dx(8)/dt  = (10(x3 (5) + x3(7) )/(1 + 10(x3(5) + x3(7) ))) 

(1/(1 + 10(x3(10)) + x3(20) ))) - x(8);
dx(9)/dt   = 0.31((x3(7) + x3(16) )/(1 + (x3(7) + x3(16)))) 

(1/(1 + 10(x3 (15))) - x(9);
dx(10)/dt  = (10(x3(9) + x3(22) + 0.3x3(33) )/(1 + 10(x3(9)

+ x3(22)) + 0.3x3 (33) )))
(1/(1 + 10(x3(7) + x3(15) ))) - x(10);

x(1) = cxtochrome c 

x(2) = XIAP 

x(3) = caspase-3 

x(4) = pRb(+),
pRb(-)= 1-x(4)

x(5) = E2F (free of pRb-)

x(6) = CyclinD/Cdk4,6

x(7) = Myc

x(8) = CyclinE/Cdk2

x(9) = p53

x(10) = p21



Functional Landscape

Schematic endogenous 
functional landscape for 
prostate with 6 main stable 
functions. 
37 dimensions

Main robust states of the network: stable minima in the 
functional landscape space

The protein profile suggests that II(E) and II(F) are very 
likely correlated with cancer.

Stable state     Function              Molecular signature                
I(A)                    Arresting                                  Cell cycle off.  

Apoptosis off. Immune off
I(B)                    Proliferating                            Cell cycle on. 

Apoptosis off. Immune off.
I(C)                    Apoptosis                                Cell cycle off.

Apoptosis on.  Immune off.
I(D)                    Apoptosis                                Cell cycle on. 

Apoptosis on.  Immune off.  
II(E)             Growth with high metabolism       Cell cycle on.

Apoptosis off. Immune on.
II(F)           Apoptotic with high metabolism      Cell cycle on.

Apoptosis on. Immune on.



Table II.  Positions of 
possible stable states in 
functional landscape

From Zhu, Hood, Galas, Ao (2009) 
(in preparation)

Rescaled activity (or 
expression level) reduces the 
demand on the parameters

Maximum activity:  1
Minimum activity:   0

I(A) I(B) I(C) I(D) II(E) II(F)

Cytochrome c 0.04 0.08 0.86 0.86 0.00 0.85 

XIAP 0.50 0.50 0.07 0.07 0.77 0.10 

Caspase 3 0.00 0.00 0.86 0.86 0.09 0.87 

pRb(+) 0.00 0.93 0.00 0.93 0.89 0.89 

E2F 0.00 0.93 0.00 0.93 0.86 0.86 

CyclinD/CDK4,6 0.02 0.86 0.02 0.86 0.59 0.59 

Myc 0.13 0.84 0.13 0.84 0.53 0.53 

CyclinE/CDK2 0.00 0.92 0.00 0.92 0.84 0.84 

p53 0.09 0.16 0.09 0.16 0.01 0.01 

p21 0.05 0.01 0.05 0.01 0.11 0.11 

Bad 0.26 0.26 0.26 0.26 0.06 0.06 

Bax 0.08 0.29 0.08 0.29 0.07 0.07 

Bcl-2 0.48 0.47 0.09 0.09 0.19 0.08 

Caspase 8 0.04 0.04 0.04 0.04 0.48 0.48 

Akt 0.02 0.02 0.02 0.02 0.63 0.63 

PTEN 0.74 0.74 0.74 0.74 0.32 0.32 

NF- B 0.26 0.26 0.26 0.26 0.55 0.55 

HIF 0.00 0.00 0.00 0.00 0.72 0.72 

EGF 0.50 0.50 0.50 0.50 0.79 0.79 

p27 0.83 0.12 0.83 0.12 0.16 0.16 

0.60 0.60 0.60 0.60 0.25 0.25 

TNF- 0.16 0.16 0.16 0.16 0.44 0.44 

MAPK 0.26 0.26 0.26 0.26 0.51 0.51 

Ras 0.18 0.18 0.18 0.18 0.81 0.81 



Functional Landscape
(determined by nonlinear interactions within the endogenous network and its interactions to other levels)

of Endogenous Dynamical Network with 
healthy, tumor, and other robust biological states:    three typical situations

I: preventable/curable III: incurable/untreatable  II: curable/treatable

Other robust 
states

Healthy state

Tumor 
state

Other robust 
states

Other robust 
states

Tumor 
state

Tumor 
state

Healthy state

Healthy state

The vertical scale illustrates the relative stability of robust states, healthy, tumor and others, in the multiple dimensional  state space.  

The landscape concept follows what reviewed by Zhu, Yin, Hood, Galas, Ao on modeling of lambda genetic switch.               
in Introduction to Systems Biology, 2000.

A brief discussion of history of landscape concept and its usage in biology can be found in P. Ao, Laws in Darwinian evolutionary 
theory, Physics of Life Reviews 2 (2005) 117-156.  



Initial Experimental Validations
• Prostate Cancer 
Consistency among experimental data implies that  there 
may indeed be a core network.

Consistency with theoretical predictions implies that such 
mathematical model may indeed be correct. 

• Leukemia:  CML

• Hepatocellular carcinoma (HCC)



Chronic Myeloid Leukemia 



Modularization

Core endogenous network of liver tissue
minimal molecular-cellular agents,  core signaling  transduction and transcription 
pathways

Inhibition
Activation

Core endogenous molecular-cellular network for liver



Validation 1:  hallmarks of each stable state
A B C D E

X1=cyclin D-CDK4
X2=cyclin E-CDK2
X3=Rb
X4=E2F
X5=P21
X6=C/EBPa
X7=Foxa2
X8=HNF4a
X9=Bcl-2
X10=tBid
X11=XIAP
X12=Bax
X13=Cytchrome c
X14=Caspase9
X15=Caspase8
X16=Caspase3
X17=Ras
X18=ERK
X19=JNK
X20=Akt
X21=PTEN
X22=HIF
X23=Myc
X24=P53
X25=EGF
X26=TGF-beta
X27=E-cadherin
X28=b-catenin
X29=GSK3
X30=Integrin
X31=HGF
X32=TNFa
X33=NF-kB
X34=NF-kB(KC)
X35=IL-1
X36=IL-6
X37=IL-10
X38=Stat3
X39=Cox-2
X40=VEGF
X41=MDM2
X42=ikB

0.0000    
0.0000    
1.0000    
0.0000    
0.0000    
0.9642    
0.9457    
0.9457    
0.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
1.0000    
0.0000    
1.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000
0.8889    
0.8889

0.8781    
0.8781    
0.0688    
0.8923    
0.0454    
0.0076    
0.0000    
0.0000    
0.4962    
0.0000
0.8669    
0.0464    
0.0004    
0.0000    
0.0000    
0.0000    
0.8953    
0.8669    
0.0000    
0.8880
0.1075    
0.5008    
0.5331    
0.4212    
0.5567    
0.1075    
0.2512    
0.5374    
0.1250    
0.8669
0.8804    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.8953    
0.8669    
0.0026
0.3504    
0.0015

0.8709    
0.8709    
0.0704    
0.8851    
0.0533    
0.0092    
0.0000    
0.0000    
0.2049    
0.0076
0.8660    
0.0597    
0.0020    
0.0000    
0.1857    
0.0181    
0.8902    
0.8648    
0.6173    
0.8857
0.1084    
0.4549    
0.4822    
0.4517    
0.4850    
0.1124    
0.3244    
0.3914    
0.1258    
0.8899
0.8866    
0.5443    
0.6148    
0.5236    
0.7899    
0.3713    
0.3888    
0.8961    
0.8877    
0.9006
0.9333    
0.0855

0.0000    
0.0000    
1.0000    
0.0000    
0.0000    
0.9642    
0.9457    
0.9457    
0.0000    
0.8785
0.0000    
0.8715    
0.8687    
0.9387    
0.8975    
0.9566    
0.0000    
0.0000    
0.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
1.0000    
0.0000    
1.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000
0.8889    
0.8889

0.8781    
0.8781    
0.0688    
0.8923    
0.0454    
0.0076    
0.0000    
0.0000    
0.0878    
0.1095
0.0950    
0.0539    
0.0016    
0.8828    
0.8904    
0.9331    
0.8953    
0.8669    
0.0000    
0.8880
0.1075    
0.5008    
0.5331    
0.4212    
0.5567    
0.1075    
0.2512    
0.5374    
0.1250    
0.8669
0.8804    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.8953    
0.8669    
0.9028
0.8889    
0.8889

Stable states Model:

Physiological and clinical:

Hanahan, D. and Robert A. Weinberg (2011).   
"Hallmarks of Cancer: The Next Generation."

Perfect match: stable state A as normal liver; C as HCC



Validation 2:  Molecular-cellular agents test
Normal HepG2 HCC

cyclin D-CDK4
cyclin E-CDK2
Rb
E2F
P21
C/EBPa
Foxa2
HNF4a
Bcl-2
Bid
XIAP
Bax
Cytchrome c
Caspase9
Caspase8
Caspase3
Ras
ERK
JNK
Akt
PTEN
HIF
Myc
P53
EGF
TGF-beta
E-cadherin
b-catenin
GSK3
Integrin
HGF
TNFa
NF-kB
NF-kB(KC)
IL-1
IL-6
IL-10
Stat3
Cox-2
VEGF
MDM2
ikB

0.0000    
0.0000    
1.0000    
0.0000    
0.0000    
0.9642    
0.9457    
0.9457    
0.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
1.0000    
0.0000    
1.0000    
0.0000
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000
0.8889    
0.8889

0.8781    
0.8781    
0.0688    
0.8923    
0.0454    
0.0076    
0.0000    
0.0000    
0.4962    
0.0000
0.8669    
0.0464    
0.0004    
0.0000    
0.0000    
0.0000    
0.8953    
0.8669    
0.0000    
0.8880
0.1075    
0.5008    
0.5331    
0.4212    
0.5567    
0.1075    
0.2512    
0.5374    
0.1250    
0.8669
0.8804    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.0000    
0.8953    
0.8669    
0.9028
0.3504    
0.0015

0.8709    
0.8709    
0.0704    
0.8851    
0.0533    
0.0092    
0.0000    
0.0000    
0.2049    
0.0076
0.8660    
0.0597    
0.0020    
0.0000    
0.1857    
0.0181    
0.8902    
0.8648    
0.6173    
0.8857
0.1084    
0.4549    
0.4822    
0.4517    
0.4850    
0.1124    
0.3244    
0.3914    
0.1258    
0.8899
0.8866    
0.5443    
0.6148    
0.5236    
0.7899    
0.3713    
0.3888    
0.8961    
0.8877    
0.9006
0.9333    
0.0855

Stable states (model) Normal liver and HCC

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33006,2012; 3-paired HCC tissue samples and adjacent normal liver tissues

86% 72% 71%76%



Hepatocellular carcinoma and normal state

Normal liver stateHCC state

Regression 
probability?
Defined factors?

Oncogenes (Ras, Myc)

Can we induce HCC state to normal-like liver state by defined factors? How?

Spontaneous regression of hepatocellular carcinoma and review of 
literature. 

Journal of Gastroenterology and Hepatology, 2000 15:1079-1086



Predications: maintenance of stable states at molecular level

Positive feedback loops provide a general strategy for the establishment and maintenance of 
stable states



Induce HCC to normal by inhibiting Ras, Akt, NF- B, and activating HNF4

Induce HCC to normal liver by defined factors

Inhibit cell proliferation and inflammation, induce differentiation



Dynamics of HCC progression and regression
Progression

Regression



Summary for a set of testable predictions

HCC progression and regression are asymmetric
HCC may be induced to normal-liker liver by defined factors

Normal liver stateHCC state

Ras, Akt, NF- B, HNF4

Ras, NF- B

Normal liver state 

HCC state

HCC state

Normal liver state 



More cancer problems addressable  
• What are the essential features that a mathematical model for cancer must possess?                                    

(Hanahan and Weinberg, 2000; Varmus, 2006; Feinberg, Ohlsson, Henikoff, 2006; Sporn, 2006;     )

• Does the basic mathematical model already contain them?

• How are they explained?
(dormancy;  “double” hit vs multi-steps;  androgen withdraw; double edge/context dependence/multiple roles;  as unhealed 
wound;  as aberrant developmental process;  as survival of stressed unicellular organisms;     )

• Are there any obvious contradictions/difficulties to explain well established observations?

• What are the major controversial features in current cancer theories?                                    
(single cell progenitor vs stem cell;  more benign tumors at advanced age;  spontaneous appearing and disappearing of lesions; 
drug resistance;  exercise (simulating annealing?);  sleeping/ circadian (elevated temperature?);  )

• How can those issues be addressed within the basic mathematical model?

• What are the most pronounced predictions which can be tested experimentally to demonstrate its distinct character and/or 
predictable power? 
Very plausible prediction with the existence of functional landscape:   Cancer-like cells (or neoplasia?) with NO genetic defect
can arise.  The only difference may be in protein and/or epigenetic profile.
An entry point:  

• What are the most wanted features from a medical point of view to prove its utility?

• Are there any insights/suggestions on prevention, diagnostics, and cure/care?

• Is the basic mathematical model scalable/extendable? 

• Are there requirements for interrogating technologies?                                                             
(high throughput and high sensitivity; DNA, protein, function/physiology; real time; single cell; bioinformatics;    )  



Mathematical Question: 
existence of potential function

• Biology:
“ … the idea that there is such a quantity (adaptive landscape̶P.A.)  remains one of the most widely held 
popular misconceptions about evolution”. 

S.H. Rice, in Evolutionary Theory: mathematical and conceptual foundations (2004)
• Chemistry:
“The search for a generalized thermodynamic potential in the nonlinear range has attracted a great deal of 
attention, but these efforts finally failed.”

G. Nicolis   in New Physics, pp332 (1989)
• Physics:
“Statistical physicists have tried to find such a variational formulation for many years because, if it existed in a 
useful form, it might be a powerful tool for the solution of many kinds of problems. My guess … is that no such 
general principle exists.”    

J. Langer   in Critical Problems in Physics, pp26 (1997) 
and, check recent issues of Physics Today, Physical Review Letters, …  

• Mathematics:
gradient vs vector systems, unsolved (Holmes, 2006)
dissipative, f 0 ; asymmetric, f 0 (absence of detailed balance) ;   nonlinear ; 
stochastic with multiplicative noise

• Economy (econophysics), finance, engineering,   … 

• We have found a general solution (similar results have been obtained by several other groups):
C. Kwon, P. Ao, and D.J. Thouless.       Proc. Nat l Acad. Sci. (USA) 102 (2005) 13029-13033. 
R.S. Yuan, and P. Ao.                                                                  J. Stat. Mech. (2012) P07010.  



Biological Question:
Quantitative Evidence

• Answer from stability puzzle of phage lambda genetic switch
X.-M. Zhu, L. Yin, L. Hood, and P. Ao,           
Journal of Bioinformatics and Computational Biology 2: 885-817 (2004). 

• We obtained two major predictions: cooperation energy and extrinsic noise
• Genetic and environmental factors are quantitatively described.  
(There are lots of recent and related experimental works to support them.)

Phage Lysogenization 
frequency 

Relative CI level 
in lysogenic state 

Relative Cro
level in anti-
immune state

Fraction switched to 
lytic state 

Theoretical 
(experimental) 

Theoretical 
(experimental)

Theoretical Theoretical 
(experimental)

+

OR121
OR323
OR3’23’

90%    (63%)
70%    (57%)
10%    (33%)
80%    (60%) 

100%   (100%)
20%     (25-30%)
70%     (60-75%) 
50%     (50-60%)

100%
100%
70%
140%

5 10-7 (4 10-7)
3 10-6 (3 10-6)
2 10-5 (2 10-5)
5 10-7 (5 10-7)
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